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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
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and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.
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Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global). 
Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 3-2 and Figure 3-3 on page 34 show simplified VersaNet global networks. 
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 41. 
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 3-1 • Overview of VersaNet Global Network and Device Architecture

Pad Ring

Pad Ring

P
ad

 R
in

g
I/O

 R
in

g

I/O
R

ing

Chip (main)
Global Pads

Chip (main) 
Global Pads

High-Performance
Global Network

Spine

Ribs

Scope of Spine
(shaded area
plus local RAMs
and I/Os)Spine-Selection

MUX

Embedded 
RAM Blocks

Logic Tiles

Top Spine

Bottom Spine

T1

B1

T2

B2

T3

B3

Quadrant Global Pads
Revision 5 33



ProASIC3 nano FPGA Fabric User’s Guide
FlashROM Security
Low power flash devices have an on-chip Advanced Encryption Standard (AES) decryption core,
combined with an enhanced version of the Microsemi flash-based lock technology (FlashLock®).
Together, they provide unmatched levels of security in a programmable logic device. This security
applies to both the FPGA core and FlashROM content. These devices use the 128-bit AES (Rijndael)
algorithm to encrypt programming files for secure transmission to the on-chip AES decryption core. The
same algorithm is then used to decrypt the programming file. This key size provides approximately 3.4 ×
1038 possible 128-bit keys. A computing system that could find a DES key in a second would take
approximately 149 trillion years to crack a 128-bit AES key. The 128-bit FlashLock feature in low power
flash devices works via a FlashLock security Pass Key mechanism, where the user locks or unlocks the
device with a user-defined key. Refer to the "Security in Low Power Flash Devices" section on page 235. 
If the device is locked with certain security settings, functions such as device read, write, and erase are
disabled. This unique feature helps to protect against invasive and noninvasive attacks. Without the
correct Pass Key, access to the FPGA is denied. To gain access to the FPGA, the device first must be
unlocked using the correct Pass Key. During programming of the FlashROM or the FPGA core, you can
generate the security header programming file, which is used to program the AES key and/or FlashLock
Pass Key. The security header programming file can also be generated independently of the FlashROM
and FPGA core content. The FlashLock Pass Key is not stored in the FlashROM. 
Low power flash devices with AES-based security allow for secure remote field updates over public
networks such as the Internet, and ensure that valuable intellectual property (IP) remains out of the
hands of IP thieves. Figure 5-5 shows this flow diagram.  

Figure 5-5 • Programming FlashROM Using AES
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FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Design Flow 
The Microsemi Libero System-on-Chip (SoC) software has extensive FlashROM support, including
FlashROM generation, instantiation, simulation, and programming. Figure 5-9 shows the user flow
diagram. In the design flow, there are three main steps:

1. FlashROM generation and instantiation in the design
2. Simulation of FlashROM design
3. Programming file generation for FlashROM design

Figure 5-9 • FlashROM Design Flow
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6 – SRAM and FIFO Memories in Microsemi's Low 
Power Flash Devices

Introduction
As design complexity grows, greater demands are placed upon an FPGA's embedded memory. Fusion,
IGLOO, and ProASIC3 devices provide the flexibility of true dual-port and two-port SRAM blocks. The
embedded memory, along with built-in, dedicated FIFO control logic, can be used to create cascading
RAM blocks and FIFOs without using additional logic gates.
IGLOO, IGLOO PLUS, and ProASIC3L FPGAs contain an additional feature that allows the device to be
put in a low power mode called Flash*Freeze. In this mode, the core draws minimal power (on the order
of 2 to 127 µW) and still retains values on the embedded SRAM/FIFO and registers. Flash*Freeze
technology allows the user to switch to Active mode on demand, thus simplifying power management
and the use of SRAM/FIFOs.

Device Architecture
The low power flash devices feature up to 504 kbits of RAM in 4,608-bit blocks (Figure 6-1 on page 132
and Figure 6-2 on page 133). The total embedded SRAM for each device can be found in the
datasheets. These memory blocks are arranged along the top and bottom of the device to allow better
access from the core and I/O (in some devices, they are only available on the north side of the device).
Every RAM block has a flexible, hardwired, embedded FIFO controller, enabling the user to implement
efficient FIFOs without sacrificing user gates.
In the IGLOO and ProASIC3 families of devices, the following memories are supported:

• 30 k gate devices and smaller do not support SRAM and FIFO.
• 60 k and 125 k gate devices support memories on the north side of the device only.
• 250 k devices and larger support memories on the north and south sides of the device.

