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Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Static (Idle) Mode
In Static (Idle) mode, the clock inputs are not switching and the static power consumption is the minimum
power required to keep the device powered up. In this mode, I/Os are only drawing the minimum leakage
current specified in the datasheet. Also, in Static (Idle) mode, embedded SRAM, I/Os, and registers
retain their values, so the device can enter and exit this mode without any penalty.
If the embedded PLLs are used as the clock source, Static (Idle) mode can be entered easily by pulling
LOW the PLL POWERDOWN pin (active-low). By pulling the PLL POWERDOWN pin to LOW, the PLL is
turned off. Refer to Figure 2-1 on page 23 for more information. 

Table 2-1 • ProASIC3/E/nano Low Power Modes Summary

Mode Power Supplies / Clock Status Needed to Start Up

Active On – All, clock N/A (already active)

Off – None

Static (Idle) On – All Initiate clock source.

Off – No active clock in FPGA No need to initialize volatile
contents.

Optional: Enter User Low Static (Idle) Mode by enabling
ULSICC macro to further reduce power consumption by
powering down FlashROM.

Sleep On – VCCI Need to turn on core.

Off – VCC (core voltage), VJTAG (JTAG DC voltage),
and VPUMP (programming voltage)

Load states from external
memory.

LAPU enables immediate operation when power
returns.

As needed, restore volatile
contents from external memory.

Optional: Save state of volatile contents in external
memory.

Shutdown On – None Need to turn on VCC, VCCI.

Off – All power supplies

Applicable to all ProASIC3 nano devices, cold-sparing
and hot-insertion allow the device to be powered down
without bringing down the system. LAPU enables
immediate operation when power returns.
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ProASIC3 nano FPGA Fabric User’s Guide
Figure 3-6 shows all nine global inputs for the location A connected to the top left quadrant global
network via CCC.

Since each bank can have a different I/O standard, the user should be careful to choose the correct
global I/O for the design. There are 54 global pins available to access 18 global networks. For the single-
ended and voltage-referenced I/O standards, you can use any of these three available I/Os to access the
global network. For differential I/O standards such as LVDS and LVPECL, the I/O macro needs to be
placed on (A0, A1), (B0, B1), (C0, C1), or a similar location. The unassigned global I/Os can be used
as regular I/Os. Note that pin names starting with GF and GC are associated with the chip global
networks, and GA, GB, GD, and GE are used for quadrant global networks. Table 3-2 on page 38 and
Table 3-3 on page 39 show the general chip and quadrant global pin names.

Figure 3-6 • Global Inputs
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Global Resources in Low Power Flash Devices
Table 3-2 • Chip Global Pin Name

I/O Type Beginning of I/O Name Notes

Single-Ended GFAO/IOuxwByVz
GFA1/IOuxwByVz
GFA2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GFBO/IOuxwByVz
GFB1/IOuxwByVz
GFB2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GFC0/IOuxwByVz
GFC1/IOuxwByVz
GFC2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GCAO/IOuxwByVz
GCA1/IOuxwByVz
GCA2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCBO/IOuxwByVz
GCB1/IOuxwByVz
GCB2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCC0/IOuxwByVz
GCC1/IOuxwByVz
GCC2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

Differential I/O Pairs GFAO/IOuxwByVz
GFA1/IOuxwByVz

The output of the different pair will drive the chip global.

GFBO/IOuxwByVz
GFB1/IOuxwByVz

The output of the different pair will drive the chip global.

GFCO/IOuxwByVz
GFC1/IOuxwByVz

The output of the different pair will drive the chip global.

GCAO/IOuxwByVz
GCA1/IOuxwByVz

The output of the different pair will drive the chip global.

GCBO/IOuxwByVz
GCB1/IOuxwByVz

The output of the different pair will drive the chip global.

GCCO/IOuxwByVz
GCC1/IOuxwByVz

The output of the different pair will drive the chip global.

Note: Only one of the I/Os can be directly connected to a quadrant at a time.
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ProASIC3 nano FPGA Fabric User’s Guide
Spine Architecture
The low power flash device architecture allows the VersaNet global networks to be segmented. Each of
these networks contains spines (the vertical branches of the global network tree) and ribs that can reach
all the VersaTiles inside its region. The nine spines available in a vertical column reside in global
networks with two separate regions of scope: the quadrant global network, which has three spines, and
the chip (main) global network, which has six spines. Note that the number of quadrant globals and
globals/spines per tree varies depending on the specific device. Refer to Table 3-4 for the clocking
resources available for each device. The spines are the vertical branches of the global network tree,
shown in Figure 3-3 on page 34. Each spine in a vertical column of a chip (main) global network is further
divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die
(except in 10 k through 30 k gate devices).
Top and bottom spine segments radiating from the center of a device have the same height. However,
just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the
middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and
cannot access the middle two rows of the architecture. 
Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see
Figure 3-3 on page 34). Each spine is accessed by the dedicated global network MUX tree architecture,
which defines how a particular spine is driven—either by the signal on the global network from a CCC, for
example, or by another net defined by the user. Details of the chip (main) global network spine-selection
MUX are presented in Figure 3-8 on page 44. The spine drivers for each spine are located in the middle
of the die.
Quadrant spines can be driven from user I/Os or an internal signal from the north and south sides of the
die. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top
of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000
device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables
users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/
ProASIC3L
Devices

IGLOO 
Devices

Chip
Globals 

Quadrant
Globals 

(4×3)
Clock
Trees 

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in Each

Tree 
Total

VersaTiles 

Rows
in

Each
Spine

A3PN010 AGLN010 4 0 1 0 0 260 260 4

A3PN015 AGLN015 4 0 1 0 0 384 384 6

A3PN020 AGLN020 4 0 1 0 0 520 520 6

A3PN060 AGLN060 6 12 4 9 36 384 1,536 12

A3PN125 AGLN125 6 12 8 9 72 384 3,072 12

A3PN250 AGLN250 6 12 8 9 72 768 6,144 24

A3P015 AGL015 6 0 1 9 9 384 384 12

A3P030 AGL030 6 0 2 9 18 384 768 12

A3P060 AGL060 6 12 4 9 36 384 1,536 12

A3P125 AGL125 6 12 8 9 72 384 3,072 12

A3P250/L AGL250 6 12 8 9 72 768 6,144 24

A3P400 AGL400 6 12 12 9 108 768 9,216 24

A3P600/L AGL600 6 12 12 9 108 1,152 13,824 36

A3P1000/L AGL1000 6 12 16 9 144 1,536 24,576 48

A3PE600/L AGLE600 6 12 12 9 108 1,120 13,440 35

A3PE1500 6 12 20 9 180 1,888 37,760 59

A3PE3000/L AGLE3000 6 12 28 9 252 2,656 74,368 83
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Global Resources in Low Power Flash Devices
The following will happen during demotion of a global signal to regular nets:
• CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
• The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be

demoted.
• No automatic buffering will happen.

Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to
large fanout. This may have a negative effect on the quality of the results. Microsemi recommends that
the automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout
nets to improve timing and routability.

Spine Assignment
The low power flash device architecture allows the global networks to be segmented and used as clock
spines. These spines, also called local clock networks, enable the use of PDC or MVN to assign a signal
to a spine. 
PDC syntax to promote a net to a spine/local clock:
assign_local_clock –net netname –type [quadrant|chip] Tn|Bn|Tn:Bm

If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before
it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock. 
When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer
software will legalize the shared instances. The number of shared instances to be legalized can be
controlled by compile options. If these networks are created in MVN (only quadrant globals can be
created), no legalization is done (as it is post-compile). Designer does not do legalization between non-
clock nets.
As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC
constraints are used:
assign_local_clock –net net_clk –type chip T3
assign_local_clock –net net_reset –type chip T1:T2 

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places
the flip-flop in the T3 spine region (Figure 3-16). 

Figure 3-16 • Adding a Buffer for Shared Instances
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Global Resources in Low Power Flash Devices
v1.1
(March 2008)

The "Global Architecture" section was updated to include the IGLOO PLUS
family. The bullet was revised to include that the west CCC does not contain a
PLL core in 15 k and 30 k devices. Instances of "A3P030 and AGL030 devices"
were replaced with "15 k and 30 k gate devices."

31

v1.1
(continued)

Table 3-1 • Flash-Based FPGAs and the accompanying text was updated to
include the IGLOO PLUS family. The "IGLOO Terminology" section and
"ProASIC3 Terminology" section are new.

32

The "VersaNet Global Network Distribution" section, "Spine Architecture" section,
the note in Figure 3-1 • Overview of VersaNet Global Network and Device
Architecture, and the note in Figure 3-3 • Simplified VersaNet Global Network
(60 k gates and above) were updated to include mention of 15 k gate devices.

33, 34

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to add the A3P015 device, and to revise the values for clock trees, globals/spines
per tree, and globals/spines per device for the A3P030 and AGL030 devices.

41

Table 3-5 • Globals/Spines/Rows for IGLOO PLUS Devices is new. 42

CLKBUF_LVCMOS12 was added to Table 3-9 • I/O Standards within CLKBUF. 47

The "User’s Guides" section was updated to include the three different I/O
Structures chapters for ProASIC3 and IGLOO device families.

58

v1.0
(January 2008)

Figure 3-3 • Simplified VersaNet Global Network (60 k gates and above) was
updated.

34

The "Naming of Global I/Os" section was updated. 35

The "Using Global Macros in Synplicity" section was updated. 50

The "Global Promotion and Demotion Using PDC" section was updated. 51

The "Designer Flow for Global Assignment" section was updated. 53

The "Simple Design Example" section was updated. 55

51900087-0/1.05
(January 2005)

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was
updated.

41

Date Changes Page
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ProASIC3 nano FPGA Fabric User’s Guide
YB and YC are identical to GLB and GLC, respectively, with the exception of a higher selectable final 
output delay. The SmartGen PLL Wizard will configure these outputs according to user specifications and 
can enable these signals with or without the enabling of Global Output Clocks.
The above signals can be enabled in the following output groupings in both internal and external 
feedback configurations of the static PLL:

• One output – GLA only
• Two outputs – GLA + (GLB and/or YB)
• Three outputs – GLA + (GLB and/or YB) + (GLC and/or YC)

PLL Macro Block Diagram 
As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these 
(GLB and GLC) can be routed to the B and C global network access, respectively, and/or routed to the 
device core (YB and YC).
There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).
There are delay elements in the feedback loop that can be used to advance the clock relative to the 
reference clock. 
The PLL macro reference clock can be driven in the following ways:

1. By an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer 
(with programmable delay) using a hardwired connection. In this case, the I/O must be placed in 
one of the dedicated global I/O locations.

2. Directly from the FPGA core.
3. From an I/O that is routed through the FPGA regular routing fabric. In this case, users must 

instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described 
earlier.

During power-up, the PLL outputs will toggle around the maximum frequency of the voltage-controlled 
oscillator (VCO) gear selected. Toggle frequencies can range from 40 MHz to 250 MHz. This will 
continue as long as the clock input (CLKA) is constant (HIGH or LOW). This can be prevented by LOW 
assertion of the POWERDOWN signal. 
The visual PLL configuration in SmartGen, a component of the Libero SoC and Designer tools, will derive 
the necessary internal divider ratios based on the input frequency and desired output frequencies 
selected by the user.
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ProASIC3 nano FPGA Fabric User’s Guide
When SmartGen is used to define the configuration that will be shifted in via the serial interface, 
SmartGen prints out the values of the 81 configuration bits. For ease of use, several configuration bits 
are automatically inferred by SmartGen when the dynamic PLL core is generated; however, <71:73> 
(STATASEL, STATBSEL, STATCSEL) and <77:79> (DYNASEL, DYNBSEL, DYNCSEL) depend on the 
input clock source of the corresponding CCC. Users must first run Layout in Designer to determine the 
exact setting for these ports. After Layout is complete, generate the "CCC_Configuration" report by 
choosing Tools > Reports > CCC_Configuration in the Designer software. Refer to "PLL Configuration 
Bits Description" on page 90 for descriptions of the PLL configuration bits. For simulation purposes, bits 
<71:73> and <78:80> are "don't care." Therefore, it is strongly suggested that SmartGen be used to 
generate the correct configuration bit settings for the dynamic PLL core.
After setting all the required parameters, users can generate one or more PLL configurations with HDL or 
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results 
and messages in a log file:
****************
Macro Parameters
****************

Name                            : dyn_pll_hardio
Family                          : ProASIC3E
Output Format                   : VERILOG
Type                            : Dynamic CCC
Input Freq(MHz)                 : 30.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 1
Feedback Mux Select             : 1
XDLY Mux Select                 : No
Primary Freq(MHz)               : 33.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 40.000
Use GLB                         : YES
Use YB                          : NO
GLB Delay Value Index           : 1
YB Delay Value Index            : 1
Secondary1 PhaseShift           : 0
Secondary1 Mux Select           : 0
Secondary1 Input Freq(MHz)      : 40.000
CLKB Source                     : Hardwired I/O
Secondary2 Freq(MHz)            : 50.000
Use GLC                         : YES
Use YC                          : NO
GLC Delay Value Index           : 1
YC Delay Value Index            : 1
Secondary2 PhaseShift           : 0
Secondary2 Mux Select           : 0
Secondary2 Input Freq(MHz)      : 50.000
CLKC Source                     : Hardwired I/O

Configuration Bits:
FINDIV[6:0]     0000101
FBDIV[6:0]      0100000
OADIV[4:0]      00100
OBDIV[4:0]      00000
OCDIV[4:0]      00000
OAMUX[2:0]      100
OBMUX[2:0]      000
OCMUX[2:0]      000
FBSEL[1:0]      01
FBDLY[4:0]      00000
XDLYSEL         0
DLYGLA[4:0]     00000
DLYGLB[4:0]     00000
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ProASIC3 nano FPGA Fabric User’s Guide
The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay 
adjustment features. The steps include generating the PLL core with SmartGen, performing simulation 
for verification with ModelSim, and performing static timing analysis with SmartTime in Designer.
Parameters of the example PLL configuration:

Input Frequency – 20 MHz
Primary Output Requirement – 20 MHz with clock advancement of 3.02 ns
Secondary 1 Output Requirement – 40 MHz with clock delay of 2.515 ns

Figure 4-29 shows the SmartGen settings. Notice that the overall delays are calculated automatically, 
allowing the user to adjust the delay elements appropriately to obtain the desired delays. 

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings 
by checking the log file:
Name                            : test_pll_delays
Family                          : ProASIC3E
Output Format                   : VHDL
Type                            : Static PLL
Input Freq(MHz)                 : 20.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 21
Feedback Mux Select             : 2
XDLY Mux Select                 : No
Primary Freq(MHz)               : 20.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 40.000
Use GLB                         : YES
Use YB                          : NO
…
…
…
Primary Clock frequency 20.000
Primary Clock Phase Shift 0.000

Figure 4-29 • SmartGen Settings
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Recommended Board-Level Considerations
The power to the PLL core is supplied by VCCPLA/B/C/D/E/F (VCCPLx), and the associated ground 
connections are supplied by VCOMPLA/B/C/D/E/F (VCOMPLx). When the PLLs are not used, the 
Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The 
user should tie unused VCCPLx and VCOMPLx pins to ground. Optionally, the PLL can be turned on/off 
during normal device operation via the POWERDOWN port (see Table 4-3 on page 68).

PLL Power Supply Decoupling Scheme
The PLL core is designed to tolerate noise levels on the PLL power supply as specified in the datasheets. 
When operated within the noise limits, the PLL will meet the output peak-to-peak jitter specifications 
specified in the datasheets. User applications should always ensure the PLL power supply is powered 
from a noise-free or low-noise power source.
However, in situations where the PLL power supply noise level is higher than the tolerable limits, various 
decoupling schemes can be designed to suppress noise to the PLL power supply. An example is 
provided in Figure 4-38. The VCCPLx and VCOMPLx pins correspond to the PLL analog power supply 
and ground.
Microsemi strongly recommends that two ceramic capacitors (10 nF in parallel with 100 nF) be placed 
close to the power pins (less than 1 inch away). A third generic 10 µF electrolytic capacitor is 
recommended for low-frequency noise and should be placed farther away due to its large physical size. 
Microsemi recommends that a 6.8 µH inductor be placed between the supply source and the capacitors 
to filter out any low-/medium- and high-frequency noise. In addition, the PCB layers should be controlled 
so the VCCPLx and VCOMPLx planes have the minimum separation possible, thus generating a good-
quality RF capacitor.
For more recommendations, refer to the Board-Level Considerations application note.
Recommended 100 nF capacitor:

• Producer BC Components, type X7R, 100 nF, 16 V
• BC Components part number: 0603B104K160BT
• Digi-Key part number: BC1254CT-ND 
• Digi-Key part number: BC1254TR-ND

Recommended 10 nF capacitor:
• Surface-mount ceramic capacitor
• Producer BC Components, type X7R, 10 nF, 50 V
• BC Components part number: 0603B103K500BT
• Digi-Key part number: BC1252CT-ND 
• Digi-Key part number: BC1252TR-ND  

Figure 4-38 • Decoupling Scheme for One PLL (should be replicated for each PLL used)
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FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Design Flow 
The Microsemi Libero System-on-Chip (SoC) software has extensive FlashROM support, including
FlashROM generation, instantiation, simulation, and programming. Figure 5-9 shows the user flow
diagram. In the design flow, there are three main steps:

1. FlashROM generation and instantiation in the design
2. Simulation of FlashROM design
3. Programming file generation for FlashROM design

Figure 5-9 • FlashROM Design Flow
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Example of RAM Initialization
This section of the document presents a sample design in which a 4×4 RAM block is being initialized
through the JTAG port. A test feature has been implemented in the design to read back the contents of
the RAM after initialization to verify the procedure.
The interface block of this example performs two major functions: initialization of the RAM block and
running a test procedure to read back the contents. The clock output of the interface is either the write
clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the
interface block is included in the "Sample Verilog Code" section on page 151. 
For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in
the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis.
If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input
buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.
Figure 6-10 shows the simulation results for the initialization step of the example design.
The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output
of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data
Register Update state) for the write address and data to become stable before loading them into the RAM
block.
Figure 6-11 presents the test procedure of the example. The data read back from the memory block
matches the written data, thus verifying the design functionality.

Figure 6-10 • Simulation of Initialization Step

Figure 6-11 • Simulation of the Test Procedure of the Example
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
v1.1
(continued)

Table 6-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

134

The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices. 
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Related Documents

Application Notes
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List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k,
and 250 k Devices) was revised to indicate that resets on registers 1, 3, 4, and 5
are active high rather than active low (SAR 40698).

160

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

181, 183

June 2011 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k, 
and 250 k Devices) was revised so that the I/O_CLR and I/O_OCLK nets are no 
longer joined in front of Input Register 3 but instead on the branch of the CLR/PRE 
signal (SAR 26052).

160

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

166

The "5 V Input Tolerance" section was revised to state that 5 V input tolerance can
be used with LVTTL 3.3 V and LVCMOS 3.3 V configurations. LVCMOS 2.5 V,
LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V were removed from the
sentence listing supported configurations (SAR 22427).

171
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I/O Bank Resource Usage
This is an important portion of the report. The user must meet the requirements stated in this table.
Figure 8-10 shows the I/O Bank Resource Usage table included in the I/O bank report:

The example in Figure 8-10 shows that none of the I/O macros is assigned to the bank because more
than one VCCI is detected.

I/O Voltage Usage
The I/O Voltage Usage table provides the number of VREF (E devices only) and VCCI assignments
required in the design. If the user decides to make I/O assignments manually (PDC or MVN), the issues
listed in this table must be resolved before proceeding to Layout. As stated earlier, VREF assignments
must be made if there are any voltage-referenced I/Os.
Figure 8-11 shows the I/O Voltage Usage table included in the I/O bank report. 

The table in Figure 8-11 indicates that there are two voltage-referenced I/Os used in the design. Even
though both of the voltage-referenced I/O technologies have the same VCCI voltage, their VREF
voltages are different. As a result, two I/O banks are needed to assign the VCCI and VREF voltages.
In addition, there are six single-ended I/Os used that have the same VCCI voltage. Since two banks
are already assigned with the same VCCI voltage and there are enough unused bonded I/Os in

Figure 8-10 • I/O Bank Resource Usage Table

Figure 8-11 • I/O Voltage Usage Table
Revision 5 197



ProASIC3 nano FPGA Fabric User’s Guide
If the assignment is not successful, an error message appears in the Output window.
To undo the I/O bank assignments, choose Undo from the Edit menu. Undo removes the I/O
technologies assigned by the IOBA. It does not remove the I/O technologies previously assigned.
To redo the changes undone by the Undo command, choose Redo from the Edit menu.
To clear I/O bank assignments made before using the Undo command, manually unassign or reassign
I/O technologies to banks. To do so, choose I/O Bank Settings from the Edit menu to display the I/O
Bank Settings dialog box.

Conclusion
Fusion, IGLOO, and ProASIC3 support for multiple I/O standards minimizes board-level components and
makes possible a wide variety of applications. The Microsemi Designer software, integrated with Libero
SoC, presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level
design requirements before programming the device. The device I/O features and functionalities ensure
board designers can produce low-cost and low power FPGA applications fulfilling the complexities of
contemporary design needs. 

Related Documents

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
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SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf
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DDR Input Register

The corresponding structural representations, as generated by SmartGen, are shown below:

Verilog
module DDR_InBuf_SSTL2_I(PAD,CLR,CLK,QR,QF);

input   PAD, CLR, CLK;
output  QR, QF;

wire Y;

INBUF_SSTL2_I INBUF_SSTL2_I_0_inst(.PAD(PAD),.Y(Y));
DDR_REG DDR_REG_0_inst(.D(Y),.CLK(CLK),.CLR(CLR),.QR(QR),.QF(QF));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
--The correct library will be inserted automatically by SmartGen 
library proasic3; use proasic3.all; 
--library fusion; use fusion.all; 
--library igloo; use igloo.all; 

entity DDR_InBuf_SSTL2_I is 
port(PAD, CLR, CLK : in std_logic;  QR, QF : out std_logic) ;

end DDR_InBuf_SSTL2_I;

architecture DEF_ARCH of  DDR_InBuf_SSTL2_I is

component INBUF_SSTL2_I
port(PAD : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

signal Y : std_logic ;

begin

INBUF_SSTL2_I_0_inst : INBUF_SSTL2_I
port map(PAD => PAD, Y => Y);
DDR_REG_0_inst : DDR_REG
port map(D => Y, CLK => CLK, CLR => CLR, QR => QR, QF => QF);

end DEF_ARCH;

Figure 9-5 • DDR Input Register (SSTL2 Class I)
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DDR for Microsemi’s Low Power Flash Devices
Design Example
Figure 9-9 shows a simple example of a design using both DDR input and DDR output registers. The
user can copy the HDL code in Libero SoC software and go through the design flow. Figure 9-10 and
Figure 9-11 on page 217 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may
vary slightly for different families.

Figure 9-9 • Design Example

Figure 9-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices
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Security in Low Power Flash Devices
Security Support in Flash-Based Devices
The flash FPGAs listed in Table 11-1 support the security feature and the functions described in this
document. 

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 11-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 11-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 11-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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FlashROM Security Use Models
Each of the subsequent sections describes in detail the available selections in Microsemi Designer as an
aid to understanding security applications and generating appropriate programming files for those
applications. Before proceeding, it is helpful to review Figure 11-7 on page 243, which gives a general
overview of the programming file generation flow within the Designer software as well as what occurs
during the device programming stage. Specific settings are discussed in the following sections.
In Figure 11-7 on page 243, the flow consists of two sub-flows. Sub-flow 1 describes programming
security settings to the device only, and sub-flow 2 describes programming the design contents only. 
In Application 1, described in the "Application 1: Trusted Environment" section on page 243, the user
does not need to generate separate files but can generate one programming file containing both security
settings and design contents. Then programming of the security settings and design contents is done in
one step. Both sub-flow 1 and sub-flow 2 are used. 
In Application 2, described in the "Application 2: Nontrusted Environment—Unsecured Location" section
on page 243, the trusted site should follow sub-flows 1 and 2 separately to generate two separate
programming files. The programming file from sub-flow 1 will be used at the trusted site to program the
device(s) first. The programming file from sub-flow 2 will be sent off-site for production programming. 
In Application 3, described in the "Application 3: Nontrusted Environment—Field Updates/Upgrades"
section on page 244, typically only sub-flow 2 will be used, because only updates to the design content
portion are needed and no security settings need to be changed.
In the event that update of the security settings is necessary, see the "Reprogramming Devices" section
on page 255 for details. For more information on programming low power flash devices, refer to the "In-
System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X" section on
page 261.
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