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Shutdown Mode
For all ProASIC3/E and ProASIC3 nano devices, shutdown mode can be entered by turning off all power
supplies when device functionality is not needed. Cold-sparing and hot-insertion features in ProASIC3
nano devices enable the device to be powered down without turning off the entire system. When power
returns, the live at power-up feature enables immediate operation of the device.

Using Sleep Mode or Shutdown Mode in the System
Depending on the power supply and components used in an application, there are many ways to turn the
power supplies connected to the device on or off. For example, Figure 2-6 shows how a microprocessor
is used to control a power FET. It is recommended that power FETs with low on resistance be used to
perform the switching action.

Figure 2-5 • Entering and Exiting Sleep Mode—Typical Timing Diagram
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Figure 2-6 • Controlling Power On/Off State Using Microprocessor and Power FET
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Global Resources in Low Power Flash Devices
Design Recommendations
The following sections provide design flow recommendations for using a global network in a design.

• "Global Macros and I/O Standards"
• "Global Macro and Placement Selections" on page 48
• "Using Global Macros in Synplicity" on page 50
• "Global Promotion and Demotion Using PDC" on page 51
• "Spine Assignment" on page 52
• "Designer Flow for Global Assignment" on page 53
• "Simple Design Example" on page 55
• "Global Management in PLL Design" on page 57
• "Using Spines of Occupied Global Networks" on page 58

Global Macros and I/O Standards
The larger low power flash devices have six chip global networks and four quadrant global networks.
However, the same clock macros are used for assigning signals to chip globals and quadrant globals.
Depending on the clock macro placement or assignment in the Physical Design Constraint (PDC) file or
MultiView Navigator (MVN), the signal will use the chip global network or quadrant network. Table 3-8
lists the clock macros available for low power flash devices. Refer to the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide for details.

Use these available macros to assign a signal to the global network. In addition to these global macros,
PLL and CLKDLY macros can also drive the global networks. Use I/O–standard–specific clock macros
(CLKBUF_x) to instantiate a specific I/O standard for the global signals. Table 3-9 on page 47 shows the
list of these I/O–standard–specific macros. Note that if you use these I/O–standard–specific clock
macros, you cannot change the I/O standard later in the design stage. If you use the regular CLKBUF
macro, you can use MVN or the PDC file in Designer to change the I/O standard. The default I/O

Table 3-8 • Clock Macros

Macro Name Description Symbol

CLKBUF Input macro for Clock Network

CLKBUF_x Input macro for Clock Network
with specific I/O standard

CLKBUF_LVDS/LVPECL LVDS or LVPECL input macro
for Clock Network (not
supported for IGLOO nano or
ProASIC3 nano devices)

CLKINT Macro for internal clock interface

CLKBIBUF Bidirectional macro with input
dedicated to routed Clock
Network

YPAD

CLKBUF

PAD Y
CLKBUF_X

PADN

PADP

CLKBUF_LVPECL Y

PADN

PADP

CLKBUF_LVDS Y

A Y

CLKINT

D
Y

E PAD

CLKBIBUF
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each CCC can implement up to three independent global buffers (with or without programmable delay) 
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to 
three global outputs. Unused global outputs of a PLL can be used to implement independent global 
buffers, up to a maximum of three global outputs for a given CCC.

CCC Programming
The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or 
through an asynchronous interface. This asynchronous dedicated shift register interface is dynamically 
accessible from inside the low power flash devices to permit parameter changes, such as PLL divide 
ratios and delays, during device operation. 
To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is 
determined either by the user during the design process, with configuration data being stored in flash 
memory as part of the device programming procedure, or by writing data into a dedicated shift register 
during normal device operation.
This latter mode allows the user to dynamically reconfigure the CCC without the need for core 
programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG 
Applications in Microsemi’s Low Power Flash Devices" section on page 297 or the application note Using 
Global Resources in Actel Fusion Devices.

