
Microchip Technology - A3PN250-1VQ100I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 36864

Number of I/O 68

Number of Gates 250000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn250-1vq100i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn250-1vq100i-4483008
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
Table 3-3 • Quadrant Global Pin Name

I/O Type Beginning of I/O Name Notes

Single-Ended GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time

GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GAC0/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBC0/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDC0/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEAO/IOuxwByVz
GEA1/IOuxwByVz
GEA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEC0/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

Note: Only one of the I/Os can be directly connected to a quadrant at a time.
Revision 5 39

ProASIC3 nano FPGA Fabric User’s Guide
Spine Architecture
The low power flash device architecture allows the VersaNet global networks to be segmented. Each of
these networks contains spines (the vertical branches of the global network tree) and ribs that can reach
all the VersaTiles inside its region. The nine spines available in a vertical column reside in global
networks with two separate regions of scope: the quadrant global network, which has three spines, and
the chip (main) global network, which has six spines. Note that the number of quadrant globals and
globals/spines per tree varies depending on the specific device. Refer to Table 3-4 for the clocking
resources available for each device. The spines are the vertical branches of the global network tree,
shown in Figure 3-3 on page 34. Each spine in a vertical column of a chip (main) global network is further
divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die
(except in 10 k through 30 k gate devices).
Top and bottom spine segments radiating from the center of a device have the same height. However,
just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the
middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and
cannot access the middle two rows of the architecture.
Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see
Figure 3-3 on page 34). Each spine is accessed by the dedicated global network MUX tree architecture,
which defines how a particular spine is driven—either by the signal on the global network from a CCC, for
example, or by another net defined by the user. Details of the chip (main) global network spine-selection
MUX are presented in Figure 3-8 on page 44. The spine drivers for each spine are located in the middle
of the die.
Quadrant spines can be driven from user I/Os or an internal signal from the north and south sides of the
die. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top
of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000
device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables
users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/
ProASIC3L
Devices

IGLOO
Devices

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in Each

Tree
Total

VersaTiles

Rows
in

Each
Spine

A3PN010 AGLN010 4 0 1 0 0 260 260 4

A3PN015 AGLN015 4 0 1 0 0 384 384 6

A3PN020 AGLN020 4 0 1 0 0 520 520 6

A3PN060 AGLN060 6 12 4 9 36 384 1,536 12

A3PN125 AGLN125 6 12 8 9 72 384 3,072 12

A3PN250 AGLN250 6 12 8 9 72 768 6,144 24

A3P015 AGL015 6 0 1 9 9 384 384 12

A3P030 AGL030 6 0 2 9 18 384 768 12

A3P060 AGL060 6 12 4 9 36 384 1,536 12

A3P125 AGL125 6 12 8 9 72 384 3,072 12

A3P250/L AGL250 6 12 8 9 72 768 6,144 24

A3P400 AGL400 6 12 12 9 108 768 9,216 24

A3P600/L AGL600 6 12 12 9 108 1,152 13,824 36

A3P1000/L AGL1000 6 12 16 9 144 1,536 24,576 48

A3PE600/L AGLE600 6 12 12 9 108 1,120 13,440 35

A3PE1500 6 12 20 9 180 1,888 37,760 59

A3PE3000/L AGLE3000 6 12 28 9 252 2,656 74,368 83
Revision 5 41

ProASIC3 nano FPGA Fabric User’s Guide
External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF
options and accesses the CCCs via internal routing. The user has the option of assigning this input to
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Fusion
Family of Mixed Signal FPGAs datasheet for more information. Figure 4-11 gives a brief explanation of
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but
introduces additional delay because the signal connects to the routed clock input through internal routing
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by
SmartGen when this option is selected. Microsemi recommends using the SmartGen tool to generate the
CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O
to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see
Figure 4-11 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros.
The reference clock pins of the CCC functional block core macros must be driven by regular input
macros (INBUFs), not clock input macros.

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input
reference clock of the CCC block.

Figure 4-11 • Illustration of External I/O Usage

PLL or CLKDLY
Macro

Routed Clock
(from FPGA Core)

Gmn*

Gmn*

Gmn*

To Core

IOuxwByVz*

To Global (or Local)
Routing Network

IOuxwByVz*

CLKA

PLLINT

Multiplexer
Tree

+
_

+
_

Gmn* = Global Input Pin
IOuxwByVz = Regular I/O Pin
Revision 5 75

http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
<31:29> OAMUX[2:0] GLA Output Select Selects from the VCO’s four phase outputs for
GLA.

<28:24> OCDIV[4:0] Secondary 2 Output
Divider

Sets the divider value for the GLC/YC outputs.
Also known as divider w in Figure 4-20 on
page 85. The divider value will be OCDIV[4:0]
+ 1.

<23:19> OBDIV[4:0] Secondary 1 Output
Divider

Sets the divider value for the GLB/YB outputs.
Also known as divider v in Figure 4-20 on
page 85. The divider value will be OBDIV[4:0]
+ 1.

<18:14> OADIV[4:0] Primary Output Divider Sets the divider value for the GLA output. Also
known as divider u in Figure 4-20 on page 85.
The divider value will be OADIV[4:0] + 1.

<13:7> FBDIV[6:0] Feedback Divider Sets the divider value for the PLL core
feedback. Also known as divider m in
Figure 4-20 on page 85. The divider value will
be FBDIV[6:0] + 1.

<6:0> FINDIV[6:0] Input Divider Input Clock Divider (/n). Sets the divider value
for the input delay on CLKA. The divider value
will be FINDIV[6:0] + 1.

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks (continued)
Config.
Bits Signal Name Description

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set.

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools >
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
92 Revision 5

FlashROM in Microsemi’s Low Power Flash Devices
SmartGen allows you to generate the FlashROM netlist in VHDL, Verilog, or EDIF format. After the
FlashROM netlist is generated, the core can be instantiated in the main design like other SmartGen
cores. Note that the macro library name for FlashROM is UFROM. The following is a sample FlashROM
VHDL netlist that can be instantiated in the main design:
library ieee;
use ieee.std_logic_1164.all;
library fusion;

entity FROM_a is
port(ADDR : in std_logic_vector(6 downto 0); DOUT : out std_logic_vector(7 downto 0));

end FROM_a;

architecture DEF_ARCH of FROM_a is

component UFROM
generic (MEMORYFILE:string);
port(DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7 : out std_logic;

ADDR0, ADDR1, ADDR2, ADDR3, ADDR4, ADDR5, ADDR6 : in std_logic := 'U') ;
end component;

component GND
port(Y : out std_logic);

end component;

signal U_7_PIN2 : std_logic ;

begin

GND_1_net : GND port map(Y => U_7_PIN2);
UFROM0 : UFROM
generic map(MEMORYFILE => "FROM_a.mem")
port map(DO0 => DOUT(0), DO1 => DOUT(1), DO2 => DOUT(2), DO3 => DOUT(3), DO4 => DOUT(4),

DO5 => DOUT(5), DO6 => DOUT(6), DO7 => DOUT(7), ADDR0 => ADDR(0), ADDR1 => ADDR(1),
ADDR2 => ADDR(2), ADDR3 => ADDR(3), ADDR4 => ADDR(4), ADDR5 => ADDR(5),
ADDR6 => ADDR(6));

end DEF_ARCH;

SmartGen generates the following files along with the netlist. These are located in the SmartGen folder
for the Libero SoC project.

1. MEM (Memory Initialization) file
2. UFC (User Flash Configuration) file
3. Log file

The MEM file is used for simulation, as explained in the "Simulation of FlashROM Design" section on
page 127. The UFC file, generated by SmartGen, has the FlashROM configuration for single or multiple
devices and is used during STAPL generation. It contains the region properties and simulation values.
Note that any changes in the MEM file will not be reflected in the UFC file. Do not modify the UFC to
change FlashROM content. Instead, use the SmartGen GUI to modify the FlashROM content. See the
"Programming File Generation for FlashROM Design" section on page 127 for a description of how the
UFC file is used during the programming file generation. The log file has information regarding the file
type and file location.
126 Revision 5

6 – SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices

Introduction
As design complexity grows, greater demands are placed upon an FPGA's embedded memory. Fusion,
IGLOO, and ProASIC3 devices provide the flexibility of true dual-port and two-port SRAM blocks. The
embedded memory, along with built-in, dedicated FIFO control logic, can be used to create cascading
RAM blocks and FIFOs without using additional logic gates.
IGLOO, IGLOO PLUS, and ProASIC3L FPGAs contain an additional feature that allows the device to be
put in a low power mode called Flash*Freeze. In this mode, the core draws minimal power (on the order
of 2 to 127 µW) and still retains values on the embedded SRAM/FIFO and registers. Flash*Freeze
technology allows the user to switch to Active mode on demand, thus simplifying power management
and the use of SRAM/FIFOs.

Device Architecture
The low power flash devices feature up to 504 kbits of RAM in 4,608-bit blocks (Figure 6-1 on page 132
and Figure 6-2 on page 133). The total embedded SRAM for each device can be found in the
datasheets. These memory blocks are arranged along the top and bottom of the device to allow better
access from the core and I/O (in some devices, they are only available on the north side of the device).
Every RAM block has a flexible, hardwired, embedded FIFO controller, enabling the user to implement
efficient FIFOs without sacrificing user gates.
In the IGLOO and ProASIC3 families of devices, the following memories are supported:

• 30 k gate devices and smaller do not support SRAM and FIFO.
• 60 k and 125 k gate devices support memories on the north side of the device only.
• 250 k devices and larger support memories on the north and south sides of the device.

In Fusion devices, the following memories are supported:
• AFS090 and AFS250 support memories on the north side of the device only.
• AFS600 and AFS1500 support memories on the north and south sides of the device.
Revision 5 131

I/O Structures in nano Devices
Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k, and 250 k Devices)

Input
Register

E = Enable PinA

Y

PAD

1 2

3

4

5

6

OCE

ICE

ICE

Input
Register

Input
Register

CLR/PRE

CLR/PRE

CLR/PRE

CLR/PRE

CLR/PRE

Pull-Up/-Down
Resistor Control

Signal Drive Strength
and Slew Rate Control

Output
Register

Output
Register

To FPGA Core

From FPGA Core

Output
Enable

Register
OCE

I/O / CLR or I/O / PRE / OCE

I/O / Q0

I/O / Q1

I/O / ICLK

I/O / D0

I/O / D1 / ICE

I/O / OCLK

I/O / OE

Scan

Scan

Scan
160 Revision 5

I/O Structures in nano Devices
I/O Architecture

I/O Tile
IGLOO and ProASIC3 nano devices utilize either a single-tile or dual-tile I/O architecture (Figure 7-1 on
page 159 and Figure 7-2 on page 160). The 10 k, 15 k, and 20 k devices utilize the single-tile design and
the 60 k, 125 k and 250 k devices utilize the dual-tile design. In both cases, the I/O tile provides a
flexible, programmable structure for implementing a large number of I/O standards. In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired. For single-tile designs, all I/O registers share both the CLR and CLK ports,
while for the dual-tile designs, the output register and output enable register share one CLK port. For the
dual-tile designs, the registers can also be used to support the JESD-79C Double Data Rate (DDR)
standard within the I/O structure (see the "DDR for Microsemi’s Low Power Flash Devices" section on
page 205 for more information).

I/O Registers
Each I/O module contains several input and output registers. Refer to Figure 7-3 on page 165 for a
simplified representation of the I/O block. The number of input registers is selected by a set of switches
(not shown in Figure 7-2 on page 160) between registers to implement single-ended data transmission to
and from the FPGA core. The Designer software sets these switches for the user. For single-tile designs,
a common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. The I/O
register combining requires that no combinatorial logic be present between the register and the I/O.
164 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Compiling the Design
During Compile, a PDC I/O constraint file can be imported along with the netlist file. If only the netlist file
is compiled, certain I/O assignments need to be completed before proceeding to Layout. All constraints
that can be entered in PDC can also be entered using ChipPlanner, I/O Attribute Editor, and PinEditor.
There are certain rules that must be followed in implementing I/O register combining and the I/O DDR
macro (refer to the I/O Registers section of the handbook for the device that you are using and the "DDR"
section on page 190 for details). Provided these rules are met, the user can enable or disable I/O register
combining by using the PDC command set_io portname –register yes|no in the I/O Attribute Editor
or selecting a check box in the Compile Options dialog box (see Figure 8-7). The Compile Options dialog
box appears when the design is compiled for the first time. It can also be accessed by choosing Options
> Compile during successive runs. I/O register combining is off by default. The PDC command overrides
the setting in the Compile Options dialog box.

Understanding the Compile Report
The I/O bank report is generated during Compile and displayed in the log window. This report lists the I/O
assignments necessary before Layout can proceed.
When Designer is started, the I/O Bank Assigner tool is run automatically if the Layout command is
executed. The I/O Bank Assigner takes care of the necessary I/O assignments. However, these
assignments can also be made manually with MVN or by importing the PDC file. Refer to the "Assigning
Technologies and VREF to I/O Banks" section on page 198 for further description.
The I/O bank report can also be extracted from Designer by choosing Tools > Report and setting the
Report Type to IOBank.
This report has the following tables: I/O Function, I/O Technology, I/O Bank Resource Usage, and I/O
Voltage Usage. This report is useful if the user wants to do I/O assignments manually.

Figure 8-7 • Setting Register Combining During Compile
Revision 5 195

ProASIC3 nano FPGA Fabric User’s Guide
I/O Bank Resource Usage
This is an important portion of the report. The user must meet the requirements stated in this table.
Figure 8-10 shows the I/O Bank Resource Usage table included in the I/O bank report:

The example in Figure 8-10 shows that none of the I/O macros is assigned to the bank because more
than one VCCI is detected.

I/O Voltage Usage
The I/O Voltage Usage table provides the number of VREF (E devices only) and VCCI assignments
required in the design. If the user decides to make I/O assignments manually (PDC or MVN), the issues
listed in this table must be resolved before proceeding to Layout. As stated earlier, VREF assignments
must be made if there are any voltage-referenced I/Os.
Figure 8-11 shows the I/O Voltage Usage table included in the I/O bank report.

The table in Figure 8-11 indicates that there are two voltage-referenced I/Os used in the design. Even
though both of the voltage-referenced I/O technologies have the same VCCI voltage, their VREF
voltages are different. As a result, two I/O banks are needed to assign the VCCI and VREF voltages.
In addition, there are six single-ended I/Os used that have the same VCCI voltage. Since two banks
are already assigned with the same VCCI voltage and there are enough unused bonded I/Os in

Figure 8-10 • I/O Bank Resource Usage Table

Figure 8-11 • I/O Voltage Usage Table
Revision 5 197

Programming Flash Devices
Signal Integrity While Using ISP
For ISP of flash devices, customers are expected to follow the board-level guidelines provided on the
Microsemi SoC Products Group website. These guidelines are discussed in the datasheets and
application notes (refer to the “Related Documents” section of the datasheet for application note links).
Customers are also expected to troubleshoot board-level signal integrity issues by measuring voltages
and taking oscilloscope plots.

Programming Failure Allowances
Microsemi has strict policies regarding programming failure allowances. Please refer to Programming
and Functional Failure Guidelines on the Microsemi SoC Products Group website for details.

Contacting the Customer Support Group
Highly skilled engineers staff the Customer Applications Center from 7:00 A.M. to 6:00 P.M., Pacific time,
Monday through Friday. You can contact the center by one of the following methods:

Electronic Mail
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
Microsemi monitors the email account throughout the day. When sending your request to us, please be
sure to include your full name, company name, and contact information for efficient processing of your
request. The technical support email address is soc_tech@microsemi.com.

Telephone
Our Technical Support Hotline answers all calls. The center retrieves information, such as your name,
company name, telephone number, and question. Once this is done, a case number is assigned. Then
the center forwards the information to a queue where the first available applications engineer receives
the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific time, Monday
through Friday.
The Customer Applications Center number is (800) 262-1060.
European customers can call +44 (0) 1256 305 600.
230 Revision 5

http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf
http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf
mailto: soc_tech@microsemi.com

Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 221 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below.

Figure 11-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad
238 Revision 5

Security in Low Power Flash Devices
The AES key is securely stored on-chip in dedicated low power flash device flash memory and cannot be
read out. In the first step, the AES key is generated and programmed into the device (for example, at a
secure or trusted programming site). The Microsemi Designer software tool provides AES key generation
capability. After the key has been programmed into the device, the device will only correctly decrypt
programming files that have been encrypted with the same key. If the individual programming file content
is incorrect, a Message Authentication Control (MAC) mechanism inside the device will fail in
authenticating the programming file. In other words, when an encrypted programming file is being loaded
into a device that has a different programmed AES key, the MAC will prevent this incorrect data from
being loaded, preventing possible device damage. See Figure 11-3 on page 238 and Figure 11-4 on
page 240 for graphical representations of this process.
It is important to note that the user decides what level of protection will be implemented for the device.
When AES protection is desired, the FlashLock Pass Key must be set. The AES key is a content
protection mechanism, whereas the FlashLock Pass Key is a device protection mechanism. When the
AES key is programmed into the device, the device still needs the Pass Key to protect the FPGA and
FlashROM contents and the security settings, including the AES key. Using the FlashLock Pass Key
prevents modification of the design contents by means of simply programming the device with a different
AES key.

AES Decryption and MAC Authentication
Low power flash devices have a built-in 128-bit AES decryption core, which decrypts the encrypted
programming file and performs a MAC check that authenticates the file prior to programming.
MAC authenticates the entire programming data stream. After AES decryption, the MAC checks the data
to make sure it is valid programming data for the device. This can be done while the device is still
operating. If the MAC validates the file, the device will be erased and programmed. If the MAC fails to
validate, then the device will continue to operate uninterrupted.
This will ensure the following:

• Correct decryption of the encrypted programming file
• Prevention of erroneous or corrupted data being programmed during the programming file

transfer
• Correct bitstream passed to the device for decryption

1. National Institute of Standards and Technology, “ADVANCED ENCRYPTION STANDARD (AES) Questions and Answers,”
28 January 2002 (10 January 2005). See http://csrc.nist.gov/archive/aes/index1.html for more information.

Figure 11-4 • Example Application Scenario Using AES in IGLOO and ProASIC3 Devices

Designer
Software

Programming
File Generation

with AES
Encryption

IGLOO and ProASIC3

Decrypted
 Bitstream

MAC
Validation

AES
Decryption Core

Transmit Medium /
Public Network

Encrypted Bitstream

FlashROMAES
Key

FPGA
Core
240 Revision 5

http://csrc.nist.gov/archive/aes/index1.html

ProASIC3 nano FPGA Fabric User’s Guide
For this scenario, generate the programming file as follows:
1. Select only the Security settings option, as indicated in Figure 11-14 and Figure 11-15 on

page 252. Click Next.

Table 11-5 • FlashLock Security Options for Fusion

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / no FlashLock – – – –

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓

Figure 11-14 • Programming IGLOO and ProASIC3 Security Settings Only
Revision 5 251

Security in Low Power Flash Devices
2. Choose the desired security level setting and enter the key(s).
– The High security level employs FlashLock Pass Key with AES Key protection.
– The Medium security level employs FlashLock Pass Key protection only.

Figure 11-15 • Programming Fusion Security Settings Only

Figure 11-16 • High Security Level to Implement FlashLock Pass Key and AES Key Protection
252 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
STAPL vs. DirectC
Programming the low power flash devices is performed using DirectC or the STAPL player. Both tools
use the STAPL file as an input. DirectC is a compiled language, whereas STAPL is an interpreted
language. Microprocessors will be able to load the FPGA using DirectC much more quickly than STAPL.
This speed advantage becomes more apparent when lower clock speeds of 8- or 16-bit microprocessors
are used. DirectC also requires less memory than STAPL, since the programming algorithm is directly
implemented. STAPL does have one advantage over DirectC—the ability to upgrade. When a new
programming algorithm is required, the STAPL user simply needs to regenerate a STAPL file using the
latest version of the Designer software and download it to the system. The DirectC user must download
the latest version of DirectC from Microsemi, compile everything, and download the result into the system
(Figure 14-4).

Figure 14-4 • STAPL vs. DirectC

STAPL Flow DirectC Flow

DirectC Source Code Input STAPL File

Microprocessor
Compiler

BIN File

Generate the
New STAPL File

Download to System

Program Device

Download to System

Program Device
Revision 5 287

15 – Boundary Scan in Low Power Flash Devices

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing.
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 15-2 on page 294).
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 15-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state.
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 15-1 • TAP Controller State Machine

1

TEST_LOGIC_RESET

RUN_TEST_IDLE SELECT_DR

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SELECT_IR

CAPTURE_IR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

1

0

1

0
1

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0

1 0

1

0

0
0

1

0

1

0

1

Revision 5 291

Index

Numerics
5 V input and output tolerance 171

A
AES encryption 239
architecture 131

four I/O banks 13
global 31
IGLOO 12
IGLOO nano 11
IGLOO PLUS 13
IGLOOe 14
ProASIC3 nano 11
ProASIC3E 14
routing 18
spine 41
SRAM and FIFO 135

architecture overview 11
array coordinates 16

B
boundary scan 291

board-level recommendations 294
chain 293
opcodes 293

brownout voltage 315

C
CCC 82

board-level considerations 112
cascading 109
Fusion locations 83
global resources 62
hardwired I/O clock input 108
IGLOO locations 81
IGLOOe locations 82
locations 80
naming conventions 179
overview 61
ProASIC3 locations 81
ProASIC3E locations 82
programming 62
software configuration 96
with integrated PLLs 79
without integrated PLLs 79

chip global aggregation 43
CLKDLY macro 65
clock aggregation 44
clock macros 46
clock sources

core logic 76

PLL and CLKDLY macros 73
clocks

delay adjustment 86
detailed usage information 104
multipliers and dividers 85
phase adjustment 87
physical constraints for quadrant clocks 108
SmartGen settings 105
static timing analysis 107

cold-sparing 170, 316
compiling 195

report 195
contacting Microsemi SoC Products Group

customer service 321
email 321
web-based technical support 321

customer service 321

D
DDR

architecture 205
design example 216
I/O options 207
input/output support 209
instantiating registers 210

design example 55
design recommendations 46
device architecture 131
DirectC 280
DirectC code 285
dual-tile designs 160

E
efficient long-line resources 19
encryption 289
ESD protection 171

F
FIFO

features 141
initializing 148
memory block consumption 147
software support 154
usage 144

flash switch for programming 9
FlashLock

IGLOO and ProASIC devices 241
permanent 241

FlashROM
access using JTAG port 123
architecture 267
Revision 5 323

Index
architecture of user nonvolatile 117
configuration 120
custom serialization 129
design flow 124
generation 125
programming and accessing 122
programming file 127
programming files 267
SmartGen 126

FlashROM read-back 305

G
global architecture 31
global buffers

no programmable delays 64
with PLL function 67
with programmable delays 64

global macros
Synplicity 50

globals
designer flow 53
networks 58
spines and rows 41

H
HLD code

instantiating 192
hot-swap 167
hot-swapping 317

I
I/O banks

standards 40
standards compatibility 162

I/O standards 77
global macros 46
single-ended 166

I/Os
assigning technologies 198
assignments defined in PDC file 193
automatically assigning 202
behavior at power-up/-down 311
board-level considerations 181
buffer schematic cell 191
cell architecture 207
configuration with SmartGen 188
features 163, 164, 167
global, naming 35
manually assigning technologies 198
nano standard 162
register combining 174
simplified buffer circuitry 165
software support 177
software-controlled attributes 187
user I/O assignment flow chart 185
user naming convention 178
wide range support 166

ISP 223, 224
architecture 261
board-level considerations 271
circuit 277
microprocessor 283

J
JTAG 1532 261
JTAG interface 285

L
layout

device-specific 78
LTC3025 linear voltage regulator 277

M
MAC validation/authentication 288
macros

CLKBUF 77
CLKBUF_LVDS/LVPECL 77
CLKDLY 65, 73
FIFO4KX18 141
PLL 73
PLL macro signal descriptions 68
RAM4K9 137
RAM512X18 139
supported basic RAM macros 136
UJTAG 299

MCU FPGA programming model 286
memory availability 146
memory blocks 135
microprocessor programming 283
Microsemi SoC Products Group

email 321
web-based technical support 321
website 321

O
OTP 223
output slew rate 175

P
PDC

global promotion and demotion 51
place-and-route 193
PLL

behavior at brownout condition 315
configuration bits 90
core specifications 84
dynamic PLL configuration 87
functional description 85
power supply decoupling scheme 112

PLL block signals 68
PLL macro block diagram 69
product support

customer service 321
324 Revision 5