In Fusion devices, the following memories are supported:
• AFS090 and AFS250 support memories on the north side of the device only.
• AFS600 and AFS1500 support memories on the north and south sides of the device.
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For Level 3 and Level 4 compliance with the nano devices, cards with two levels of staging should have
the following sequence:

• Grounds
• Powers, I/Os, and other pins

Table 7-10 • Hot-Swap Level 3

Description Hot-swap while bus idle

Power Applied to Device Yes

Bus State Held idle (no ongoing I/O processes during
insertion/removal)

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application Board bus shared with card bus is "frozen," and
there is no toggling activity on the bus. It is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant

Table 7-11 • Hot-Swap Level 4

Description Hot-swap on an active bus

Power Applied to Device Yes

Bus State Bus may have active I/O processes ongoing, but
device being inserted or removed must be idle.

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application There is activity on the system bus, and it is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant
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Electrostatic Discharge Protection
Low power flash devices are tested per JEDEC Standard JESD22-A114-B.
These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device
pads against damage from ESD as well as from excessive voltage transients. 
All nano devices are qualified to the Human Body Model (HBM) and the Charged Device Model (CDM). 

5 V Input and Output Tolerance
nano devices can be made 5 V–input–tolerant for certain I/O standards by using external level shifting
techniques. 5 V output compliance can be achieved using certain I/O standards. 
Table 7-5 on page 163 shows the I/O standards that support 5 V input tolerance. Only 3.3 V
LVTTL/LVCMOS standards support 5 V output tolerance. 

5 V Input Tolerance
I/Os can support 5 V input tolerance when LVTTL 3.3 V or LVCMOS 3.3 V configurations are used (see
Table 7-12). There are three recommended solutions for achieving 5 V receiver tolerance (see Figure 7-5
on page 172 to Figure 7-7 on page 173 for details of board and macro setups). All the solutions meet a
common requirement of limiting the voltage at the input to 3.6 V or less. In fact, the I/O absolute
maximum voltage rating is 3.6 V, and any voltage above 3.6 V may cause long-term gate oxide failures. 

Solution 1
The board-level design must ensure that the reflected waveform at the pad does not exceed the limits
provided in the recommended operating conditions in the datasheet. This is a requirement to ensure
long-term reliability.
This solution requires two board resistors, as demonstrated in Figure 7-5 on page 172. Here are some
examples of possible resistor values (based on a simplified simulation model with no line effects and
10 Ω transmitter output resistance, where Rtx_out_high = (VCCI – VOH) / IOH and
Rtx_out_low = VOL / IOL).
Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 36 Ω (±5%), P(r1)min = 0.069 Ω

R2 = 82 Ω (±5%), P(r2)min = 0.158 Ω

Imax_tx = 5.5 V / (82 × 0.95 + 36 × 0.95 + 10) = 45.04 mA

tRISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Table 7-12 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in nano Devices

I/O Assignment Clamp Diode Hot Insertion
5 V Input 
Tolerance Input Buffer

Output 
Buffer

3.3 V LVTTL/LVCMOS No Yes Yes* Enabled/Disabled

LVCMOS 2.5 V No Yes No Enabled/Disabled

LVCMOS 1.8 V No Yes No Enabled/Disabled

LVCMOS 1.5 V No Yes No Enabled/Disabled

LVCMOS 1.2 V No Yes No Enabled/Disabled

* Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
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Board-Level Considerations
Low power flash devices have robust I/O features that can help in reducing board-level components. The
devices offer single-chip solutions, which makes the board layout simpler and more immune to signal
integrity issues. Although, in many cases, these devices resolve board-level issues, special attention
should always be given to overall signal integrity. This section covers important board-level
considerations to facilitate optimum device performance.