Global Resources 
Low power flash and mixed signal devices provide three global routing networks (GLA, GLB, and GLC) 
for each of the CCC locations. There are potentially many I/O locations; each global I/O location can be 
chosen from only one of three possibilities. This is controlled by the multiplexer tree circuitry in each 
global network. Once the I/O location is selected, the user has the option to utilize the CCCs before the 
signals are connected to the global networks. The CCC in each location (up to six) has the same 
structure, so generating the CCC macros is always done with an identical software GUI. The CCCs in the 
corner locations drive the quadrant global networks, and the CCCs in the middle of the east and west 
chip sides drive the chip global networks. The quadrant global networks span only a quarter of the 
device, while the chip global networks span the entire device. For more details on global resources 
offered in low power flash devices, refer to the "Global Resources in Low Power Flash Devices" section 
on page 31. 
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, or 
CLKC-GLC) of a given CCC. A PLL macro uses the CLKA CCC input to drive its reference clock. It uses 
the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can 
also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the 
YB (or YC) output is used. Refer to the "PLL Macro Signal Descriptions" section on page 68 for more 
information. 
Each global buffer, as well as the PLL reference clock, can be driven from one of the following: 

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or 

ProASIC3 nano devices)
• The FPGA core
62 Revision 5
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The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to 
delay the clock input using a programmable delay. The CLKDLY macro takes the selected clock input 
and adds a user-defined delay element. This macro generates an output clock phase shift from the input 
clock.
The CLKDLY macro can be driven by an INBUF* macro to create a composite macro, where the I/O 
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the 
software will automatically place the dedicated global I/O in the appropriate locations. Many specific 
INBUF macros support the wide variety of single-ended and differential I/O standards supported by the 
low power flash family. The available INBUF macros are described in the IGLOO, ProASIC3, 
SmartFusion, and Fusion Macro Library Guide. 
The CLKDLY macro can be driven directly from the FPGA core. The CLKDLY macro can also be driven 
from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a 
special macro, PLLINT, to differentiate the clock input driven by the hardwired I/O connection.
The visual CLKDLY configuration in the SmartGen area of the Microsemi Libero System-on-Chip (SoC) 
and Designer tools allows the user to select the desired amount of delay and configures the delay 
elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will 
automatically instantiate the special macro, PLLINT, when needed.

CLKDLY Macro Signal Descriptions 
The CLKDLY macro supports one input and one output. Each signal is described in Table 4-2.  

Notes:
1. For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by 

software to a dedicated Global I/O.
2. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 4-3 • CCC Options: Global Buffers with Programmable Delay
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DLYGL[4:0]

GL

Table 4-2 • Input and Output Description of the CLKDLY Macro

Signal Name I/O Description

CLK Reference Clock Input Reference clock input 

GL Global Output Output Primary output clock to respective global/quadrant clock networks
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This section outlines the following device information: CCC features, PLL core specifications, functional 
descriptions, software configuration information, detailed usage information, recommended board-level 
considerations, and other considerations concerning global networks in low power flash devices. 

Clock Conditioning Circuits with Integrated PLLs
Each of the CCCs with integrated PLLs includes the following:

• 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltage-
controlled oscillator

• 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the 
global networks

• 6 programmable delays and 1 fixed delay for time advance/delay adjustments
• 5 programmable frequency divider blocks to provide frequency synthesis (automatically 

configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs
There are two types of simplified CCCs without integrated PLLs in low power flash devices.

1. The simplified CCC with programmable delays, which is composed of the following: 
– 3 global multiplexer blocks that steer signals from the global pads and the programmable 

delay elements onto the global networks
– 3 programmable delay elements to provide time delay adjustments

2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is 
composed of the following: 
– A global multiplexer block that steer signals from the global pads onto the global networks
Revision 5 79
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Figure 4-22 • CCC Block Control Bits – Graphical Representation of Assignments
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SRAM Usage
The following descriptions refer to the usage of both RAM4K9 and RAM512X18.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge and by
separate clocks by port. Note that for Automotive ProASIC3, the same clock, with an inversion between
the two clock pins of the macro, should be used in design to prevent errors during compile.
Low power flash devices support inversion (bubble-pushing) throughout the FPGA architecture, including
the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic
or in the HDL code will be automatically accounted for during design compile without incurring additional
delay in the clock path.
The two-port SRAM can be clocked on the rising or falling edge of WCLK and RCLK. 
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble-pushing) is automatically used within the development tools, without performance
penalty. 

Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from address to data but enables operation at a much higher frequency. The read address
is registered on the read port active clock edge, and the read data is registered and appears at
RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is HIGH. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. 

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG
mechanism. The shift register for a target block can be selected and loaded with the proper bit
configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 

FIFO Features
The FIFO4KX18 macro is created by merging the RAM block with dedicated FIFO logic (Figure 6-6 on
page 142). Since the FIFO logic can only be used in conjunction with the memory block, there is no
separate FIFO controller macro. As with the RAM blocks, the FIFO4KX18 nomenclature does not refer to
a possible aspect ratio, but rather to the deepest possible data depth and the widest possible data width.
FIFO4KX18 can be configured into the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, 512×9, and
256×18. In addition to being fully synchronous, the FIFO4KX18 also has the following features:

• Four FIFO flags: Empty, Full, Almost-Empty, and Almost-Full
• Empty flag is synchronized to the read clock
• Full flag is synchronized to the write clock
• Both Almost-Empty and Almost-Full flags have programmable thresholds
• Active-low asynchronous reset
• Active-low block enable
• Active-low write enable
• Active-high read enable
• Ability to configure the FIFO to either stop counting after the empty or full states are reached or to

allow the FIFO counters to continue
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– If one of the registers has a PRE pin, all the other registers that are candidates for combining
in the I/O must have a PRE pin.

– If one of the registers has neither a CLR nor a PRE pin, all the other registers that are
candidates for combining must have neither a CLR nor a PRE pin.

– If the clear or preset pins are present, they must have the same polarity.
– If the clear or preset pins are present, they must be driven by the same signal (net).

3. For single-tile devices (10 k, 15 k, and 20 k): Registers connected to an I/O on the Output and
Output Enable pins must have the same clock function (both CLR and CLK are shared among all
registers):
– Both the Output and Output Enable registers must not have an E pin (clock enable).

4. For dual-tile devices (60 k, 125 k, and 250 k): Registers connected to an I/O on the Output and
Output Enable pins must have the same clock and enable function:
– Both the Output and Output Enable registers must have an E pin (clock enable), or none at all.
– If the E pins are present, they must have the same polarity. The CLK pins must also have the

same polarity.
In some cases, the user may want registers to be combined with the input of a bibuf while
maintaining the output as-is. This can be achieved by using PDC commands as follows:

set_io <signal name> -REGISTER yes ------register will combine
set_preserve <signal name> ----register will not combine

Weak Pull-Up and Weak Pull-Down Resistors
nano devices support optional weak pull-up and pull-down resistors on each I/O pin. When the I/O is
pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is
connected to GND. Refer to the datasheet for more information.
For low power applications and when using IGLOO nano devices, configuration of the pull-up or pull-
down of the I/O can be used to set the I/O to a known state while the device is in Flash*Freeze mode.
Refer to "Flash*Freeze Technology and Low Power Modes" in an applicable FPGA fabric user’s guide for
more information.
The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the
signal needs to be driven at all times.

Output Slew Rate Control
The slew rate is the amount of time an input signal takes to get from logic LOW to logic HIGH or vice
versa.
It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing.
Slew rate control is available for the output buffers of low power flash devices. The output buffer has a
programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. 
The slew rate can be implemented by using a PDC command (Table 7-5 on page 163), setting it "High"
or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate
value is "High."
Microsemi recommends the high slew rate option to minimize the propagation delay. This high-speed
option may introduce noise into the system if appropriate signal integrity measures are not adopted.
Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is
recommended when bus transients are expected. 

Output Drive
The output buffers of nano devices can provide multiple drive strengths to meet signal integrity
requirements. The LVTTL and LVCMOS (except 1.2 V LVCMOS) standards have selectable drive
strengths. 
Drive strength should also be selected according to the design requirements and noise immunity of the
system.
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I/O Software Support
In Microsemi's Libero software, default settings have been defined for the various I/O standards
supported. Changes can be made to the default settings via the use of attributes; however, not all I/O
attributes are applicable for all I/O standards. 

Table 7-15 • nano I/O Attributes vs. I/O Standard Applications

I/O Standard

SLEW
(output 
only)

OUT_DRIVE 
(output only) RES_PULL

OUT_LOAD 
(output only)

Schmitt 
Trigger Hold State

Combine 
Register

IGLOO 
nano

ProASIC
3 nano

LVTTL/
LVCMOS3.3

✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS2.5 ✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.8 ✓ ✓ (4) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.5 ✓ ✓ (2) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.2 ✓ ✓ (2) ✓ ✓ – ✓ ✓ ✓

Software
Defaults

HIGH Refer to 
numbers in 
parentheses 

in above cells.

None All 
Devices:

5 pF

10 pF or 
35 pF*

Off Off No

Note: *10 pF for A3PN010, A3PN015, and A3PN020; 35 pF for A3PN060, A3PN125, and A3PN250.
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Transmit Register
(continued)

Tristate 
Buffer

Normal  Enable Polarity Low/high (low default)

LVTTL Output Drive 2, 4, 6, 8, 12,16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

PCI/PCI-X Enable Polarity Low/high (low default)

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

Enable Polarity Low/high (low default)

HSTL Class I / II (I default)

Enable Polarity Low/high (low default)

SSTL2/SSTL3 Class I / II (I default)

Enable Polarity Low/high (low default)

Bidirectional 
Buffer

Normal Enable Polarity Low/high (low default)

LVTTL Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Enable Polarity Low/high (low default)

Pull-Up None (default)

PCI/PCI-X None

Enable Polarity Low/high (low default)

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

Enable Polarity Low/high (low default)

HSTL Class I / II (I default)

Enable Polarity Low/high (low default)

SSTL2/SSTL3 Class I / II (I default)

Enable Polarity Low/high (low default)

Table 9-2 • DDR I/O Options (continued)

DDR Register 
Type I/O Type I/O Standard Sub-Options Comments

Note: *IGLOO nano and ProASIC3 nano devices do not support differential inputs.
208 Revision 5



ProASIC3 nano FPGA Fabric User’s Guide
General Flash Programming Information

Programming Basics
When choosing a programming solution, there are a number of options available. This section provides a 
brief overview of those options. The next sections provide more detail on those options as they apply to 
Microsemi FPGAs. 

Reprogrammable or One-Time-Programmable (OTP)
Depending on the technology chosen, devices may be reprogrammable or one-time-programmable. As 
the name implies, a reprogrammable device can be programmed many times. Generally, the contents of 
such a device will be completely overwritten when it is reprogrammed. All Microsemi flash devices are 
reprogrammable.
An OTP device is programmable one time only. Once programmed, no more changes can be made to 
the contents. Microsemi flash devices provide the option of disabling the reprogrammability for security 
purposes. This combines the convenience of reprogrammability during design verification with the 
security of an OTP technology for highly sensitive designs.

Device Programmer or In-System Programming
There are two fundamental ways to program an FPGA: using a device programmer or, if the technology 
permits, using in-system programming. A device programmer is a piece of equipment in a lab or on the 
production floor that is used for programming FPGA devices. The devices are placed into a socket 
mounted in a programming adapter module, and the appropriate electrical interface is applied. The 
programmed device can then be placed on the board. A typical programmer, used during development, 
programs a single device at a time and is referred to as a single-site engineering programmer. 
With ISP, the device is already mounted onto the system printed circuit board when programming occurs. 
Typically, ISD programming is performed via a JTAG interface on the FPGA. The JTAG pins can be 
controlled either by an on-board resource, such as a microprocessor, or by an off-board programmer 
through a header connection. Once mounted, it can be programmed repeatedly and erased. If the 
application requires it, the system can be designed to reprogram itself using a microprocessor, without 
the use of any external programmer.
If multiple devices need to be programmed with the same program, various multi-site programming 
hardware is available in order to program many devices in parallel. Microsemi In House Programming is 
also available for this purpose.

Programming Features for Microsemi Devices 
Flash Devices
The flash devices supplied by Microsemi are reprogrammable by either a generic device programmer or 
ISP. Microsemi supports ISP using JTAG, which is supported by the FlashPro4 and FlashPro3, FlashPro 
Lite, Silicon Sculptor 3, and Silicon Sculptor II programmers.
Levels of ISP support vary depending on the device chosen:

• All SmartFusion, Fusion, IGLOO, and ProASIC3 devices support ISP.
• IGLOO, IGLOOe, IGLOO nano V5, and IGLOO PLUS devices can be programmed in-system 

when the device is using a 1.5 V supply voltage to the FPGA core.
• IGLOO nano V2 devices can be programmed at 1.2 V core voltage (when using FlashPro4 only) 

or 1.5 V. IGLOO nano V5 devices are programmed with a VCC core voltage of 1.5 V.
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11 – Security in Low Power Flash Devices

Security in Programmable Logic
The need for security on FPGA programmable logic devices (PLDs) has never been greater than today.
If the contents of the FPGA can be read by an external source, the intellectual property (IP) of the system
is vulnerable to unauthorized copying. Fusion, IGLOO, and ProASIC3 devices contain state-of-the-art
circuitry to make the flash-based devices secure during and after programming. Low power flash devices
have a built-in 128-bit Advanced Encryption Standard (AES) decryption core (except for 30 k gate
devices and smaller). The decryption core facilitates secure in-system programming (ISP) of the FPGA
core array fabric, the FlashROM, and the Flash Memory Blocks (FBs) in Fusion devices. The FlashROM,
Flash Blocks, and FPGA core fabric can be programmed independently of each other, allowing the
FlashROM or Flash Blocks to be updated without the need for change to the FPGA core fabric. 
Microsemi has incorporated the AES decryption core into the low power flash devices and has also
included the Microsemi flash-based lock technology, FlashLock.® Together, they provide leading-edge
security in a programmable logic device. Configuration data loaded into a device can be decrypted prior
to being written to the FPGA core using the AES 128-bit block cipher standard. The AES encryption key
is stored in on-chip, nonvolatile flash memory. 
This document outlines the security features offered in low power flash devices, some applications and
uses, as well as the different software settings for each application.  

Figure 11-1 • Overview on Security
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2. Choose the desired security level setting and enter the key(s).
– The High security level employs FlashLock Pass Key with AES Key protection. 
– The Medium security level employs FlashLock Pass Key protection only. 

Figure 11-15 • Programming Fusion Security Settings Only

Figure 11-16 • High Security Level to Implement FlashLock Pass Key and AES Key Protection
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FlashROM and Programming Files
Each low power flash device has 1 kbit of on-chip, nonvolatile flash memory that can be accessed from
the FPGA core. This nonvolatile FlashROM is arranged in eight pages of 128 bits (Figure 12-3). Each
page can be programmed independently, with or without the 128-bit AES encryption. The FlashROM can
only be programmed via the IEEE 1532 JTAG port and cannot be programmed from the FPGA core. In
addition, during programming of the FlashROM, the FPGA core is powered down automatically by the
on-chip programming control logic.

When using FlashROM combined with AES, many subscription-based applications or device
serialization applications are possible. The FROM configurator found in the Libero SoC Catalog supports
easy management of the FlashROM contents, even over large numbers of devices. The FROM
configurator can support FlashROM contents that contain the following:

• Static values
• Random numbers
• Values read from a file
• Independent updates of each page

In addition, auto-incrementing of fields is possible. In applications where the FlashROM content is
different for each device, you have the option to generate a single STAPL file for all the devices or
individual serialization files for each device. For more information on how to generate the FlashROM
content for device serialization, refer to the "FlashROM in Microsemi’s Low Power Flash Devices" section
on page 117. 
Libero SoC includes a unique tool to support the generation and management of FlashROM and FPGA
programming files. This tool is called FlashPoint. 
Depending on the applications, designers can use the FlashPoint software to generate a STAPL file with
different contents. In each case, optional AES encryption and/or different security settings can be set. 
In Designer, when you click the Programming File icon, FlashPoint launches, and you can generate
STAPL file(s) with four different cases (Figure 12-4 on page 268). When the serialization feature is used
during the configuration of FlashROM, you can generate a single STAPL file that will program all the
devices or an individual STAPL file for each device. 
The following cases present the FPGA core and FlashROM programming file combinations that can be
used for different applications. In each case, you can set the optional security settings (FlashLock Pass
Key and/or AES Key) depending on the application.

1. A single STAPL file or multiple STAPL files with multiple FlashROM contents and the FPGA core
content. A single STAPL file will be generated if the device serialization feature is not used. You
can program the whole FlashROM or selectively program individual pages.

2. A single STAPL file for the FPGA core content

Figure 12-3 • FlashROM Architecture
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
Circuit Verification
The power switching circuit recommended above is implemented on Microsemi's Icicle board
(Figure 13-2). On the Icicle board, VJTAGENB is used to control the N-Channel Digital FET; however,
this circuit was modified to use TRST instead of VJTAGENB in this application. There are three important
aspects of this circuit that were verified:

1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH
2. VCC rises to 1.5 V before programming begins.
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

Verification Steps
1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH.

In the oscilloscope plots (Figure 13-2), the TRST from FlashPro3 and the VCC core voltage of the
IGLOO device are labeled. This plot shows the rise characteristic of the TRST signal from FlashPro3.
Once the TRST signal is asserted HIGH, the LTC3025 shown in Figure 13-1 on page 277 senses the
increase in voltage and changes the output from 1.2 V to 1.5 V. It takes the circuit approximately 100 µs
to respond to TRST and change the voltage to 1.5 V on the VCC core.

Figure 13-2 • Core Voltage on the IGLOO AGL125-QNG132 Device

VCC Signal

TRST Signal
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Programming Algorithm

JTAG Interface
The low power flash families are fully compliant with the IEEE 1149.1 (JTAG) standard. They support all
the mandatory boundary scan instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) as well as six
optional public instructions (USERCODE, IDCODE, HIGHZ, and CLAMP). 

IEEE 1532
The low power flash families are also fully compliant with the IEEE 1532 programming standard. The
IEEE 1532 standard adds programming instructions and associated data registers to devices that comply
with the IEEE 1149.1 standard (JTAG). These instructions and registers extend the capabilities of the
IEEE 1149.1 standard such that the Test Access Port (TAP) can be used for configuration activities. The
IEEE 1532 standard greatly simplifies the programming algorithm, reducing the amount of time needed
to implement microprocessor ISP.

Implementation Overview
To implement device programming with a microprocessor, the user should first download the C-based
STAPL player or DirectC code from the Microsemi SoC Products Group website. Refer to the website for
future updates regarding the STAPL player and DirectC code. 

http://www.microsemi.com/soc/download/program_debug/stapl/default.aspx
http://www.microsemi.com/soc/download/program_debug/directc/default.aspx

Using the easy-to-follow user's guide, create the low-level application programming interface (API) to
provide the necessary basic functions. These API functions act as the interface between the
programming software and the actual hardware (Figure 14-2). 

The API is then linked with the STAPL player or DirectC and compiled using the microprocessor's
compiler. Once the entire code is compiled, the user must download the resulting binary into the MCU
system's program memory (such as ROM, EEPROM, or flash). The system is now ready for
programming.
To program a design into the FPGA, the user creates a bitstream or STAPL file using the Microsemi
Designer software, downloads it into the MCU system's volatile memory, and activates the stored
programming binary file (Figure 14-3 on page 286). Once the programming is completed, the bitstream
or STAPL file can be removed from the system, as the configuration profile is stored in the flash FPGA
fabric and does not need to be reloaded at every system power-on.

Figure 14-2 • Device Programming Code Relationship
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STAPL vs. DirectC
Programming the low power flash devices is performed using DirectC or the STAPL player. Both tools
use the STAPL file as an input. DirectC is a compiled language, whereas STAPL is an interpreted
language. Microprocessors will be able to load the FPGA using DirectC much more quickly than STAPL.
This speed advantage becomes more apparent when lower clock speeds of 8- or 16-bit microprocessors
are used. DirectC also requires less memory than STAPL, since the programming algorithm is directly
implemented. STAPL does have one advantage over DirectC—the ability to upgrade. When a new
programming algorithm is required, the STAPL user simply needs to regenerate a STAPL file using the
latest version of the Designer software and download it to the system. The DirectC user must download
the latest version of DirectC from Microsemi, compile everything, and download the result into the system
(Figure 14-4).

Figure 14-4 • STAPL vs. DirectC
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17 – Power-Up/-Down Behavior of Low Power 
Flash Devices

Introduction
Microsemi’s low power flash devices are flash-based FPGAs manufactured on a 0.13 µm process node. 
These devices offer a single-chip, reprogrammable solution and support Level 0 live at power-up (LAPU) 
due to their nonvolatile architecture. 
Microsemi's low power flash FPGA families are optimized for logic area, I/O features, and performance. 
IGLOO® devices are optimized for power, making them the industry's lowest power programmable 
solution. IGLOO PLUS FPGAs offer enhanced I/O features beyond those of the IGLOO ultra-low power 
solution for I/O-intensive low power applications. IGLOO nano devices are the industry's lowest-power 
cost-effective solution. ProASIC3®L FPGAs balance low power with high performance. The ProASIC3 
family is Microsemi's high-performance flash FPGA solution. ProASIC3 nano devices offer the lowest-
cost solution with enhanced I/O capabilities.
Microsemi’s low power flash devices exhibit very low transient current on each power supply during 
power-up. The peak value of the transient current depends on the device size, temperature, voltage 
levels, and power-up sequence. 
The following devices can have inputs driven in while the device is not powered:

• IGLOO (AGL015 and AGL030)
• IGLOO nano (all devices)
• IGLOO PLUS (AGLP030, AGLP060, AGLP125)
• IGLOOe (AGLE600, AGLE3000)
• ProASIC3L (A3PE3000L)
• ProASIC3 (A3P015, A3P030)
• ProASIC3 nano (all devices)
• ProASIC3E (A3PE600, A3PE1500, A3PE3000)
• Military ProASIC3EL (A3PE600L, A3PE3000L, but not A3P1000)
• RT ProASIC3 (RT3PE600L, RT3PE3000L)

The driven I/Os do not pull up power planes, and the current draw is limited to very small leakage current, 
making them suitable for applications that require cold-sparing. These devices are hot-swappable, 
meaning they can be inserted in a live power system.1 

1. For more details on the levels of hot-swap compatibility in Microsemi’s low power flash devices, refer to the "Hot-Swap 
Support" section in the I/O Structures chapter of the FPGA fabric user’s guide for the device you are using.
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Power-Up/-Down Behavior of Low Power Flash Devices
Power-Up to Functional Time
At power-up, device I/Os exit the tristate mode and become functional once the last voltage supply in the 
power-up sequence (VCCI or VCC) reaches its functional activation level. The power-up–to–functional 
time is the time it takes for the last supply to power up from zero to its functional level. Note that the 
functional level of the power supply during power-up may vary slightly within the specification at different 
ramp-rates. Refer to Table 17-2 for the functional level of the voltage supplies at power-up. 
Typical I/O behavior during power-up–to–functional time is illustrated in Figure 17-2 on page 311 and 
Figure 17-3. 

Microsemi’s low power flash devices meet Level 0 LAPU; that is, they can be functional prior to VCC 
reaching the regulated voltage required. This important advantage distinguishes low power flash devices 
from their SRAM-based counterparts. SRAM-based FPGAs, due to their volatile technology, require 
hundreds of milliseconds after power-up to configure the design bitstream before they become 
functional. Refer to Figure 17-4 on page 313 and Figure 17-5 on page 314 for more information.  

Figure 17-3 • I/O State when VCCI Is Powered before VCC 

Table 17-2 • Power-Up Functional Activation Levels for VCC and VCCI

Device
VCC Functional 

Activation Level (V)
VCCI Functional 

Activation Level (V)

ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, 
IGLOO PLUS, and ProASIC3L devices running at 
VCC = 1.5 V*

0.85 V ± 0.25 V 0.9 V ± 0.3 V

IGLOO, IGLOO nano, IGLOO PLUS, and 
ProASIC3L devices running at VCC = 1.2 V*

0.85 V ± 0.2 V 0.9 V ± 0.15 V

Note: *V5 devices will require a 1.5 V VCC supply, whereas V2 devices can utilize either a 1.2 V or 1.5 V 
VCC.
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