
Microchip Technology - A3PN250-2VQG100 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 36864

Number of I/O 68

Number of Gates 250000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -20°C ~ 85°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn250-2vqg100

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn250-2vqg100-4482881
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Static (Idle) Mode
In Static (Idle) mode, the clock inputs are not switching and the static power consumption is the minimum
power required to keep the device powered up. In this mode, I/Os are only drawing the minimum leakage
current specified in the datasheet. Also, in Static (Idle) mode, embedded SRAM, I/Os, and registers
retain their values, so the device can enter and exit this mode without any penalty.
If the embedded PLLs are used as the clock source, Static (Idle) mode can be entered easily by pulling
LOW the PLL POWERDOWN pin (active-low). By pulling the PLL POWERDOWN pin to LOW, the PLL is
turned off. Refer to Figure 2-1 on page 23 for more information.

Table 2-1 • ProASIC3/E/nano Low Power Modes Summary

Mode Power Supplies / Clock Status Needed to Start Up

Active On – All, clock N/A (already active)

Off – None

Static (Idle) On – All Initiate clock source.

Off – No active clock in FPGA No need to initialize volatile
contents.

Optional: Enter User Low Static (Idle) Mode by enabling
ULSICC macro to further reduce power consumption by
powering down FlashROM.

Sleep On – VCCI Need to turn on core.

Off – VCC (core voltage), VJTAG (JTAG DC voltage),
and VPUMP (programming voltage)

Load states from external
memory.

LAPU enables immediate operation when power
returns.

As needed, restore volatile
contents from external memory.

Optional: Save state of volatile contents in external
memory.

Shutdown On – None Need to turn on VCC, VCCI.

Off – All power supplies

Applicable to all ProASIC3 nano devices, cold-sparing
and hot-insertion allow the device to be powered down
without bringing down the system. LAPU enables
immediate operation when power returns.
22 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
standard for CLKBUF is LVTTL in the current Microsemi Libero® System-on-Chip (SoC) and Designer
software.

The current synthesis tool libraries only infer the CLKBUF or CLKINT macros in the netlist. All other
global macros must be instantiated manually into your HDL code. The following is an example of
CLKBUF_LVCMOS25 global macro instantiations that you can copy and paste into your code:

VHDL
component clkbuf_lvcmos25

port (pad : in std_logic; y : out std_logic);
end component

begin
-- concurrent statements
u2 : clkbuf_lvcmos25 port map (pad => ext_clk, y => int_clk);
end

Verilog
module design (______);

input _____;
output ______;

clkbuf_lvcmos25 u2 (.y(int_clk), .pad(ext_clk);

endmodule

Table 3-9 • I/O Standards within CLKBUF

Name Description

CLKBUF_LVCMOS5 LVCMOS clock buffer with 5.0 V CMOS voltage level

CLKBUF_LVCMOS33 LVCMOS clock buffer with 3.3 V CMOS voltage level

CLKBUF_LVCMOS25 LVCMOS clock buffer with 2.5 V CMOS voltage level1

CLKBUF_LVCMOS18 LVCMOS clock buffer with 1.8 V CMOS voltage level

CLKBUF_LVCMOS15 LVCMOS clock buffer with 1.5 V CMOS voltage level

CLKBUF_LVCMOS12 LVCMOS clock buffer with 1.2 V CMOS voltage level

CLKBUF_PCI PCI clock buffer

CLKBUF_PCIX PCIX clock buffer

CLKBUF_GTL25 GTL clock buffer with 2.5 V CMOS voltage level1

CLKBUF_GTL33 GTL clock buffer with 3.3 V CMOS voltage level1

CLKBUF_GTLP25 GTL+ clock buffer with 2.5 V CMOS voltage level1

CLKBUF_GTLP33 GTL+ clock buffer with 3.3 V CMOS voltage level1

CLKBUF_ HSTL _I HSTL Class I clock buffer1

CLKBUF_ HSTL _II HSTL Class II clock buffer1

CLKBUF_SSTL2_I SSTL2 Class I clock buffer1

CLKBUF_SSTL2_II SSTL2 Class II clock buffer1

CLKBUF_SSTL3_I SSTL3 Class I clock buffer1

CLKBUF_SSTL3_II SSTL3 Class II clock buffer1

Notes:
1. Supported in only the IGLOOe, ProASIC3E, AFS600, and AFS1500 devices
2. By default, the CLKBUF macro uses the 3.3 V LVTTL I/O technology.
Revision 5 47

