
Microchip Technology - A3PN250-VQ100I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 36864

Number of I/O 68

Number of Gates 250000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn250-vq100i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn250-vq100i-4482859
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


ProASIC3 nano FPGA Fabric User’s Guide
VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global). 
Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 3-2 and Figure 3-3 on page 34 show simplified VersaNet global networks. 
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 41. 
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 3-1 • Overview of VersaNet Global Network and Device Architecture
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Global Resources in Low Power Flash Devices
v1.1
(March 2008)

The "Global Architecture" section was updated to include the IGLOO PLUS
family. The bullet was revised to include that the west CCC does not contain a
PLL core in 15 k and 30 k devices. Instances of "A3P030 and AGL030 devices"
were replaced with "15 k and 30 k gate devices."

31

v1.1
(continued)

Table 3-1 • Flash-Based FPGAs and the accompanying text was updated to
include the IGLOO PLUS family. The "IGLOO Terminology" section and
"ProASIC3 Terminology" section are new.

32

The "VersaNet Global Network Distribution" section, "Spine Architecture" section,
the note in Figure 3-1 • Overview of VersaNet Global Network and Device
Architecture, and the note in Figure 3-3 • Simplified VersaNet Global Network
(60 k gates and above) were updated to include mention of 15 k gate devices.

33, 34

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to add the A3P015 device, and to revise the values for clock trees, globals/spines
per tree, and globals/spines per device for the A3P030 and AGL030 devices.

41

Table 3-5 • Globals/Spines/Rows for IGLOO PLUS Devices is new. 42

CLKBUF_LVCMOS12 was added to Table 3-9 • I/O Standards within CLKBUF. 47

The "User’s Guides" section was updated to include the three different I/O
Structures chapters for ProASIC3 and IGLOO device families.

58

v1.0
(January 2008)

Figure 3-3 • Simplified VersaNet Global Network (60 k gates and above) was
updated.

34

The "Naming of Global I/Os" section was updated. 35

The "Using Global Macros in Synplicity" section was updated. 50

The "Global Promotion and Demotion Using PDC" section was updated. 51

The "Designer Flow for Global Assignment" section was updated. 53

The "Simple Design Example" section was updated. 55

51900087-0/1.05
(January 2005)

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was
updated.

41

Date Changes Page
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4 – Clock Conditioning Circuits in Low Power 
Flash Devices and Mixed Signal FPGAs

Introduction
This document outlines the following device information: Clock Conditioning Circuit (CCC) features, PLL 
core specifications, functional descriptions, software configuration information, detailed usage 
information, recommended board-level considerations, and other considerations concerning clock 
conditioning circuits and global networks in low power flash devices or mixed signal FPGAs.

Overview of Clock Conditioning Circuitry
In Fusion, IGLOO, and ProASIC3 devices, the CCCs are used to implement frequency division, 
frequency multiplication, phase shifting, and delay operations. The CCCs are available in six chip 
locations—each of the four chip corners and the middle of the east and west chip sides. For device-
specific variations, refer to the "Device-Specific Layout" section on page 78.
The CCC is composed of the following:

• PLL core
• 3 phase selectors
• 6 programmable delays and 1 fixed delay that advances/delays phase
• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in 

Figure 4-6 on page 71 because they are automatically configured based on the user's required 
frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability
Figure 4-1 provides a simplified block diagram of the physical implementation of the building blocks in 
each of the CCCs. 

Figure 4-1 • Overview of the CCCs Offered in Fusion, IGLOO, and ProASIC3
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ProASIC3 nano FPGA Fabric User’s Guide
SmartGen also allows the user to select the various delays and phase shift values necessary to adjust 
the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC). 
SmartGen allows the user to select the input clock source. SmartGen automatically instantiates the 
special macro, PLLINT, when needed. 

Global Input Selections
Low power flash devices provide the flexibility of choosing one of the three global input pad locations 
available to connect to a CCC functional block or to a global / quadrant global network. Figure 4-7 on 
page 72 and Figure 4-8 on page 72 show the detailed architecture of each global input structure for 30 k 
gate devices and below, as well as 60 k gate devices and above, respectively. For 60 k gate devices and 
above (Figure 4-7 on page 72), if the single-ended I/O standard is chosen, there is flexibility to choose 
one of the global input pads (the first, second, and fourth input). Once chosen, the other I/O locations are 
used as regular I/Os. If the differential I/O standard is chosen (not applicable for IGLOO nano and 
ProASIC3 nano devices), the first and second inputs are considered as paired, and the third input is 
paired with a regular I/O. 
The user then has the choice of selecting one of the two sets to be used as the clock input source to the 
CCC functional block. There is also the option to allow an internal clock signal to feed the global network 
or the CCC functional block. A multiplexer tree selects the appropriate global input for routing to the 
desired location. Note that the global I/O pads do not need to feed the global network; they can also be 
used as regular I/O pads. 

Note: Clock divider and clock multiplier blocks are not shown in this figure or in SmartGen. They are automatically 
configured based on the user's required frequencies.

Figure 4-6 • CCC with PLL Block
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Note: Fusion CCCs have additional source selections (RCOSC, XTAL).
Figure 4-9 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates 

and Larger

Figure 4-10 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 30 k 
Gates and Smaller
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global 
networks on each side (six total networks), while the four CCCs located in the four corners access three 
quadrant global networks (twelve total networks). See Figure 4-13.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 4-15 on page 82 through Figure 4-16 on page 82, CCCs with integrated PLLs are indicated in 
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the 
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so 
on. These names finish up at the middle left with letter "F."

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Loading the Configuration Register
The most important part of CCC dynamic configuration is to load the shift register properly with the 
configuration bits. There are different ways to access and load the configuration shift register:

• JTAG interface
• Logic core
• Specific I/O tiles

JTAG Interface
The JTAG interface requires no additional I/O pins. The JTAG TAP controller is used to control the 
loading of the CCC configuration shift register. 
Low power flash devices provide a user interface macro between the JTAG pins and the device core 
logic. This macro is called UJTAG. A user should instantiate the UJTAG macro in his design to access the 
configuration register ports via the JTAG pins. 
For more information on CCC dynamic reconfiguration using UJTAG, refer to the "UJTAG Applications in 
Microsemi’s Low Power Flash Devices" section on page 297.

Logic Core
If the logic core is employed, the user must design a module to provide the configuration data and control 
the shifting and updating of the CCC configuration shift register. In effect, this is a user-designed TAP 
controller, which requires additional chip resources.

Specific I/O Tiles
If specific I/O tiles are used for configuration, the user must provide the external equivalent of a TAP 
controller. This does not require additional core resources but does use pins.

Shifting the Configuration Data
To enter a new configuration, all 81 bits must shift in via SDIN. After all bits are shifted, SSHIFT must go 
LOW and SUPDATE HIGH to enable the new configuration. For simulation purposes, bits <71:73> and 
<77:80> are "don't care."
The SUPDATE signal must be LOW during any clock cycle where SSHIFT is active. After SUPDATE is 
asserted, it must go back to the LOW state until a new update is required.

PLL Configuration Bits Description  
Table 4-8 • Configuration Bit Descriptions for the CCC Blocks
Config.
Bits Signal Name Description
<88:87>  GLMUXCFG [1:0]1 NGMUX configuration The configuration bits specify the input clocks 

to the NGMUX (refer to Table 4-17 on 
page 94).2

86  OCDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by the divider factor 
in Table 4-18 on page 95.

85  OBDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by a 0.5 factor (refer 
to Table 4-18 on page 95).

84  OADIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by certain 0.5 factor 
(refer to Table 4-16 on page 94).

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set. 

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > 
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
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FlashROM in Microsemi’s Low Power Flash Devices
Figure 5-12 shows the programming file generator, which enables different STAPL file generation
methods. When you select Program FlashROM and choose the UFC file, the FlashROM Settings
window appears, as shown in Figure 5-13. In this window, you can select the FlashROM page you want
to program and the data value for the configured regions. This enables you to use a different page for
different programming files.   

The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization). This
feature is supported in the programming software. After programming with the STAPL file, you can run
DEVICE_INFO to check the FlashROM content.

Figure 5-12 • Programming File Generator

Figure 5-13 • Setting FlashROM during Programming File Generation
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Initializing the RAM/FIFO 
The SRAM blocks can be initialized with data to use as a lookup table (LUT). Data initialization can be
accomplished either by loading the data through the design logic or through the UJTAG interface. The
UJTAG macro is used to allow access from the JTAG port to the internal logic in the device. By sending
the appropriate initialization string to the JTAG Test Access Port (TAP) Controller, the designer can put
the JTAG circuitry into a mode that allows the user to shift data into the array logic through the JTAG port
using the UJTAG macro. For a more detailed explanation of the UJTAG macro, refer to the "FlashROM in
Microsemi’s Low Power Flash Devices" section on page 117. 
A user interface is required to receive the user command, initialization data, and clock from the UJTAG
macro. The interface must synchronize and load the data into the correct RAM block of the design. The
main outputs of the user interface block are the following:

• Memory block chip select: Selects a memory block for initialization. The chip selects signals for
each memory block that can be generated from different user-defined pockets or simple logic,
such as a ring counter (see below).

• Memory block write address: Identifies the address of the memory cell that needs to be initialized.
• Memory block write data: The interface block receives the data serially from the UTDI port of the

UJTAG macro and loads it in parallel into the write data ports of the memory blocks.
• Memory block write clock: Drives the WCLK of the memory block and synchronizes the write

data, write address, and chip select signals.
Figure 6-8 shows the user interface between UJTAG and the memory blocks.

An important component of the interface between the UJTAG macro and the RAM blocks is a serial-
in/parallel-out shift register. The width of the shift register should equal the data width of the RAM blocks.
The RAM data arrives serially from the UTDI output of the UJTAG macro. The data must be shifted into a
shift register clocked by the JTAG clock (provided at the UDRCK output of the UJTAG macro).
Then, after the shift register is fully loaded, the data must be transferred to the write data port of the RAM
block. To synchronize the loading of the write data with the write address and write clock, the output of
the shift register can be pipelined before driving the RAM block.
The write address can be generated in different ways. It can be imported through the TAP using a
different instruction opcode and another shift register, or generated internally using a simple counter.
Using a counter to generate the address bits and sweep through the address range of the RAM blocks is

Figure 6-8 • Interfacing TAP Ports and SRAM Blocks
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I/O Structures in nano Devices
Table 7-8 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are
powered down, and the card is plugged into the
system. Then the power supplies are turned on for
the system but not for the FPGA on the card.

Compliance of nano Devices Compliant 

Table 7-9 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control
circuitry isolates the card busses until the card
supplies are at their nominal operating levels and
stable.

Compliance of nano Devices Compliant
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ProASIC3 nano FPGA Fabric User’s Guide
For Level 3 and Level 4 compliance with the nano devices, cards with two levels of staging should have
the following sequence:

• Grounds
• Powers, I/Os, and other pins

Table 7-10 • Hot-Swap Level 3

Description Hot-swap while bus idle

Power Applied to Device Yes

Bus State Held idle (no ongoing I/O processes during
insertion/removal)

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application Board bus shared with card bus is "frozen," and
there is no toggling activity on the bus. It is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant

Table 7-11 • Hot-Swap Level 4

Description Hot-swap on an active bus

Power Applied to Device Yes

Bus State Bus may have active I/O processes ongoing, but
device being inserted or removed must be idle.

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application There is activity on the system bus, and it is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant
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ProASIC3 nano FPGA Fabric User’s Guide
– If one of the registers has a PRE pin, all the other registers that are candidates for combining
in the I/O must have a PRE pin.

– If one of the registers has neither a CLR nor a PRE pin, all the other registers that are
candidates for combining must have neither a CLR nor a PRE pin.

– If the clear or preset pins are present, they must have the same polarity.
– If the clear or preset pins are present, they must be driven by the same signal (net).

3. For single-tile devices (10 k, 15 k, and 20 k): Registers connected to an I/O on the Output and
Output Enable pins must have the same clock function (both CLR and CLK are shared among all
registers):
– Both the Output and Output Enable registers must not have an E pin (clock enable).

4. For dual-tile devices (60 k, 125 k, and 250 k): Registers connected to an I/O on the Output and
Output Enable pins must have the same clock and enable function:
– Both the Output and Output Enable registers must have an E pin (clock enable), or none at all.
– If the E pins are present, they must have the same polarity. The CLK pins must also have the

same polarity.
In some cases, the user may want registers to be combined with the input of a bibuf while
maintaining the output as-is. This can be achieved by using PDC commands as follows:

set_io <signal name> -REGISTER yes ------register will combine
set_preserve <signal name> ----register will not combine

Weak Pull-Up and Weak Pull-Down Resistors
nano devices support optional weak pull-up and pull-down resistors on each I/O pin. When the I/O is
pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is
connected to GND. Refer to the datasheet for more information.
For low power applications and when using IGLOO nano devices, configuration of the pull-up or pull-
down of the I/O can be used to set the I/O to a known state while the device is in Flash*Freeze mode.
Refer to "Flash*Freeze Technology and Low Power Modes" in an applicable FPGA fabric user’s guide for
more information.
The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the
signal needs to be driven at all times.

Output Slew Rate Control
The slew rate is the amount of time an input signal takes to get from logic LOW to logic HIGH or vice
versa.
It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing.
Slew rate control is available for the output buffers of low power flash devices. The output buffer has a
programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. 
The slew rate can be implemented by using a PDC command (Table 7-5 on page 163), setting it "High"
or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate
value is "High."
Microsemi recommends the high slew rate option to minimize the propagation delay. This high-speed
option may introduce noise into the system if appropriate signal integrity measures are not adopted.
Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is
recommended when bus transients are expected. 

Output Drive
The output buffers of nano devices can provide multiple drive strengths to meet signal integrity
requirements. The LVTTL and LVCMOS (except 1.2 V LVCMOS) standards have selectable drive
strengths. 
Drive strength should also be selected according to the design requirements and noise immunity of the
system.
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ProASIC3 nano FPGA Fabric User’s Guide
I/O Bank Resource Usage
This is an important portion of the report. The user must meet the requirements stated in this table.
Figure 8-10 shows the I/O Bank Resource Usage table included in the I/O bank report:

The example in Figure 8-10 shows that none of the I/O macros is assigned to the bank because more
than one VCCI is detected.

I/O Voltage Usage
The I/O Voltage Usage table provides the number of VREF (E devices only) and VCCI assignments
required in the design. If the user decides to make I/O assignments manually (PDC or MVN), the issues
listed in this table must be resolved before proceeding to Layout. As stated earlier, VREF assignments
must be made if there are any voltage-referenced I/Os.
Figure 8-11 shows the I/O Voltage Usage table included in the I/O bank report. 

The table in Figure 8-11 indicates that there are two voltage-referenced I/Os used in the design. Even
though both of the voltage-referenced I/O technologies have the same VCCI voltage, their VREF
voltages are different. As a result, two I/O banks are needed to assign the VCCI and VREF voltages.
In addition, there are six single-ended I/Os used that have the same VCCI voltage. Since two banks
are already assigned with the same VCCI voltage and there are enough unused bonded I/Os in

Figure 8-10 • I/O Bank Resource Usage Table

Figure 8-11 • I/O Voltage Usage Table
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Security in Low Power Flash Devices
Application 3: Nontrusted Environment—Field Updates/Upgrades
Programming or reprogramming of devices may occur at remote locations. Reconfiguration of devices in
consumer products/equipment through public networks is one example. Typically, the remote system is
already programmed with particular design contents. When design update (FPGA array contents update)
and/or data upgrade (FlashROM and/or FB contents upgrade) is necessary, an updated programming file
with AES encryption can be generated, sent across public networks, and transmitted to the remote
system. Reprogramming can then be done using this AES-encrypted programming file, providing easy
and secure field upgrades. Low power flash devices support this secure ISP using AES. The detailed
flow for this application is shown in Figure 11-8. Refer to the "Microprocessor Programming of
Microsemi’s Low Power Flash Devices" chapter of an appropriate FPGA fabric user’s guide for more
information.
To prepare devices for this scenario, the user can initially generate a programming file with the available
security setting options. This programming file is programmed into the devices before shipment. During
the programming file generation step, the user has the option of making the security settings permanent
or not. In situations where no changes to the security settings are necessary, the user can select this
feature in the software to generate the programming file with permanent security settings. Microsemi
recommends that the programming file use encryption with an AES key, especially when ISP is done via
public domain.
For example, if the designer wants to use an AES key for the FPGA array and the FlashROM,
Permanent needs to be chosen for this setting. At first, the user chooses the options to use an AES key
for the FPGA array and the FlashROM, and then chooses Permanently lock the security settings. A
unique AES key is chosen. Once this programming file is generated and programmed to the devices, the
AES key is permanently stored in the on-chip memory, where it is secured safely. The devices are sent to
distant locations for the intended application. When an update is needed, a new programming file must
be generated. The programming file must use the same AES key for encryption; otherwise, the
authentication will fail and the file will not be programmed in the device. 

Figure 11-8 • Application 3: Nontrusted Environment—Field Updates/Upgrades 
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Generating Programming Files

Generation of the Programming File in a Trusted Environment—
Application 1
As discussed in the "Application 1: Trusted Environment" section on page 243, in a trusted environment,
the user can choose to program the device with plaintext bitstream content. It is possible to use plaintext
for programming even when the FlashLock Pass Key option has been selected. In this application, it is
not necessary to employ AES encryption protection. For AES encryption settings, refer to the next
sections.
The generated programming file will include the security setting (if selected) and the plaintext
programming file content for the FPGA array, FlashROM, and/or FBs. These options are indicated in
Table 11-2 and Table 11-3.

For this scenario, generate the programming file as follows:
1. Select the Silicon features to be programmed (Security Settings, FPGA Array, FlashROM,

Flash Memory Blocks), as shown in Figure 11-10 on page 248 and Figure 11-11 on page 248.
Click Next.
If Security Settings is selected (i.e., the FlashLock security Pass Key feature), an additional
dialog will be displayed to prompt you to select the security level setting. If no security setting is
selected, you will be directed to Step 3.

Table 11-2 • IGLOO and ProASIC3 Plaintext Security Options, No AES 

Security Protection FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA
No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock – – –

Table 11-3 • Fusion Plaintext Security Options
Security Protection FlashROM Only FPGA Core Only FB Core Only All
No AES / no FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock – – – –

Note: For all instructions, the programming of Flash Blocks refers to Fusion only.
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Programming with this file is intended for an unsecured environment. The AES key encrypts the
programming file with the same AES key already used in the device and utilizes it to program the device.

Reprogramming Devices
Previously programmed devices can be reprogrammed using the steps in the "Generation of the
Programming File in a Trusted Environment—Application 1" section on page 247 and "Generation of
Security Header Programming File Only—Application 2" section on page 250. In the case where a
FlashLock Pass Key has been programmed previously, the user must generate the new programming file
with a FlashLock Pass Key that matches the one previously programmed into the device. The software
will check the FlashLock Pass Key in the programming file against the FlashLock Pass Key in the device.
The keys must match before the device can be unlocked to perform further programming with the new
programming file.
Figure 11-10 on page 248 and Figure 11-11 on page 248 show the option Programming previously
secured device(s), which the user should select before proceeding. Upon going to the next step, the
user will be notified that the same FlashLock Pass Key needs to be entered, as shown in Figure 11-19 on
page 256. 

Figure 11-18 • Security Level Set High to Reprogram Device with AES Key
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

September 2012 The "Security" section was modified to clarify that Microsemi does not support
read-back of FPGA core-programmed data (SAR 41235).

288

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 14-1 • Flash-
Based FPGAs.

284

v1.3
(October 2008)

The "Microprocessor Programming Support in Flash Devices" section was
revised to include new families and make the information more concise.

284

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 14-1 •
Flash-Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

284

v1.1
(March 2008)

The "Microprocessor Programming Support in Flash Devices" section was
updated to include information on the IGLOO PLUS family. The "IGLOO
Terminology" section and "ProASIC3 Terminology" section are new.

284
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UJTAG Macro
The UJTAG tiles can be instantiated in a design using the UJTAG macro from the Fusion, IGLOO, or
ProASIC3 macro library. Note that "UJTAG" is a reserved name and cannot be used for any other user-
defined blocks. A block symbol of the UJTAG tile macro is presented in Figure 16-2. In this figure, the
ports on the left side of the block are connected to the JTAG TAP Controller, and the right-side ports are
accessible by the FPGA core VersaTiles. The TDI, TMS, TDO, TCK, and TRST ports of UJTAG are only
provided for design simulation purposes and should be treated as external signals in the design netlist.
However, these ports must NOT be connected to any I/O buffer in the netlist. Figure 16-3 on page 300
illustrates the correct connection of the UJTAG macro to the user design netlist. Microsemi Designer
software will automatically connect these ports to the TAP during place-and-route. Table 16-2 gives the
port descriptions for the rest of the UJTAG ports:    

Table 16-2 • UJTAG Port Descriptions

Port Description
UIREG [7:0] This 8-bit bus carries the contents of the JTAG Instruction Register of each device. Instruction Register

values 16 to 127 are not reserved and can be employed as user-defined instructions.
URSTB URSTB is an active-low signal and will be asserted when the TAP Controller is in Test-Logic-Reset

mode. URSTB is asserted at power-up, and a power-on reset signal resets the TAP Controller. URSTB
will stay asserted until an external TAP access changes the TAP Controller state.

UTDI This port is directly connected to the TAP's TDI signal.
UTDO This port is the user TDO output. Inputs to the UTDO port are sent to the TAP TDO output MUX when

the IR address is in user range.
UDRSH Active-high signal enabled in the ShiftDR TAP state
UDRCAP Active-high signal enabled in the CaptureDR TAP state
UDRCK This port is directly connected to the TAP's TCK signal.
UDRUPD Active-high signal enabled in the UpdateDR TAP state

Figure 16-2 • UJTAG Tile Block Symbol
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Brownout Voltage
Brownout is a condition in which the voltage supplies are lower than normal, causing the device to 
malfunction as a result of insufficient power. In general, Microsemi does not guarantee the functionality of 
the design inside the flash FPGA if voltage supplies are below their minimum recommended operating 
condition. Microsemi has performed measurements to characterize the brownout levels of FPGA power 
supplies. Refer to Table 17-3 for device-specific brownout deactivation levels. For the purpose of 
characterization, a direct path from the device input to output is monitored while voltage supplies are 
lowered gradually. The brownout point is defined as the voltage level at which the output stops following 
the input. Characterization tests performed on several IGLOO, ProASIC3L, and ProASIC3 devices in 
typical operating conditions showed the brownout voltage levels to be within the specification. 
During device power-down, the device I/Os become tristated once the first supply in the power-down 
sequence drops below its brownout deactivation voltage. 

PLL Behavior at Brownout Condition
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels mentioned 
above for 1.5 V and 1.2 V devices, the PLL output lock signal goes LOW and/or the output clock is lost. 
The following sections explain PLL behavior during and after the brownout condition.

VCCPLL and VCC Tied Together 
In this condition, both VCC and VCCPLL drop below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level. 
During the brownout recovery, once VCCPLL and VCC reach the activation point (0.85 ± 0.25 V or 
± 0.2 V) again, the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. 
If this condition occurs, there are two ways to recover the PLL output lock signal:

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

Only VCCPLL Is at Brownout 
In this case, only VCCPLL drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and the VCC 
supply remains at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V 
± 0.06 V for 1.2 V devices). In this condition, the PLL behavior after brownout recovery is similar to initial 
power-up condition, and the PLL will regain lock automatically after VCCPLL is ramped up above the 
activation level (0.85 ± 0.25 V or ± 0.2 V). No intervention is necessary in this case.

Only VCC Is at Brownout
In this condition, VCC drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and VCCPLL remains 
at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V ± 0.06 V for 
1.2 V devices). During the brownout recovery, once VCC reaches the activation point again (0.85 ± 
0.25 V or ± 0.2 V), the PLL output lock signal may still remain LOW with the PLL output clock signal 
toggling. If this condition occurs, there are two ways to recover the PLL output lock signal: 

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

It is important to note that Microsemi recommends using a monotonic power supply or voltage regulator 
to ensure proper power-up behavior. 

Table 17-3 • Brownout Deactivation Levels for VCC and VCCI

Devices
VCC Brownout 

Deactivation Level (V)
VCCI Brownout 

Deactivation Level (V)

ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, 
IGLOO PLUS and ProASIC3L devices running at 
VCC = 1.5 V

0.75 V ± 0.25 V 0.8 V ± 0.3 V

IGLOO, IGLOO nano, IGLOO PLUS, and 
ProASIC3L devices running at VCC = 1.2 V

0.75 V ± 0.2 V 0.8 V ± 0.15 V
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