Termination
Proper termination of all signals is essential for good signal quality. Nonterminated signals, especially
clock signals, can cause malfunctioning of the device.
For general termination guidelines, refer to the Board-Level Considerations application note for
Microsemi FPGAs. Also refer to the "Pin Descriptions and Packaging" chapter of the appropriate device
datasheet for termination requirements for specific pins.
Low power flash I/Os are equipped with on-chip pull-up/-down resistors. The user can enable these
resistors by instantiating them either in the top level of the design (refer to the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide for the available I/O macros with pull-up/-down) or in the
I/O Attribute Editor in Designer if generic input or output buffers are instantiated in the top level. Unused
I/O pins are configured as inputs with pull-up resistors.
As mentioned earlier, low power flash devices have multiple programmable drive strengths, and the user
can eliminate unwanted overshoot and undershoot by adjusting the drive strengths.

Figure 7-12 • I/O Bank Architecture of AGLN250/A3PN250 Devices
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DDR for Microsemi’s Low Power Flash Devices
Transmit Register
(continued)

Tristate 
Buffer

Normal  Enable Polarity Low/high (low default)

LVTTL Output Drive 2, 4, 6, 8, 12,16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

PCI/PCI-X Enable Polarity Low/high (low default)

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

Enable Polarity Low/high (low default)

HSTL Class I / II (I default)

Enable Polarity Low/high (low default)

SSTL2/SSTL3 Class I / II (I default)

Enable Polarity Low/high (low default)

Bidirectional 
Buffer

Normal Enable Polarity Low/high (low default)

LVTTL Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Enable Polarity Low/high (low default)

Pull-Up None (default)

PCI/PCI-X None

Enable Polarity Low/high (low default)

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

Enable Polarity Low/high (low default)

HSTL Class I / II (I default)

Enable Polarity Low/high (low default)

SSTL2/SSTL3 Class I / II (I default)

Enable Polarity Low/high (low default)

Table 9-2 • DDR I/O Options (continued)

DDR Register 
Type I/O Type I/O Standard Sub-Options Comments

Note: *IGLOO nano and ProASIC3 nano devices do not support differential inputs.
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General Flash Programming Information

Programming Basics
When choosing a programming solution, there are a number of options available. This section provides a 
brief overview of those options. The next sections provide more detail on those options as they apply to 
Microsemi FPGAs. 

Reprogrammable or One-Time-Programmable (OTP)
Depending on the technology chosen, devices may be reprogrammable or one-time-programmable. As 
the name implies, a reprogrammable device can be programmed many times. Generally, the contents of 
such a device will be completely overwritten when it is reprogrammed. All Microsemi flash devices are 
reprogrammable.
An OTP device is programmable one time only. Once programmed, no more changes can be made to 
the contents. Microsemi flash devices provide the option of disabling the reprogrammability for security 
purposes. This combines the convenience of reprogrammability during design verification with the 
security of an OTP technology for highly sensitive designs.

Device Programmer or In-System Programming
There are two fundamental ways to program an FPGA: using a device programmer or, if the technology 
permits, using in-system programming. A device programmer is a piece of equipment in a lab or on the 
production floor that is used for programming FPGA devices. The devices are placed into a socket 
mounted in a programming adapter module, and the appropriate electrical interface is applied. The 
programmed device can then be placed on the board. A typical programmer, used during development, 
programs a single device at a time and is referred to as a single-site engineering programmer. 
With ISP, the device is already mounted onto the system printed circuit board when programming occurs. 
Typically, ISD programming is performed via a JTAG interface on the FPGA. The JTAG pins can be 
controlled either by an on-board resource, such as a microprocessor, or by an off-board programmer 
through a header connection. Once mounted, it can be programmed repeatedly and erased. If the 
application requires it, the system can be designed to reprogram itself using a microprocessor, without 
the use of any external programmer.
If multiple devices need to be programmed with the same program, various multi-site programming 
hardware is available in order to program many devices in parallel. Microsemi In House Programming is 
also available for this purpose.

Programming Features for Microsemi Devices 
Flash Devices
The flash devices supplied by Microsemi are reprogrammable by either a generic device programmer or 
ISP. Microsemi supports ISP using JTAG, which is supported by the FlashPro4 and FlashPro3, FlashPro 
Lite, Silicon Sculptor 3, and Silicon Sculptor II programmers.
Levels of ISP support vary depending on the device chosen:

• All SmartFusion, Fusion, IGLOO, and ProASIC3 devices support ISP.
• IGLOO, IGLOOe, IGLOO nano V5, and IGLOO PLUS devices can be programmed in-system 

when the device is using a 1.5 V supply voltage to the FPGA core.
• IGLOO nano V2 devices can be programmed at 1.2 V core voltage (when using FlashPro4 only) 

or 1.5 V. IGLOO nano V5 devices are programmed with a VCC core voltage of 1.5 V.
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11 – Security in Low Power Flash Devices

Security in Programmable Logic
The need for security on FPGA programmable logic devices (PLDs) has never been greater than today.
If the contents of the FPGA can be read by an external source, the intellectual property (IP) of the system
is vulnerable to unauthorized copying. Fusion, IGLOO, and ProASIC3 devices contain state-of-the-art
circuitry to make the flash-based devices secure during and after programming. Low power flash devices
have a built-in 128-bit Advanced Encryption Standard (AES) decryption core (except for 30 k gate
devices and smaller). The decryption core facilitates secure in-system programming (ISP) of the FPGA
core array fabric, the FlashROM, and the Flash Memory Blocks (FBs) in Fusion devices. The FlashROM,
Flash Blocks, and FPGA core fabric can be programmed independently of each other, allowing the
FlashROM or Flash Blocks to be updated without the need for change to the FPGA core fabric. 
Microsemi has incorporated the AES decryption core into the low power flash devices and has also
included the Microsemi flash-based lock technology, FlashLock.® Together, they provide leading-edge
security in a programmable logic device. Configuration data loaded into a device can be decrypted prior
to being written to the FPGA core using the AES 128-bit block cipher standard. The AES encryption key
is stored in on-chip, nonvolatile flash memory. 
This document outlines the security features offered in low power flash devices, some applications and
uses, as well as the different software settings for each application.  

Figure 11-1 • Overview on Security
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Generating Programming Files

Generation of the Programming File in a Trusted Environment—
Application 1
As discussed in the "Application 1: Trusted Environment" section on page 243, in a trusted environment,
the user can choose to program the device with plaintext bitstream content. It is possible to use plaintext
for programming even when the FlashLock Pass Key option has been selected. In this application, it is
not necessary to employ AES encryption protection. For AES encryption settings, refer to the next
sections.
The generated programming file will include the security setting (if selected) and the plaintext
programming file content for the FPGA array, FlashROM, and/or FBs. These options are indicated in
Table 11-2 and Table 11-3.

For this scenario, generate the programming file as follows:
1. Select the Silicon features to be programmed (Security Settings, FPGA Array, FlashROM,

Flash Memory Blocks), as shown in Figure 11-10 on page 248 and Figure 11-11 on page 248.
Click Next.
If Security Settings is selected (i.e., the FlashLock security Pass Key feature), an additional
dialog will be displayed to prompt you to select the security level setting. If no security setting is
selected, you will be directed to Step 3.

Table 11-2 • IGLOO and ProASIC3 Plaintext Security Options, No AES 

Security Protection FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA
No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock – – –

Table 11-3 • Fusion Plaintext Security Options
Security Protection FlashROM Only FPGA Core Only FB Core Only All
No AES / no FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock – – – –

Note: For all instructions, the programming of Flash Blocks refers to Fusion only.
Revision 5 247



ProASIC3 nano FPGA Fabric User’s Guide
For this scenario, generate the programming file as follows:
1. Select only the Security settings option, as indicated in Figure 11-14 and Figure 11-15 on

page 252. Click Next.

Table 11-5 • FlashLock Security Options for Fusion

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / no FlashLock – – – –

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓

Figure 11-14 • Programming IGLOO and ProASIC3 Security Settings Only
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
IEEE 1532 (JTAG) Interface 
The supported industry-standard IEEE 1532 programming interface builds on the IEEE 1149.1 (JTAG)
standard. IEEE 1532 defines the standardized process and methodology for ISP. Both silicon and
software issues are addressed in IEEE 1532 to create a simplified ISP environment. Any IEEE 1532
compliant programmer can be used to program low power flash devices. Device serialization is not
supported when using the IEEE1532 standard. Refer to the standard for detailed information about IEEE
1532.

Security
Unlike SRAM-based FPGAs that require loading at power-up from an external source such as a
microcontroller or boot PROM, Microsemi nonvolatile devices are live at power-up, and there is no
bitstream required to load the device when power is applied. The unique flash-based architecture
prevents reverse engineering of the programmed code on the device, because the programmed data is
stored in nonvolatile memory cells. Each nonvolatile memory cell is made up of small capacitors and any
physical deconstruction of the device will disrupt stored electrical charges.
Each low power flash device has a built-in 128-bit Advanced Encryption Standard (AES) decryption core,
except for the 30 k gate devices and smaller. Any FPGA core or FlashROM content loaded into the
device can optionally be sent as encrypted bitstream and decrypted as it is loaded. This is particularly
suitable for applications where device updates must be transmitted over an unsecured network such as
the Internet. The embedded AES decryption core can prevent sensitive data from being intercepted
(Figure 12-1 on page 265). A single 128-bit AES Key (32 hex characters) is used to encrypt FPGA core
programming data and/or FlashROM programming data in the Microsemi tools. The low power flash
devices also decrypt with a single 128-bit AES Key. In addition, low power flash devices support a
Message Authentication Code (MAC) for authentication of the encrypted bitstream on-chip. This allows
the encrypted bitstream to be authenticated and prevents erroneous data from being programmed into
the device. The FPGA core, FlashROM, and Flash Memory Blocks (FBs), in Fusion only, can be updated
independently using a programming file that is AES-encrypted (cipher text) or uses plain text.
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
3. A single STAPL file or multiple STAPL files with multiple FlashROM contents. A single STAPL file
will be generated if the device serialization feature is not used. You can program the whole
FlashROM or selectively program individual pages. 

4. A single STAPL file to configure the security settings for the device, such as the AES Key and/or
Pass Key.

Programming Solution
For device programming, any IEEE 1532–compliant programmer can be used; however, the
FlashPro4/3/3X programmer must be used to control the low power flash device's rich security features
and FlashROM programming options. The FlashPro4/3/3X programmer is a low-cost portable
programmer for the Microsemi flash families. It can also be used with a powered USB hub for parallel
programming. General specifications for the FlashPro4/3/3X programmer are as follows:

• Programming clock – TCK is used with a maximum frequency of 20 MHz, and the default
frequency is 4 MHz. 

• Programming file – STAPL 
• Daisy chain – Supported. You can use the ChainBuilder software to build the programming file for

the chain.
• Parallel programming – Supported. Multiple FlashPro4/3/3X programmers can be connected

together using a powered USB hub or through the multiple USB ports on the PC.
• Power supply – The target board must provide VCC, VCCI, VPUMP, and VJTAG during

programming. However, if there is only one device on the target board, the FlashPro4/3/3X
programmer can generate the required VPUMP voltage from the USB port. 

Figure 12-4 • Flexible Programming File Generation for Different Applications
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 This chapter will now be published standalone as an application note in addition to
being part of the IGLOO/ProASIC3/Fusion FPGA fabric user’s guides (SAR 38769).

N/A

The "ISP Programming Header Information" section was revised to update the
description of FP3-10PIN-ADAPTER-KIT in Table 12-3 • Programming Header
Ordering Codes, clarifying that it is the adapter kit used for ProASICPLUS based
boards, and also for ProASIC3 based boards where a compact programming
header is being used (SAR 36779).

269

June 2011 The VPUMP programming mode voltage was corrected in Table 12-2 • Power
Supplies. The correct value is 3.15 V to 3.45 V (SAR 30668).

263

The notes associated with Figure 12-5 • Programming Header (top view) and
Figure 12-6 • Board Layout and Programming Header Top View were revised to
make clear the fact that IGLOO nano V2 devices can be programmed at 1.2 V (SAR
30787).

269, 271

Figure 12-6 • Board Layout and Programming Header Top View was revised to
include resistors tying TCK and TRST to GND. Microsemi recommends tying off
TCK and TRST to GND if JTAG is not used (SAR 22921). RT ProASIC3 was added
to the list of device families.

271

In the "ISP Programming Header Information" section, the kit for adapting
ProASICPLUS devices was changed from FP3-10PIN-ADAPTER-KIT to FP3-26PIN-
ADAPTER-KIT (SAR 20878).

269

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

References to FlashPro4 and FlashPro3X were added to this chapter, giving
distinctions between them. References to SmartGen were deleted and replaced
with Libero IDE Catalog.

N/A

The "ISP Architecture" section was revised to indicate that V2 devices can be
programmed at 1.2 V VCC with FlashPro4.

261

SmartFusion was added to Table 12-1 • Flash-Based FPGAs Supporting ISP. 262

The "Programming Voltage (VPUMP) and VJTAG" section was revised and 1.2 V
was added to Table 12-2 • Power Supplies.

263

The "Nonvolatile Memory (NVM) Programming Voltage" section is new. 263

 Cortex-M3 was added to the "Cortex-M1 and Cortex-M3 Device Security" section. 265

In the "ISP Programming Header Information" section, the additional header
adapter ordering number was changed from FP3-26PIN-ADAPTER to FP3-10PIN-
ADAPTER-KIT, which contains 26-pin migration capability.

269

The description of NC was updated in Figure 12-5 • Programming Header (top
view), Table 12-4 • Programming Header Pin Numbers and Description and
Figure 12-6 • Board Layout and Programming Header Top View.

269, 270

The "Symptoms of a Signal Integrity Problem" section was revised to add that
customers are expected to troubleshoot board-level signal integrity issues by
measuring voltages and taking scope plots. "FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity
problems" formerly read, "from 24 MHz down to 1 MHz." "The Scan Chain
command expects to see 0x2" was changed to 0x1.

271
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Microprocessor Programming of Microsemi’s Low Power Flash Devices
Remote Upgrade via TCP/IP
Transmission Control Protocol (TCP) provides a reliable bitstream transfer service between two
endpoints on a network. TCP depends on Internet Protocol (IP) to move packets around the network on
its behalf. TCP protects against data loss, data corruption, packet reordering, and data duplication by
adding checksums and sequence numbers to transmitted data and, on the receiving side, sending back
packets and acknowledging the receipt of data.
The system containing the low power flash device can be assigned an IP address when deployed in the
field. When the device requires an update (core or FlashROM), the programming instructions along with
the new programming data (AES-encrypted cipher text) can be sent over the Internet to the target system
via the TCP/IP protocol. Once the MCU receives the instruction and data, it can proceed with the FPGA
update. Low power flash devices support Message Authentication Code (MAC), which can be used to
validate data for the target device. More details are given in the "Message Authentication Code (MAC)
Validation/Authentication" section.

Hardware Requirement
To facilitate the programming of the low power flash families, the system must have a microprocessor
(with access to the device JTAG pins) to process the programming algorithm, memory to store the
programming algorithm, programming data, and the necessary programming voltage. Refer to the
relevant datasheet for programming voltages.

Security

Encrypted Programming
As an additional security measure, the devices are equipped with AES decryption. AES works in two
steps. The first step is to program a key into the devices in a secure or trusted programming center (such
as Microsemi SoC Products Group In-House Programming (IHP) center). The second step is to encrypt
any programming files with the same encryption key. The encrypted programming file will only work with
the devices that have the same key. The AES used in the low power flash families is the 128-bit AES
decryption engine (Rijndael algorithm).

Message Authentication Code (MAC) Validation/Authentication
As part of the AES decryption flow, the devices are equipped with a MAC validation/authentication
system. MAC is an authentication tag, also called a checksum, derived by applying an on-chip
authentication scheme to a STAPL file as it is loaded into the FPGA. MACs are computed and verified
with the same key so they can only be verified by the intended recipient. When the MCU system receives
the AES-encrypted programming data (cipher text), it can validate the data by loading it into the FPGA
and performing a MAC verification prior to loading the data, via a second programming pass, into the
FPGA core cells. This prevents erroneous or corrupt data from getting into the FPGA. 
Low power flash devices with AES and MAC are superior to devices with only DES or 3DES encryption.
Because the MAC verifies the correctness of the data, the FPGA is protected from erroneous loading of
invalid programming data that could damage a device (Figure 14-5 on page 289).
The AES with MAC enables field updates over public networks without fear of having the design stolen.
An encrypted programming file can only work on devices with the correct key, rendering any stolen files
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15 – Boundary Scan in Low Power Flash Devices 

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing. 
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 15-2 on page 294). 
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine 
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 15-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state. 
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 15-1 • TAP Controller State Machine
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Power-Up/-Down Behavior of Low Power Flash Devices
Flash Devices Support Power-Up Behavior
The flash FPGAs listed in Table 17-1 support power-up behavior and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 17-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 17-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 17-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf

