

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

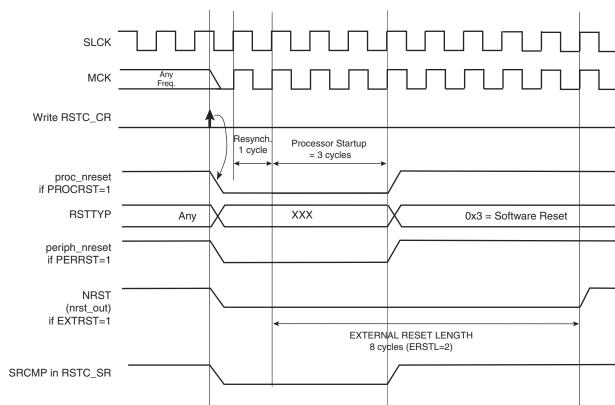
Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

ĿXF

Product Status	Obsolete
Core Processor	ARM926EJ-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	LPDDR, LPSDR, DDR2, SDR, SRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD, Touchscreen
Ethernet	10/100Mbps
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	324-TFBGA
Supplier Device Package	324-TFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam9g45-cu-999

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; synchronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left. No other software reset can be performed while the SRCMP bit is set, and writing any value in RSTC_CR has no effect.

12.4.4.5 Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in WDT_MR:

• If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also asserted, depending on the programming of the field ERSTL. However, the resulting low level on NRST does not result in a User Reset state.

12.5 Reset Controller (RSTC) User Interface

Table 12-1.	Register Mapping
-------------	------------------

Offset	Register	Name	Access	Reset	Backup Reset
0x00	Control Register	RSTC_CR	Write-only	-	
0x04	Status Register	RSTC_SR	Read-only	0x0000_0001	0x0000_0000
0x08	Mode Register	RSTC_MR	Read-write	-	0x0000_0001

Note: 1. The reset value of RSTC_SR either reports a General Reset or a Wake-up Reset depending on last rising power supply.

14.6.2 RTC Mode Register

Name: RTC_MR

Address: 0xFFFFDB4

Access Type: Read-write

31	30	29	28	27	26	25	24
_	-	-	-	_	_	-	_
23	22	21	20	19	18	17	16
_	-	-	-	_	_	-	_
15	14	13	12	11	10	9	8
_	_	_	_	_	_	_	_
7	6	5	4	3	2	1	0
_	_	_	_	_	_	_	HRMOD

• HRMOD: 12-/24-hour Mode

0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

All non-significant bits read zero.

fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the implemented DAC's resolution (16-, 18-, or 20-bit)

• CEM: Channel B Endian Mode

- 0: Transferring Data through Channel B is straight forward (Little-Endian).
- 1: Transferring Data through Channel B from/to a memory is performed with from/to Big-Endian format translation.

• CEN: Channel B Enable

- 0: Data transfer is disabled on Channel B.
- 1: Data transfer is enabled on Channel B.

• PDCEN: Peripheral Data Controller Channel Enable

0: Channel B is not transferred through a Peripheral Data Controller Channel. Related PDC flags are ignored or not generated.

1: Channel B is transferred through a Peripheral Data Controller Channel. Related PDC flags are taken into account or generated.

- LINESIZE is the horizontal size of the display in pixels, minus 1, as programmed in the LINESIZE field of the LCDFRMCFG register of the LCD Controller.
- Bpp is the number of bits per pixel configured.
- PIXELOFF is the pixel offset for 2D addressing, as programmed in the DMA2DCFG register. Applicable only if 2D addressing is being used.
- LINEVAL is the vertical size of the display in pixels, minus 1, as programmed in the LINEVAL field of the LCDFRMCFG register of the LCD Controller.
- Note: X_size is calculated as an up-rounding of a division by 32. (This can also be done adding 31 to the dividend before using an integer division by 32). When using the 2D-addressing mode (see "2D Memory Addressing" on page 1068), it is important to note that the above calculation must be executed and the FRMSIZE field programmed with every movement of the displaying window, since a change in the PIXELOFF field can change the resulting FRMSIZE value.

45.6.1.4 Channel-L This block has the same functionality as Channel-U, but for the Lower Panel in dual scan mode only.

45.6.1.5 Control This block receives the request signals from the LCDC core and generates the requests for the channels.

45.6.2 LCD Controller Core

45.6.2.1 Configuration Block

The configuration block is a set of programmable registers that are used to configure the LCDC core operation. These registers are written via the AHB slave interface. Only word access is allowed.

The description of the configuration registers can be found in "LCD Controller (LCDC) User Interface" on page 1071.

45.6.2.2 Datapath

The datapath block contains five submodules: FIFO, Serializer, Palette, Dithering and Shifter. The structure of the datapath is shown in Figure 45-2.