ProASIC3 nano FPGA Fabric User’s Guide
You can control the maximum number of shared instances allowed for the legalization to take place using
the Compile Option dialog box shown in Figure 3-17. Refer to Libero SoC / Designer online help for
details on the Compile Option dialog box. A large number of shared instances most likely indicates a
floorplanning problem that you should address.

Designer Flow for Global Assignment
To achieve the desired result, pay special attention to global management during synthesis and place-
and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default.
Thus, the default flow will not assign any signal to the quadrant global network. However, you can use
attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2
supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will
make the choice to assign the correct signals to global. However, you can also utilize PDC and perform
manual global assignment to overwrite any automatic assignment. The following step-by-step
suggestions guide you in the layout of your design and help you improve timing in Designer:

1. Run Compile and check the Compile report. The Compile report has global information in the
"Device Utilization" section that describes the number of chip and quadrant signals in the design.
A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of
nets listed by fanout, and net candidates for local clock assignment. Review this information. Note
that YB or YC are counted as global only when they are used in isolation; if you use YB only and
not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global
Utilization report.

2. If some signals have a very high fanout and are candidates for global promotion, promote those
signals to global using the compile options or PDC commands. Figure 3-18 on page 54 shows the
Globals Management section of the compile options. Select Promote regular nets whose
fanout is greater than and enter a reasonable value for fanouts.

Figure 3-17 • Shared Instances in the Compile Option Dialog Box
Revision 5 53

ProASIC3 nano FPGA Fabric User’s Guide
Available I/O Standards

Global Synthesis Constraints
The Synplify® synthesis tool, by default, allows six clocks in a design for Fusion, IGLOO, and ProASIC3.
When more than six clocks are needed in the design, a user synthesis constraint attribute,
syn_global_buffers, can be used to control the maximum number of clocks (up to 18) that can be inferred
by the synthesis engine.
High-fanout nets will be inferred with clock buffers and/or internal clock buffers. If the design consists of
CCC global buffers, they are included in the count of clocks in the design.
The subsections below discuss the clock input source (global buffers with no programmable delays) and
the clock conditioning functional block (global buffers with programmable delays and/or PLL function) in
detail.

Table 4-4 • Available I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF_LVCMOS5

CLKBUF_LVCMOS33 1

CLKBUF_LVCMOS25 2

CLKBUF_LVCMOS18

CLKBUF_LVCMOS15

CLKBUF_PCI

CLKBUF_PCIX 3

CLKBUF_GTL25 2,3

CLKBUF_GTL33 2,3

CLKBUF_GTLP25 2,3

CLKBUF_GTLP33 2,3

CLKBUF_HSTL_I 2,3

CLKBUF_HSTL_II 2,3

CLKBUF_SSTL3_I 2,3

CLKBUF_SSTL3_II 2,3

CLKBUF_SSTL2_I 2,3

CLKBUF_SSTL2_II 2,3

CLKBUF_LVDS 4,5

CLKBUF_LVPECL5

Notes:
1. By default, the CLKBUF macro uses 3.3 V LVTTL I/O technology. For more details, refer to the

IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide.
2. I/O standards only supported in ProASIC3E and IGLOOe families.
3. I/O standards only supported in the following Fusion devices: AFS600 and AFS1500.
4. B-LVDS and M-LVDS standards are supported by CLKBUF_LVDS.
5. Not supported for IGLOO nano and ProASIC3 nano devices.
Revision 5 77

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
CLKDLY Inst1(.CLK(CLK), .GL(GL), .DLYGL0(VCC), .DLYGL1(GND), .DLYGL2(VCC),

.DLYGL3(GND), .DLYGL4(GND));

endmodule

Detailed Usage Information

Clock Frequency Synthesis
Deriving clocks of various frequencies from a single reference clock is known as frequency synthesis.
The PLL has an input frequency range from 1.5 to 350 MHz. This frequency is automatically divided
down to a range between 1.5 MHz and 5.5 MHz by input dividers (not shown in Figure 4-19 on page 84)
between PLL macro inputs and PLL phase detector inputs. The VCO output is capable of an output
range from 24 to 350 MHz. With dividers before the input to the PLL core and following the VCO outputs,
the VCO output frequency can be divided to provide the final frequency range from 0.75 to 350 MHz.
Using SmartGen, the dividers are automatically set to achieve the closest possible matches to the
specified output frequencies.
Users should be cautious when selecting the desired PLL input and output frequencies and the I/O buffer
standard used to connect to the PLL input and output clocks. Depending on the I/O standards used for
the PLL input and output clocks, the I/O frequencies have different maximum limits. Refer to the family
datasheets for specifications of maximum I/O frequencies for supported I/O standards. Desired PLL input
or output frequencies will not be achieved if the selected frequencies are higher than the maximum I/O
frequencies allowed by the selected I/O standards. Users should be careful when selecting the I/O
standards used for PLL input and output clocks. Performing post-layout simulation can help detect this
type of error, which will be identified with pulse width violation errors. Users are strongly encouraged to
perform post-layout simulation to ensure the I/O standard used can provide the desired PLL input or
output frequencies. Users can also choose to cascade PLLs together to achieve the high frequencies
needed for their applications. Details of cascading PLLs are discussed in the "Cascading CCCs" section
on page 109.
In SmartGen, the actual generated frequency (under typical operating conditions) will be displayed
beside the requested output frequency value. This provides the ability to determine the exact frequency
that can be generated by SmartGen, in real time. The log file generated by SmartGen is a useful tool in
determining how closely the requested clock frequencies match the user specifications. For example,
assume a user specifies 101 MHz as one of the secondary output frequencies. If the best output
frequency that could be achieved were 100 MHz, the log file generated by SmartGen would indicate the
actual generated frequency.

Simulation Verification
The integration of the generated PLL and CLKDLY modules is similar to any VHDL component or Verilog
module instantiation in a larger design; i.e., there is no special requirement that users need to take into
account to successfully synthesize their designs.
For simulation purposes, users need to refer to the VITAL or Verilog library that includes the functional
description and associated timing parameters. Refer to the Software Tools section of the Microsemi SoC
Products Group website to obtain the family simulation libraries. If Designer is installed, these libraries
are stored in the following locations:

<Designer_Installation_Directory>\lib\vtl\95\proasic3.vhd
<Designer_Installation_Directory>\lib\vtl\95\proasic3e.vhd
<Designer_Installation_Directory>\lib\vlog\proasic3.v
<Designer_Installation_Directory>\lib\vlog\proasic3e.v

For Libero users, there is no need to compile the simulation libraries, as they are conveniently pre-
compiled in the ModelSim® Microsemi simulation tool.
104 Revision 5

http://www.microsemi.com/soc/products/tools/sw.aspx

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Recommended Board-Level Considerations
The power to the PLL core is supplied by VCCPLA/B/C/D/E/F (VCCPLx), and the associated ground
connections are supplied by VCOMPLA/B/C/D/E/F (VCOMPLx). When the PLLs are not used, the
Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The
user should tie unused VCCPLx and VCOMPLx pins to ground. Optionally, the PLL can be turned on/off
during normal device operation via the POWERDOWN port (see Table 4-3 on page 68).

PLL Power Supply Decoupling Scheme
The PLL core is designed to tolerate noise levels on the PLL power supply as specified in the datasheets.
When operated within the noise limits, the PLL will meet the output peak-to-peak jitter specifications
specified in the datasheets. User applications should always ensure the PLL power supply is powered
from a noise-free or low-noise power source.
However, in situations where the PLL power supply noise level is higher than the tolerable limits, various
decoupling schemes can be designed to suppress noise to the PLL power supply. An example is
provided in Figure 4-38. The VCCPLx and VCOMPLx pins correspond to the PLL analog power supply
and ground.
Microsemi strongly recommends that two ceramic capacitors (10 nF in parallel with 100 nF) be placed
close to the power pins (less than 1 inch away). A third generic 10 µF electrolytic capacitor is
recommended for low-frequency noise and should be placed farther away due to its large physical size.
Microsemi recommends that a 6.8 µH inductor be placed between the supply source and the capacitors
to filter out any low-/medium- and high-frequency noise. In addition, the PCB layers should be controlled
so the VCCPLx and VCOMPLx planes have the minimum separation possible, thus generating a good-
quality RF capacitor.
For more recommendations, refer to the Board-Level Considerations application note.
Recommended 100 nF capacitor:

• Producer BC Components, type X7R, 100 nF, 16 V
• BC Components part number: 0603B104K160BT
• Digi-Key part number: BC1254CT-ND
• Digi-Key part number: BC1254TR-ND

Recommended 10 nF capacitor:
• Surface-mount ceramic capacitor
• Producer BC Components, type X7R, 10 nF, 50 V
• BC Components part number: 0603B103K500BT
• Digi-Key part number: BC1252CT-ND
• Digi-Key part number: BC1252TR-ND

Figure 4-38 • Decoupling Scheme for One PLL (should be replicated for each PLL used)

IGLOO/e or
ProASIC3/E

Device

Power
Supply

VCCPLx

VCOMPLx

10 nF 100 nF 10 μF
112 Revision 5

http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

ProASIC3 nano FPGA Fabric User’s Guide
Figure 5-7 • Accessing FlashROM Using FPGA Core

Figure 5-8 • Accessing FlashROM Using JTAG Port

01234567
7
6
5
4
3
2
1
0

89101112131415
Word Number in Page 4 LSB of ADDR (READ)Page N

um
ber

3 M
SB

 of
A

D
D

R
 (R

EA
D

)

3-Bit Page Address

111

1110000
7-Bit Address from Core

0000

4-B
it W

ord A
ddress

8-Bit Data

8-Bit Data
to FPGA Core

8-Bit Data from Page 7 Word 0

01234567
7
6
5
4
3
2
1
0

89101112131415
Word Number in Page 4 LSB of ADDR (READ)Page N

um
ber

3 M
SB

 of
A

D
D

R
 (R

EA
D

)

4-Bit Page Address
from JTAG Interface

To/From JTAG Interface

...........................00001:128 Bit Data
Revision 5 123

FlashROM in Microsemi’s Low Power Flash Devices
Figure 5-12 shows the programming file generator, which enables different STAPL file generation
methods. When you select Program FlashROM and choose the UFC file, the FlashROM Settings
window appears, as shown in Figure 5-13. In this window, you can select the FlashROM page you want
to program and the data value for the configured regions. This enables you to use a different page for
different programming files.

The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization). This
feature is supported in the programming software. After programming with the STAPL file, you can run
DEVICE_INFO to check the FlashROM content.

Figure 5-12 • Programming File Generator

Figure 5-13 • Setting FlashROM during Programming File Generation
128 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values. The
FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is
incremented every time a write operation is performed, and RADDR is incremented every time a read
operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal
to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and
RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and
write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data
words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool
translates them into bit addresses and configures these signals automatically. SmartGen configures the
AFULL flag to assert when the write address exceeds the read address by at least a predefined value. In
a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a
write when the difference between the write address and the read address reaches 1,500 (there have
been at least 1,500 more writes than reads). It will stay asserted until the difference between the write
and read addresses drops below 1,500.
The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries, and the AEVAL setting is based on the number of read data entries. For aspect ratios
of 512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The
number of words must be multiplied by 8 and 16 instead of 9 and 18. The SmartGen tool automatically
uses the proper values. To avoid halfwords being written or read, which could happen if different read
and write aspect ratios were specified, the FIFO will assert FULL or EMPTY as soon as at least one word
cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the
FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.

Variable Aspect Ratio and Cascading
Variable aspect ratio and cascading allow users to configure the memory in the width and depth required.
The memory block can be configured as a FIFO by combining the basic memory block with dedicated
FIFO controller logic. The FIFO macro is named FIFO4KX18. Low power flash device RAM can be
configured as 1, 2, 4, 9, or 18 bits wide. By cascading the memory blocks, any multiple of those widths
can be created. The RAM blocks can be from 256 to 4,096 bits deep, depending on the aspect ratio, and
the blocks can also be cascaded to create deeper areas. Refer to the aspect ratios available for each
macro cell in the "SRAM Features" section on page 137. The largest continuous configurable memory
area is equal to half the total memory available on the device, because the RAM is separated into two
groups, one on each side of the device.
The SmartGen core generator will automatically configure and cascade both RAM and FIFO blocks.
Cascading is accomplished using dedicated memory logic and does not consume user gates for depths
up to 4,096 bits deep and widths up to 18, depending on the configuration. Deeper memory will utilize
some user gates to multiplex the outputs.
Generated RAM and FIFO macros can be created as either structural VHDL or Verilog for easy
instantiation into the design. Users of Libero SoC can create a symbol for the macro and incorporate it
into a design schematic.
Table 6-10 on page 147 shows the number of memory blocks required for each of the supported depth
and width memory configurations, and for each depth and width combination. For example, a 256-bit
deep by 32-bit wide two-port RAM would consist of two 256×18 RAM blocks. The first 18 bits would be
stored in the first RAM block, and the remaining 14 bits would be implemented in the other 256×18 RAM
block. This second RAM block would have four bits of unused storage. Similarly, a dual-port memory
block that is 8,192 bits deep and 8 bits wide would be implemented using 16 memory blocks. The dual-
port memory would be configured in a 4,096×1 aspect ratio. These blocks would then be cascaded two
deep to achieve 8,192 bits of depth, and eight wide to achieve the eight bits of width.
Revision 5 145

ProASIC3 nano FPGA Fabric User’s Guide
Pipeline Register
module D_pipeline (Data, Clock, Q);

input [3:0] Data;
input Clock;
output [3:0] Q;

reg [3:0] Q;

always @ (posedge Clock) Q <= Data;

endmodule

4x4 RAM Block (created by SmartGen Core Generator)
module mem_block(DI,DO,WADDR,RADDR,WRB,RDB,WCLOCK,RCLOCK);

input [3:0] DI;
output [3:0] DO;
input [1:0] WADDR, RADDR;
input WRB, RDB, WCLOCK, RCLOCK;

wire WEBP, WEAP, VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
INV WEBUBBLEB(.A(WRB), .Y(WEBP));
RAM4K9 RAMBLOCK0(.ADDRA11(GND), .ADDRA10(GND), .ADDRA9(GND), .ADDRA8(GND),

.ADDRA7(GND), .ADDRA6(GND), .ADDRA5(GND), .ADDRA4(GND), .ADDRA3(GND), .ADDRA2(GND),

.ADDRA1(RADDR[1]), .ADDRA0(RADDR[0]), .ADDRB11(GND), .ADDRB10(GND), .ADDRB9(GND),

.ADDRB8(GND), .ADDRB7(GND), .ADDRB6(GND), .ADDRB5(GND), .ADDRB4(GND), .ADDRB3(GND),

.ADDRB2(GND), .ADDRB1(WADDR[1]), .ADDRB0(WADDR[0]), .DINA8(GND), .DINA7(GND),

.DINA6(GND), .DINA5(GND), .DINA4(GND), .DINA3(GND), .DINA2(GND), .DINA1(GND),

.DINA0(GND), .DINB8(GND), .DINB7(GND), .DINB6(GND), .DINB5(GND), .DINB4(GND),

.DINB3(DI[3]), .DINB2(DI[2]), .DINB1(DI[1]), .DINB0(DI[0]), .WIDTHA0(GND),

.WIDTHA1(VCC), .WIDTHB0(GND), .WIDTHB1(VCC), .PIPEA(GND), .PIPEB(GND),

.WMODEA(GND), .WMODEB(GND), .BLKA(WEAP), .BLKB(WEBP), .WENA(VCC), .WENB(GND),

.CLKA(RCLOCK), .CLKB(WCLOCK), .RESET(VCC), .DOUTA8(), .DOUTA7(), .DOUTA6(),

.DOUTA5(), .DOUTA4(), .DOUTA3(DO[3]), .DOUTA2(DO[2]), .DOUTA1(DO[1]),

.DOUTA0(DO[0]), .DOUTB8(), .DOUTB7(), .DOUTB6(), .DOUTB5(), .DOUTB4(), .DOUTB3(),

.DOUTB2(), .DOUTB1(), .DOUTB0());
INV WEBUBBLEA(.A(RDB), .Y(WEAP));

endmodule
Revision 5 153

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
v1.1
(continued)

Table 6-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

134

The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices.

146

Date Changes Page
158 Revision 5

I/O Structures in nano Devices
I/O Architecture

I/O Tile
IGLOO and ProASIC3 nano devices utilize either a single-tile or dual-tile I/O architecture (Figure 7-1 on
page 159 and Figure 7-2 on page 160). The 10 k, 15 k, and 20 k devices utilize the single-tile design and
the 60 k, 125 k and 250 k devices utilize the dual-tile design. In both cases, the I/O tile provides a
flexible, programmable structure for implementing a large number of I/O standards. In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired. For single-tile designs, all I/O registers share both the CLR and CLK ports,
while for the dual-tile designs, the output register and output enable register share one CLK port. For the
dual-tile designs, the registers can also be used to support the JESD-79C Double Data Rate (DDR)
standard within the I/O structure (see the "DDR for Microsemi’s Low Power Flash Devices" section on
page 205 for more information).

I/O Registers
Each I/O module contains several input and output registers. Refer to Figure 7-3 on page 165 for a
simplified representation of the I/O block. The number of input registers is selected by a set of switches
(not shown in Figure 7-2 on page 160) between registers to implement single-ended data transmission to
and from the FPGA core. The Designer software sets these switches for the user. For single-tile designs,
a common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. The I/O
register combining requires that no combinatorial logic be present between the register and the I/O.
164 Revision 5

I/O Structures in nano Devices
Table 7-8 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are
powered down, and the card is plugged into the
system. Then the power supplies are turned on for
the system but not for the FPGA on the card.

Compliance of nano Devices Compliant

Table 7-9 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control
circuitry isolates the card busses until the card
supplies are at their nominal operating levels and
stable.

Compliance of nano Devices Compliant
168 Revision 5

I/O Structures in nano Devices
5 V Output Tolerance
nano Standard I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL
receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would
pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to
the I/O.
When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, the I/Os can directly drive signals into 5 V TTL
receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceeds
the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level 1 and level 0 will
be recognized correctly by 5 V TTL receivers.

Schmitt Trigger
A Schmitt trigger is a buffer used to convert a slow or noisy input signal into a clean one before passing it
to the FPGA. Using Schmitt trigger buffers guarantees a fast, noise-free input signal to the FPGA.
nano devices have Schmitt triggers built into their I/O circuitry. Schmitt Trigger is available on all I/O
configurations.
This feature can be implemented by using a Physical Design Constraints (PDC) command (Table 7-5 on
page 163) or by selecting a check box in the I/O Attribute Editor in Designer. The check box is cleared by
default.

I/O Register Combining
Every I/O has several embedded registers in the I/O tile that are close to the I/O pads. Rather than using
the internal register from the core, the user has the option of using these registers for faster clock-to-out
timing, and external hold and setup. When combining these registers at the I/O buffer, some architectural
rules must be met. Provided these rules are met, the user can enable register combining globally during
Compile (as shown in the "Compiling the Design" section in the "I/O Software Control in Low Power
Flash Devices" section on page 185.
This feature is supported by all I/O standards.

Rules for Registered I/O Function:
1. The fanout between an I/O pin (D, Y, or E) and a register must be equal to one for combining to be

considered on that pin.
2. All registers (Input, Output, and Output Enable) connected to an I/O must share the same clear or

preset function:
– If one of the registers has a CLR pin, all the other registers that are candidates for combining

in the I/O must have a CLR pin.

Table 7-13 • Comparison Table for 5 V–Compliant Receiver Solutions

Solution Board Components Speed Current Limitations

1 Two resistors Low to High1 Limited by transmitter's drive strength

2 Resistor and Zener 3.3 V Medium Limited by transmitter's drive strength

3 Bus switch High N/A

Notes:
1. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long-term reliability.
3. At 70°C, customers could still use 420 Ω on every I/O.
4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω) and

the current is higher. Also, the designer can still use 420 Ω and use the solution on every I/O.
5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to

5.9 mA.
174 Revision 5

I/O Structures in nano Devices
Refer to Table 7-10 on page 169 for more information about the slew rate and drive strength specification
for LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V output
buffers.

Simultaneously Switching Outputs (SSOs) and Printed Circuit
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits. This isolation
is necessary to minimize simultaneous switching noise from the input and output (SSI and SSO). The
switching noise (ground bounce and power bounce) is generated by the output buffers and transferred
into input buffer circuits, and vice versa.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing
currents through GND and VCCI package pin inductances during switching activities (EQ 1 and EQ 2).

Ground bounce noise voltage = L(GND) × di/dt

EQ 1

VCCI dip noise voltage = L(VCCI) × di/dt

EQ 2
Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described.
In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to the SSO bus are LVTTL/LVCMOS inputs or LVTTL/LVCMOS outputs. Board traces
in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise
that can be generated by the SSO bus. Also, noise generated by the SSO bus needs to be reduced
inside the package.
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin
Placement and Guidelines" chapter of the ProASIC3 Device Family User’s Guide.

Table 7-14 • nano Output Drive and Slew

I/O Standards 2 mA 4 mA 6 mA 8 mA Slew

LVTTL / LVCMOS 3.3 V ✓ ✓ ✓ ✓ High Low

LVCMOS 2.5 V ✓ ✓ ✓ ✓ High Low

LVCMOS 1.8 V ✓ ✓ – – High Low

LVCMOS 1.5 V ✓ – – – High Low

LVCMOS 1.2 V ✓ – – – High Low
176 Revision 5

http://www.microsemi.com/soc/documents/PA3_UG.pdf

I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 8-6 on page 193).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist.
192 Revision 5

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/libero_ug.pdf

ProASIC3 nano FPGA Fabric User’s Guide
– The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute
Editor (see Figure 8-6).

– The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the
only way to use these standards in the design (IGLOO nano and ProASIC3 nano devices do
not support differential inputs).

– To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT
macro. This is the only way to use a DDR macro in the design.

Performing Place-and-Route on the Design
The netlist created by the synthesis tool should now be imported into Designer and compiled. During
Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can
also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File
A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported
from Designer.
Table 8-3 shows I/O assignment constraints supported in the PDC file.

Figure 8-6 • Assigning a Different I/O Standard to the Generic I/O Macro

Table 8-3 • PDC I/O Constraints

Command Action Example Comment

I/O Banks Setting Constraints

set_iobank Sets the I/O supply
voltage, VCCI, and the
input reference voltage,
VREF, for the specified I/O
bank.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]

set_iobank Bank7 -vcci 1.50
-vref 0.75

Must use in case of mixed I/O
voltage (VCCI) design

set_vref Assigns a VREF pin to a
bank.

set_vref -bank [bankname]
[pinnum]

set_vref -bank Bank0
685 704 723 742 761

Must use if voltage-
referenced I/Os are used

set_vref_defaults Sets the default VREF
pins for the specified
bank. This command is
ignored if the bank does
not need a VREF pin.

set_vref_defaults bankname

set_vref_defaults bank2

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
Revision 5 193

http://www.microsemi.com/soc/documents/libero_ug.pdf

ProASIC3 nano FPGA Fabric User’s Guide
Device Programmers
Single Device Programmer
Single device programmers are used to program a device before it is mounted on the system board.
The advantage of using device programmers is that no programming hardware is required on the system
board. Therefore, no additional components or board space are required.
Adapter modules are purchased with single device programmers to support the FPGA packages used.
The FPGA is placed in the adapter module and the programming software is run from a PC. Microsemi
supplies the programming software for all of the Microsemi programmers. The software allows for the
selection of the correct die/package and programming files. It will then program and verify the device.

• Single-site programmers
A single-site programmer programs one device at a time. Microsemi offers Silicon Sculptor 3, built
by BP Microsystems, as a single-site programmer. Silicon Sculptor 3 and associated software are
available only from Microsemi.
– Advantages: Lower cost than multi-site programmers. No additional overhead for

programming on the system board. Allows local control of programming and data files for
maximum security. Allows on-demand programming on-site.

– Limitations: Only programs one device at a time.
• Multi-site programmers

Often referred to as batch or gang programmers, multi-site programmers can program multiple devices at
the same time using the same programming file. This is often used for large volume programming and by
programming houses. The sites often have independent processors and memory enabling the sites to
operate concurrently, meaning each site may start programming the same file independently. This
enables the operator to change one device while the other sites continue programming, which increases
throughput. Multiple adapter modules for the same package are required when using a multi-site
programmer. Silicon Sculptor I, II, and 3 programmers can be cascaded to program multiple devices in a
chain. Multi-site programmers, such as the BP2610 and BP2710, can also be purchased from BP
Microsystems. When using BP Microsystems multi-site programmers, users must use programming
adapter modules available only from Microsemi. Visit the Microsemi SoC Products Group website to view
the part numbers of the desired adapter module:

http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx.
Also when using BP Microsystems programmers, customers must use Microsemi
programming software to ensure the best programming result will occur.
– Advantages: Provides the capability of programming multiple devices at the same time. No

additional overhead for programming on the system board. Allows local control of
programming and data files for maximum security.

– Limitations: More expensive than a single-site programmer
• Automated production (robotic) programmers

Automated production programmers are based on multi-site programmers. They consist of a large input
tray holding multiple parts and a robotic arm to select and place parts into appropriate programming
sockets automatically. When the programming of the parts is complete, the parts are removed and
placed in a finished tray. The automated programmers are often used in volume programming houses to
program parts for which the programming time is small. BP Microsystems part number BP4710, BP4610,
BP3710 MK2, and BP3610 are available for this purpose. Auto programmers cannot be used to program
RTAX-S devices.
Where an auto-programmer is used, the appropriate open-top adapter module from BP Microsystems
must be used.
Revision 5 225

http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx

In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
Table 12-4 • Programming Header Pin Numbers and Description

Pin Signal Source Description

1 TCK Programmer JTAG Clock

2 GND1 – Signal Reference

3 TDO Target Board Test Data Output

4 NC – No Connect (FlashPro3/3X); Prog_Mode (FlashPro4).
See note associated with Figure 12-5 on page 269
regarding Prog_Mode on FlashPro4.

5 TMS Programmer Test Mode Select

6 VJTAG Target Board JTAG Supply Voltage

7 VPUMP2 Programmer/Target Board Programming Supply Voltage

8 nTRST Programmer JTAG Test Reset (Hi-Z with 10 kΩ pull-down, HIGH,
LOW, or toggling)

9 TDI Programmer Test Data Input

10 GND1 – Signal Reference

Notes:
1. Both GND pins must be connected.
2. FlashPro4/3/3X can provide VPUMP if there is only one device on the target board.
270 Revision 5

UJTAG Applications in Microsemi’s Low Power Flash Devices
Conclusion
Microsemi low power flash FPGAs offer many unique advantages, such as security, nonvolatility,
reprogrammablity, and low power—all in a single chip. In addition, Fusion, IGLOO, and ProASIC3
devices provide access to the JTAG port from core VersaTiles while the device is in normal operating
mode. A wide range of available user-defined JTAG opcodes allows users to implement various types of
applications, exploiting this feature of these devices. The connection between the JTAG port and core
tiles is implemented through an embedded and hardwired UJTAG tile. A UJTAG tile can be instantiated in
designs using the UJTAG library cell. This document presents multiple examples of UJTAG applications,
such as dynamic reconfiguration, silicon test and debug, fine-tuning of the design, and RAM initialization.
Each of these applications offers many useful advantages.

Related Documents

Application Notes
RAM Initialization and ROM Emulation in ProASICPLUS Devices
http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

December 2011 Information on the drive strength and slew rate of TDO pins was added to the
"Silicon Testing and Debugging" section (SAR 31749).

304

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 16-1 • Flash-Based
FPGAs.

298

v1.3
(October 2008)

The "UJTAG Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

298

The title of Table 16-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC
Blocks was revised to include Fusion.

302

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 16-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

298

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 298
306 Revision 5

http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf
http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf

