
Microchip Technology - A3PN250-2VQG100I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 36864

Number of I/O 68

Number of Gates 250000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn250-2vqg100i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn250-2vqg100i-4483104
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
Spine Access
The physical location of each spine is identified by the letter T (top) or B (bottom) and an accompanying
number (Tn or Bn). The number n indicates the horizontal location of the spine; 1 refers to the first spine
on the left side of the die. Since there are six chip spines in each spine tree, there are up to six spines
available for each combination of T (or B) and n (for example, six T1 spines). Similarly, there are three
quadrant spines available for each combination of T (or B) and n (for example, four T1 spines), as shown
in Figure 3-7.

A spine is also called a local clock network, and is accessed by the dedicated global MUX architecture.
These MUXes define how a particular spine is driven. Refer to Figure 3-8 on page 44 for the global MUX
architecture. The MUXes for each chip global spine are located in the middle of the die. Access to the top
and bottom chip global spine is available from the middle of the die. There is no control dependency
between the top and bottom spines. If a top spine, T1, of a chip global network is assigned to a net, B1 is
not wasted and can be used by the global clock network. The signal assigned only to the top or bottom
spine cannot access the middle two rows of the architecture. However, if a spine is using the top and
bottom at the same time (T1 and B1, for instance), the previous restriction is lifted.
The MUXes for each quadrant global spine are located in the north and south sides of the die. Access to
the top and bottom quadrant global spines is available from the north and south sides of the die. Since
the MUXes for quadrant spines are located in the north and south sides of the die, you should not try to
drive T1 and B1 quadrant spines from the same signal.

Figure 3-7 • Chip Global Aggregation

Tn Tn+1 Tn+2 Tn+3 Tn+4

A

B

B

C

Global
Network

Tn Tn+1 Tn+2 Tn+3 Tn+4

A

C

Global
Network
Revision 5 43

ProASIC3 nano FPGA Fabric User’s Guide
You can control the maximum number of shared instances allowed for the legalization to take place using
the Compile Option dialog box shown in Figure 3-17. Refer to Libero SoC / Designer online help for
details on the Compile Option dialog box. A large number of shared instances most likely indicates a
floorplanning problem that you should address.

Designer Flow for Global Assignment
To achieve the desired result, pay special attention to global management during synthesis and place-
and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default.
Thus, the default flow will not assign any signal to the quadrant global network. However, you can use
attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2
supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will
make the choice to assign the correct signals to global. However, you can also utilize PDC and perform
manual global assignment to overwrite any automatic assignment. The following step-by-step
suggestions guide you in the layout of your design and help you improve timing in Designer:

1. Run Compile and check the Compile report. The Compile report has global information in the
"Device Utilization" section that describes the number of chip and quadrant signals in the design.
A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of
nets listed by fanout, and net candidates for local clock assignment. Review this information. Note
that YB or YC are counted as global only when they are used in isolation; if you use YB only and
not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global
Utilization report.

2. If some signals have a very high fanout and are candidates for global promotion, promote those
signals to global using the compile options or PDC commands. Figure 3-18 on page 54 shows the
Globals Management section of the compile options. Select Promote regular nets whose
fanout is greater than and enter a reasonable value for fanouts.

Figure 3-17 • Shared Instances in the Compile Option Dialog Box
Revision 5 53

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Global Buffers with No Programmable Delays
Access to the global / quadrant global networks can be configured directly from the global I/O buffer,
bypassing the CCC functional block (as indicated by the dotted lines in Figure 4-1 on page 61). Internal
signals driven by the FPGA core can use the global / quadrant global networks by connecting via the
routed clock input of the multiplexer tree.
There are many specific CLKBUF macros supporting the wide variety of single-ended I/O inputs
(CLKBUF) and differential I/O standards (CLKBUF_LVDS/LVPECL) in the low power flash families. They
are used when connecting global I/Os directly to the global/quadrant networks.
Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
When an internal signal needs to be connected to the global/quadrant network, the CLKINT macro is
used to connect the signal to the routed clock input of the network's MUX tree.
To utilize direct connection from global I/Os or from internal signals to the global/quadrant networks,
CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are used (Figure 4-2).

• The CLKBUF and CLKBUF_LVPECL/LVDS1 macros are composite macros that include an I/O
macro driving a global buffer, which uses a hardwired connection.

• The CLKBUF, CLKBUF_LVPECL/LVDS1 and CLKINT macros are pass-through clock sources
and do not use the PLL or provide any programmable delay functionality.

• The CLKINT macro provides a global buffer function driven internally by the FPGA core.
The available CLKBUF macros are described in the IGLOO, ProASIC3, SmartFusion, and Fusion
Macro Library Guide.

Global Buffer with Programmable Delay
Clocks requiring clock adjustments can utilize the programmable delay cores before connecting to the
global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a device—
three per CCC and up to six CCCs per device.
Each CCC functional block contains a programmable delay element for each of the global networks (up
to three), and users can utilize these features by using the corresponding macro (Figure 4-3 on page 65).

1. B-LVDS and M-LVDS are supported with the LVDS macro.

Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay

NoneCLKBUF_LVDS/LVPECL Macro

PADN

PADP Y

Y

Y

A

ED

PAD

PAD

Y

CLKINT Macro CLKBUF Macro

CLKBIBUF Macro GLA, GLB,
or GLC

Clock Source Clock Conditioning Output

CLKBIBUF
64 Revision 5

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global
networks on each side (six total networks), while the four CCCs located in the four corners access three
quadrant global networks (twelve total networks). See Figure 4-13.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 4-15 on page 82 through Figure 4-16 on page 82, CCCs with integrated PLLs are indicated in
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so
on. These names finish up at the middle left with letter "F."

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above

Northwest Quadrant Global Networks

Southeast Quadrant Global Networks

Chip-Wide (main)
Global

Networks

3

3

3

3 3 3

3 3 3 3

6

6

6

6

6

6

6

6

G
lo

ba
l S

pi
ne

Q
ua

dr
an

t G
lo

ba
l S

pi
ne

CCC Location A

CCC Location F

CCC Location E CCC Location D

CCC Location C

CCC Location B
80 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
IGLOO and ProASIC3 CCC Locations
In all IGLOO and ProASIC3 devices (except 10 k through 30 k gate devices, which do not contain PLLs),
six CCCs are located in the same positions as the IGLOOe and ProASIC3E CCCs. Only one of the
CCCs has an integrated PLL and is located in the middle of the west (middle left) side of the device. The
other five CCCs are simplified CCCs and are located in the four corners and the middle of the east side
of the device (Figure 4-14).

Note: The number and architecture of the banks are different for some devices.
10 k through 30 k gate devices do not support PLL features. In these devices, there are two CCC-GLs at
the lower corners (one at the lower right, and one at the lower left). These CCC-GLs do not have
programmable delays.

Figure 4-14 • CCC Locations in IGLOO and ProASIC3 Family Devices
(except 10 k through 30 k gate devices)

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

ISP AES
Decryption

User Nonvolatile
FlashROM (FROM) Charge Pumps

Bank 0
B

an
k

3
B

an
k

3 B
ank 1

B
ank 1

Bank 2

A B

C

DE

F

= CCC with integrated PLL
= Simplified CCC with programmable delay elements (no PLL)
Revision 5 81

ProASIC3 nano FPGA Fabric User’s Guide
Figure 4-37 shows the simulation results, where the first PLL’s output period is 3.9 ns (~256 MHz), and
the stage 2 (final) output period is 3.56 ns (~280 MHz).

Figure 4-36 • Second-Stage PLL Showing Input of 256 MHz from First Stage and Final Output of 280 MHz

Figure 4-37 • ModelSim Simulation Results

Stage 1 Output Clock Period Stage 2 Output Clock Period
Revision 5 111

FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Applications
The SmartGen core generator is used to configure FlashROM content. You can configure each page
independently. SmartGen enables you to create and modify regions within a page; these regions can be
1 to 16 bytes long (Figure 5-4).

The FlashROM content can be changed independently of the FPGA core content. It can be easily
accessed and programmed via JTAG, depending on the security settings of the device. The SmartGen
core generator enables each region to be independently updated (described in the "Programming and
Accessing FlashROM" section on page 122). This enables you to change the FlashROM content on a
per-part basis while keeping some regions "constant" for all parts. These features allow the FlashROM to
be used in diverse system applications. Consider the following possible uses of FlashROM:

• Internet protocol (IP) addressing (wireless or fixed)
• System calibration settings
• Restoring configuration after unpredictable system power-down
• Device serialization and/or inventory control
• Subscription-based business models (e.g., set-top boxes)
• Secure key storage
• Asset management tracking
• Date stamping
• Version management

Figure 5-4 • FlashROM Configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7
6
5
4
3
2
1
0

Byte Number in Page

Pa
ge

 N
um

be
r

120 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Figure 5-7 • Accessing FlashROM Using FPGA Core

Figure 5-8 • Accessing FlashROM Using JTAG Port

01234567
7
6
5
4
3
2
1
0

89101112131415
Word Number in Page 4 LSB of ADDR (READ)Page N

um
ber

3 M
SB

 of
A

D
D

R
 (R

EA
D

)

3-Bit Page Address

111

1110000
7-Bit Address from Core

0000

4-B
it W

ord A
ddress

8-Bit Data

8-Bit Data
to FPGA Core

8-Bit Data from Page 7 Word 0

01234567
7
6
5
4
3
2
1
0

89101112131415
Word Number in Page 4 LSB of ADDR (READ)Page N

um
ber

3 M
SB

 of
A

D
D

R
 (R

EA
D

)

4-Bit Page Address
from JTAG Interface

To/From JTAG Interface

...........................00001:128 Bit Data
Revision 5 123

FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Design Flow
The Microsemi Libero System-on-Chip (SoC) software has extensive FlashROM support, including
FlashROM generation, instantiation, simulation, and programming. Figure 5-9 shows the user flow
diagram. In the design flow, there are three main steps:

1. FlashROM generation and instantiation in the design
2. Simulation of FlashROM design
3. Programming file generation for FlashROM design

Figure 5-9 • FlashROM Design Flow

Simulator

FlashPoint

SmartGen

Programmer

Synthesis

Designer

Security
Header
Options

Programming
Files

UFC
File

FlashROM
Netlist

User
Design

User
Netlist

Core
Map

MEM
File

Back-
Annotated

Netlist
124 Revision 5

FlashROM in Microsemi’s Low Power Flash Devices
SmartGen allows you to generate the FlashROM netlist in VHDL, Verilog, or EDIF format. After the
FlashROM netlist is generated, the core can be instantiated in the main design like other SmartGen
cores. Note that the macro library name for FlashROM is UFROM. The following is a sample FlashROM
VHDL netlist that can be instantiated in the main design:
library ieee;
use ieee.std_logic_1164.all;
library fusion;

entity FROM_a is
port(ADDR : in std_logic_vector(6 downto 0); DOUT : out std_logic_vector(7 downto 0));

end FROM_a;

architecture DEF_ARCH of FROM_a is

component UFROM
generic (MEMORYFILE:string);
port(DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7 : out std_logic;

ADDR0, ADDR1, ADDR2, ADDR3, ADDR4, ADDR5, ADDR6 : in std_logic := 'U') ;
end component;

component GND
port(Y : out std_logic);

end component;

signal U_7_PIN2 : std_logic ;

begin

GND_1_net : GND port map(Y => U_7_PIN2);
UFROM0 : UFROM
generic map(MEMORYFILE => "FROM_a.mem")
port map(DO0 => DOUT(0), DO1 => DOUT(1), DO2 => DOUT(2), DO3 => DOUT(3), DO4 => DOUT(4),

DO5 => DOUT(5), DO6 => DOUT(6), DO7 => DOUT(7), ADDR0 => ADDR(0), ADDR1 => ADDR(1),
ADDR2 => ADDR(2), ADDR3 => ADDR(3), ADDR4 => ADDR(4), ADDR5 => ADDR(5),
ADDR6 => ADDR(6));

end DEF_ARCH;

SmartGen generates the following files along with the netlist. These are located in the SmartGen folder
for the Libero SoC project.

1. MEM (Memory Initialization) file
2. UFC (User Flash Configuration) file
3. Log file

The MEM file is used for simulation, as explained in the "Simulation of FlashROM Design" section on
page 127. The UFC file, generated by SmartGen, has the FlashROM configuration for single or multiple
devices and is used during STAPL generation. It contains the region properties and simulation values.
Note that any changes in the MEM file will not be reflected in the UFC file. Do not modify the UFC to
change FlashROM content. Instead, use the SmartGen GUI to modify the FlashROM content. See the
"Programming File Generation for FlashROM Design" section on page 127 for a description of how the
UFC file is used during the programming file generation. The log file has information regarding the file
type and file location.
126 Revision 5

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
//
addr_counter counter_1 (.Clock(data_update), .Q(wr_addr), .Aset(rst_n),

.Enable(enable));
addr_counter counter_2 (.Clock(test_clk), .Q(rd_addr), .Aset(rst_n),

.Enable(test_active));

endmodule

Interface Block / UJTAG Wrapper
This example is a sample wrapper, which connects the interface block to the UJTAG and the memory
blocks.
// WRAPPER
module top_init (TDI, TRSTB, TMS, TCK, TDO, test, test_clk, test_ out);

input TDI, TRSTB, TMS, TCK;
output TDO;
input test, test_clk;
output [3:0] test_out;

wire [7:0] IR;
wire reset, DR_shift, DR_cap, init_clk, DR_update, data_in, data_out;
wire clk_out, wen, ren;
wire [3:0] word_in, word_out;
wire [1:0] write_addr, read_addr;

UJTAG UJTAG_U1 (.UIREG0(IR[0]), .UIREG1(IR[1]), .UIREG2(IR[2]), .UIREG3(IR[3]),
.UIREG4(IR[4]), .UIREG5(IR[5]), .UIREG6(IR[6]), .UIREG7(IR[7]), .URSTB(reset),
.UDRSH(DR_shift), .UDRCAP(DR_cap), .UDRCK(init_clk), .UDRUPD(DR_update),
.UT-DI(data_in), .TDI(TDI), .TMS(TMS), .TCK(TCK), .TRSTB(TRSTB), .TDO(TDO),
.UT-DO(data_out));

mem_block RAM_block (.DO(word_out), .RCLOCK(clk_out), .WCLOCK(clk_out), .DI(word_in),
.WRB(wen), .RDB(ren), .WAD-DR(write_addr), .RADDR(read_addr));

interface init_block (.IR(IR), .rst_n(reset), .data_shift(DR_shift), .clk_in(init_clk),
.data_update(DR_update), .din_ser(data_in), .dout_ser(data_out), .test(test),
.test_out(test_out), .test_clk(test_clk), .clk_out(clk_out), .wr_en(wen),
.rd_en(ren), .write_word(word_in), .read_word(word_out), .rd_addr(read_addr),
.wr_addr(write_addr));

endmodule

Address Counter
module addr_counter (Clock, Q, Aset, Enable);

input Clock;
output [1:0] Q;
input Aset;
input Enable;

reg [1:0] Qaux;

always @(posedge Clock or negedge Aset)
begin

if (!Aset) Qaux <= 2'b11;
else if (Enable) Qaux <= Qaux + 1;

end

assign Q = Qaux;

endmodule
152 Revision 5

Programming Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 FlashPro4 is a replacement for FlashPro3 and has been added to this chapter.
FlashPro is no longer available.

N/A

The chapter was updated to include SmartFusion devices. N/A

The following were deleted:
"Live at Power-Up (LAPU) or Boot PROM" section
"Design Security" section
Table 14-2 • Programming Features for Actel Devices and much of the text in the
"Programming Features for Microsemi Devices" section
"Programming Flash FPGAs" section
"Return Material Authorization (RMA) Policies" section

N/A

The "Device Programmers" section was revised. 225

The Independent Programming Centers information was removed from the "Volume
Programming Services" section.

226

Table 10-3 • Programming Solutions was revised to add FlashPro4 and note that
FlashPro is discontinued. A note was added for FlashPro Lite regarding power
supply requirements.

227

Most items were removed from Table 10-4 • Programming Ordering Codes,
including FlashPro3 and FlashPro.

228

The "Programmer Device Support" section was deleted and replaced with a
reference to the Microsemi SoC Products Group website for the latest information.

228

The "Certified Programming Solutions" section was revised to add FlashPro4 and
remove Silicon Sculptor I and Silicon Sculptor 6X. Reference to Programming and
Functional Failure Guidelines was added.

228

The file type *.pdb was added to the "Use the Latest Version of the Designer
Software to Generate Your Programming File (recommended)" section.

229

Instructions on cleaning and careful insertion were added to the "Perform Routine
Hardware Self-Diagnostic Test" section. Information was added regarding testing
Silicon Sculptor programmers with an adapter module installed before every
programming session verifying their calibration annually.

229

The "Signal Integrity While Using ISP" section is new. 230

The "Programming Failure Allowances" section was revised. 230
232 Revision 5

http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf
http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf

Security in Low Power Flash Devices
2. Choose the desired security level setting and enter the key(s).
– The High security level employs FlashLock Pass Key with AES Key protection.
– The Medium security level employs FlashLock Pass Key protection only.

Figure 11-15 • Programming Fusion Security Settings Only

Figure 11-16 • High Security Level to Implement FlashLock Pass Key and AES Key Protection
252 Revision 5

Security in Low Power Flash Devices
STAPL File with AES Encryption
• Does not contain AES key / FlashLock Key information
• Intended for transmission through web or service to unsecured locations for programming

===
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EF57";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "ENCRYPT FROM CORE ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";

Conclusion
The new and enhanced security features offered in Fusion, IGLOO, and ProASIC3 devices provide state-
of-the-art security to designs programmed into these flash-based devices. Microsemi low power flash
devices employ the encryption standard used by NIST and the U.S. government—AES using the 128-bit
Rijndael algorithm.
The combination of an on-chip AES decryption engine and FlashLock technology provides the highest
level of security against invasive attacks and design theft, implementing the most robust and secure ISP
solution. These security features protect IP within the FPGA and protect the system from cloning,
wholesale “black box” copying of a design, invasive attacks, and explicit IP or data theft.

Glossary

References
National Institute of Standards and Technology. “ADVANCED ENCRYPTION STANDARD (AES)

Questions and Answers.” 28 January 2002 (10 January 2005).
See http://csrc.nist.gov/archive/aes/index1.html for more information.

Term Explanation

Security Header
programming file

Programming file used to program the FlashLock Pass Key and/or AES key into the device to
secure the FPGA, FlashROM, and/or FBs.

AES (encryption) key 128-bit key defined by the user when the AES encryption option is set in the Microsemi
Designer software when generating the programming file.

FlashLock Pass Key 128-bit key defined by the user when the FlashLock option is set in the Microsemi Designer
software when generating the programming file.
The FlashLock Key protects the security settings programmed to the device. Once a device
is programmed with FlashLock, whatever settings were chosen at that time are secure.

FlashLock The combined security features that protect the device content from attacks. These features
are the following:
• Flash technology that does not require an external bitstream to program the device
• FlashLock Pass Key that secures device content by locking the security settings and

preventing access to the device as defined by the user
• AES key that allows secure, encrypted device reprogrammability
258 Revision 5

http://csrc.nist.gov/archive/aes/index1.html

ProASIC3 nano FPGA Fabric User’s Guide
Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash device and the ARM-enabled flash devices, which
have the M1 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design will be encrypted along with the ARM IP, according to the details below.

Cortex-M1 and Cortex-M3 Device Security
Cortex-M1–enabled and Cortex-M3 devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted write and verify
• Embedded Flash Memory enabled for AES encrypted write

Figure 12-1 • AES-128 Security Features

Designer
Software

Programming
File Generation

with AES
Encryption

Flash Device

Decrypted
 Bitstream

MAC
Validation

AES
Decryption

FPGA Core,
FlashROM,

FBs

Transmit Medium /
Public Network

Encrypted Bistream

User Encryption AES Key
Revision 5 265

15 – Boundary Scan in Low Power Flash Devices

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing.
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 15-2 on page 294).
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 15-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state.
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 15-1 • TAP Controller State Machine

1

TEST_LOGIC_RESET

RUN_TEST_IDLE SELECT_DR

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SELECT_IR

CAPTURE_IR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

1

0

1

0
1

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0

1 0

1

0

0
0

1

0

1

0

1

Revision 5 291

Boundary Scan in Low Power Flash Devices
Board-Level Recommendations
Table 15-3 gives pull-down recommendations for the TRST and TCK pins.

Figure 15-2 • Boundary Scan Chain

Device
Logic

TD
I

TC
K

TM
S

TR
S

T
TD

O

I/OI/OI/O I/OI/O

I/OI/OI/O I/OI/O

I/O
I/O

I/O
I/O

Bypass Register

Instruction
Register

TAP
Controller

Test Data
Registers

Table 15-3 • TRST and TCK Pull-Down Recommendations

VJTAG Tie-Off Resistance*

VJTAG at 3.3 V 200 Ω to 1 kΩ

VJTAG at 2.5 V 200 Ω to 1 kΩ

VJTAG at 1.8 V 500 Ω to 1 kΩ

VJTAG at 1.5 V 500 Ω to 1 kΩ

VJTAG at 1.2 V TBD

Note: Equivalent parallel resistance if more than one device is on JTAG chain (Figure 15-3)
294 Revision 5

UJTAG Applications in Microsemi’s Low Power Flash Devices
Conclusion
Microsemi low power flash FPGAs offer many unique advantages, such as security, nonvolatility,
reprogrammablity, and low power—all in a single chip. In addition, Fusion, IGLOO, and ProASIC3
devices provide access to the JTAG port from core VersaTiles while the device is in normal operating
mode. A wide range of available user-defined JTAG opcodes allows users to implement various types of
applications, exploiting this feature of these devices. The connection between the JTAG port and core
tiles is implemented through an embedded and hardwired UJTAG tile. A UJTAG tile can be instantiated in
designs using the UJTAG library cell. This document presents multiple examples of UJTAG applications,
such as dynamic reconfiguration, silicon test and debug, fine-tuning of the design, and RAM initialization.
Each of these applications offers many useful advantages.

Related Documents

Application Notes
RAM Initialization and ROM Emulation in ProASICPLUS Devices
http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

December 2011 Information on the drive strength and slew rate of TDO pins was added to the
"Silicon Testing and Debugging" section (SAR 31749).

304

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 16-1 • Flash-Based
FPGAs.

298

v1.3
(October 2008)

The "UJTAG Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

298

The title of Table 16-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC
Blocks was revised to include Fusion.

302

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 16-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

298

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 298
306 Revision 5

http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf
http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf

