

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f242-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin N	umber	Pin	Buffer	Description
Pin Name	DIP	SOIC	Туре	Туре	Description
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0	21	21			
RB0			I/O	TTL	Digital I/O.
INT0			I	ST	External Interrupt 0.
RB1/INT1	22	22			
RB1			I/O	TTL	_
INT1			I	ST	External Interrupt 1.
RB2/INT2	23	23			
RB2 INT2			I/O	TTL ST	Digital I/O.
			1	51	External Interrupt 2.
RB3/CCP2 RB3	24	24	I/O	TTL	Digital I/O.
CCP2			1/O	ST	Capture2 input, Compare2 output, PWM2 output.
RB4	25	25	1/O	TTL	Digital I/O.
ND4	25	25	1/0	116	Interrupt-on-change pin.
RB5/PGM	26	26			
RB5	20	20	I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGM			I/O	ST	Low Voltage ICSP programming enable pin.
RB6/PGC	27	27			
RB6			I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGC			I/O	ST	In-Circuit Debugger and ICSP programming clock pin.
RB7/PGD	28	28			
RB7			I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGD			I/O	ST	In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL	compati	ble inpu	t		CMOS = CMOS compatible input or output

TABLE 1-2:PIC18F2X2 PINOUT	O DESCRIPTIONS (CONTINUED)
----------------------------	----------------------------

ST = Schmitt Trigger input with CMOS levels O = Output

OD = Open Drain (no P diode to VDD)

I = Input P = Power

						MCLR Resets		
Register	Арр	olicabl	e Devi	ces	Power-on Reset, Brown-out Reset	WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
TOSU	242	442	2 252 4520 00000 0000		0 uuuu (3)			
TOSH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu ⁽³⁾	
TOSL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (3)	
STKPTR	242	442	252	452	00-0 0000	uu-0 0000	uu-u uuuu (3)	
PCLATU	242	442	252	452	0 0000	0 0000	u uuuu	
PCLATH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
PCL	242	442	252	452	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	242	442	252	452	00 0000	00 0000	uu uuuu	
TBLPTRH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
TBLPTRL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
TABLAT	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
PRODH	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
PRODL	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս	
INTCON	242	442	252	452	0000 000x	0000 000u	uuuu uuuu (1)	
INTCON2	242	442	252	452	1111 -1-1	1111 -1-1	uuuu -u-u (1)	
INTCON3	242	442	252	452	11-0 0-00	11-0 0-00	uu-u u-uu (1)	
INDF0	242	442	252	452	N/A	N/A	N/A	
POSTINC0	242	442	252	452	N/A	N/A	N/A	
POSTDEC0	242	442	252	452	N/A	N/A	N/A	
PREINC0	242	442	252	452	N/A	N/A	N/A	
PLUSW0	242	442	252	452	N/A	N/A	N/A	
FSR0H	242	442	252	452	xxxx	uuuu	uuuu	
FSR0L	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս	
WREG	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս	
INDF1	242	442	252	452	N/A	N/A	N/A	
POSTINC1	242	442	252	452	N/A	N/A	N/A	
POSTDEC1	242	442	252	452	N/A	N/A	N/A	
PREINC1	242	442	252	452	N/A	N/A	N/A	
PLUSW1	242	442	252	452	N/A	N/A	N/A	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 4: See Table 3-2 for RESET value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.
- 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

Register			Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instructio Stack Resets	Wake-up via WDT n or Interrupt		
ADRESH	242	442	252	452	xxxx xxxx	uuuu uuuu	นนนน นนนน
ADRESL	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս
ADCON0	242	442	252	452	0000 00-0	0000 00-0	uuuu uu-u
ADCON1	242	442	252	452	00 0000	00 0000	uu uuuu
CCPR1H	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	242	442	252	452	00 0000	00 0000	uu uuuu
CCPR2H	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	242	442	252	452	00 0000	00 0000	uu uuuu
TMR3H	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
T3CON	242	442	252	452	0000 0000	uuuu uuuu	uuuu uuuu
SPBRG	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
RCREG	242	442	252	452	0000 0000	0000 0000	սսսս սսսս
TXREG	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
TXSTA	242	442	252	452	0000 -010	0000 -010	uuuu -uuu
RCSTA	242	442	252	452	0000 000x	0000 000x	սսսս սսսս
EEADR	242	442	252	452	0000 0000	0000 0000	սսսս սսսս
EEDATA	242	442	252	452	0000 0000	0000 0000	<u>uuuu</u> uuuu
EECON1	242	442	252	452	xx-0 x000	uu-0 u000	uu-0 u000
EECON2	242	442	252	452			

TABLE 3-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUE)	ונ
IADLL J-J.	INTIALIZATION CONDITIONS I ON ALL ALGISTERS (CONTINULI	"

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of

its corresponding enable bit or the global

enable bit. User software should ensure

the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature

allows for software polling.

8.1 INTCON Registers

The INTCON Registers are readable and writable registers, which contain various enable, priority and flag bits.

REGISTER 8-1: INTCON REGISTER

••••		••••							
	R/W-0	C	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE/GI	EH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
	bit 7								bit 0
bit 7	GIE/GIE	E H : G	alobal Interrup	t Enable bit					
	When IF	PEN	= 0:						
			all unmasked all interrupts	interrupts					
	When IF								
			all high priorit all interrupts	y interrupts					
bit 6	PEIE/GI	EL:	Peripheral Inte	errupt Enable	e bit				
	When IF								
			all unmasked all peripheral		terrupts				
	0 = Disa When IF			menupis					
			<u>– 1.</u> all low priority	peripheral ir	nterrupts				
			all low priority						
bit 5			IR0 Overflow	•					
			the TMR0 over the TMR0 ov						
bit 4			0 External Inte		•				
bit 4			the INT0 exte						
			the INT0 exte						
bit 3	RBIE: F	RB Po	ort Change Int	errupt Enabl	e bit				
			the RB port cl the RB port c	0					
bit 2			IR0 Overflow I						
			egister has ove egister did not		st be cleare	d in softwa	ıre)		
bit 1			D External Inte	1 0					
			0 external inte 0 external inte	•	•	cleared in	software)		
bit 0			ort Change Int						
			one of the RB [*] the RB7:RB4				cleared in s	software)	
	Note:		nismatch cond match conditio				ading PORT	B will end	the

Note:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 8-2: INTCON2 REGISTER

	R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1			
	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP			
	bit 7		l					bit 0			
bit 7	RBPU: PORTB Pull-up Enable bit										
		RTB pull-ups									
	0 = PORT	B pull-ups are	e enabled by	individual po	rt latch valu	ies					
bit 6	INTEDG0	:External Inte	rrupt0 Edge	Select bit							
		upt on rising e	•								
		upt on falling e	•								
bit 5	INTEDG1	: External Inte	errupt1 Edge	Select bit							
		upt on rising e	0								
		upt on falling e	0								
bit 4		: External Inte		Select bit							
		upt on rising e	0								
		upt on falling e	•								
bit 3	•	nented: Read									
bit 2		TMR0 Overflo	w Interrupt F	Priority bit							
	1 = High p	,									
	0 = Low p	•									
bit 1	Unimpler	nented: Read	1 as '0'								
bit 0	RBIP: RB	Port Change	Interrupt Prie	ority bit							
	1 = High p	,									
	0 = Low p	riority									
	Legend:										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

9.5 PORTE, TRISE and LATE Registers

This section is only applicable to the PIC18F4X2 devices.

PORTE is a 3-bit wide, bi-directional port. The corresponding Data Direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

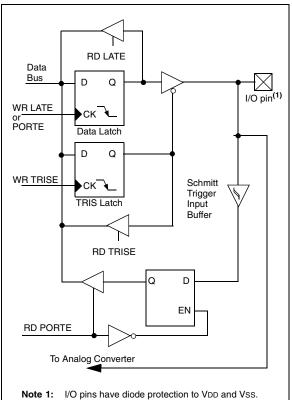
The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register reads and writes the latched output value for PORTE.

PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7) which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

Register 9-1 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.


Note: On a Power-on Reset, these pins are configured as analog inputs.

EXAMPLE 9-5: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by ; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	0x07	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0x05	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<0> as inputs
		; RE<1> as outputs
		; RE<2> as inputs

FIGURE 9-9:

PORTE BLOCK DIAGRAM IN I/O PORT MODE

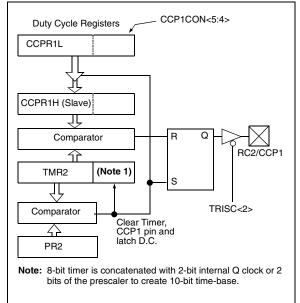
NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
TRISC	PORTC D	ata Direction	Register						1111 1111	1111 1111
TMR1L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR1 Reg	gister		xxxx xxxx	uuuu uuuu
TMR1H	Holding Re	egister for th	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		xxxx xxxx	uuuu uuuu
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0-00 0000	u-uu uuuu
CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					xxxx xxxx	uuuu uuuu
CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					xxxx xxxx	uuuu uuuu
CCP1CON		—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCPR2L	Capture/C	ompare/PWI	M Register2	(LSB)					xxxx xxxx	uuuu uuuu
CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	uuuu uuuu
CCP2CON		—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
PIR2		—	_	EEIE	BCLIF	LVDIF	TMR3IF	CCP2IF	0 0000	0 0000
PIE2		—	_	EEIF	BCLIE	LVDIE	TMR3IE	CCP2IE	0 0000	0 0000
IPR2	EEIP BCLIP LVDIP TMR3IP CCP2IP								1 1111	1 1111
TMR3L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR3 Reg	gister		xxxx xxxx	uuuu uuuu
TMR3H	Holding Re	lolding Register for the Most Significant Byte of the 16-bit TMR3 Register x								uuuu uuuu
T3CON	RD16	RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu								
Legend: x	= unknow	n, u = uncha	nged, - = ur	nimplemente	d, read as 'C	'. Shaded o	cells are not	t used by C	apture and Tin	ner1.

TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2x2 devices; always maintain these bits clear.

14.5 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data latch.

Figure 14-3 shows a simplified block diagram of the CCP module in PWM mode.

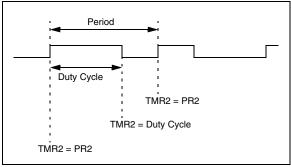

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 14.5.3.

FIGURE 14-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 14-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

14.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

$$PWM period = (PR2) + 1] \bullet 4 \bullet TOSC \bullet$$

(TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 12.0)
	is not used in the determination of the
	PWM frequency. The postscaler could be
	used to have a servo update rate at a
	different frequency than the PWM output.

14.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution (max) =
$$\frac{\log(\frac{\text{Fosc}}{\text{FPWM}})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

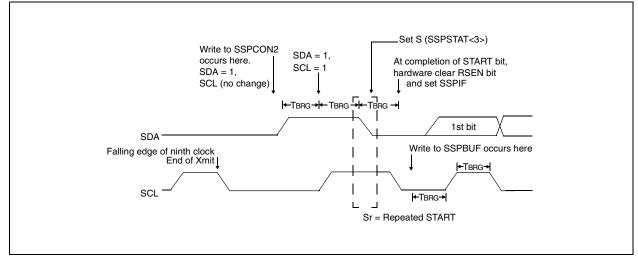
REGISTER 15-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
	SMP	CKE		P	s	R/W	UA	BF	
	bit 7	ONE	Birt	•	Ŭ		0,1	bit 0	
oit 7	In Master of	Rate Contr	de:	No. of a set Ora					
			disabled for S enabled for H				I MHZ)		
oit 6	In Master of	us Select bi or Slave moo	de:						
		SMBus spe SMBus spe	•						
oit 5	D/A: Data/	Address bit							
	<u>In Master r</u> Reserved	<u>node:</u>							
	In Slave m	ode:							
			ast byte rece ast byte rece						
bit 4	P: STOP b	it	-						
			OP bit has b detected last	een detecte	d last				
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.			
bit 3		es that a sta	rt bit has bee detected las		last				
	Note:		leared on RE		hen SSPEN	is cleared.			
oit 2	R/W: Read	l/Write bit In	formation (I ²	C mode only	/)				
	<u>In Slave me</u> 1 = Read 0 = Write	ode:							
	Note:		ds the R/W bi he address m						
		nit is in prog							
	Note:	nit is not in p ORing this in IDLE mo	bit with SEN,	RSEN, PE	N, RCEN, o	r ACKEN wil	l indicate if t	ne MSSP is	
bit 1	1 = Indicate	es that the u	10-bit Slave r iser needs to need to be up	update the	address in t	he SSPADD	register		
bit 0		Full Status b	•						
	In Transmit mode: 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty								
	In Receive	mode:			the \overline{ACK} or			o full	
	0 = Data tra	ansmit comp	ogress (does plete (does n	ot include th	ne ACK and	STOP bits),	SSPBUF is	empty	
	Legend:								
	R = Reada	ble bit	W = Writab	le bit	U = Unimp	lemented bit	, read as '0'		
	- n = Value	at POR	'1' = Bit is s	et	'0' = Bit is	cleared	x = Bit is ur	nknown	

15.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

15.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 15-20: REPEAT START CONDITION WAVEFORM

15.4.17.2 Bus Collision During a Repeated START Condition

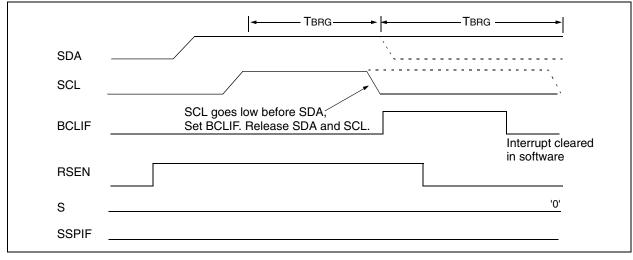
During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 15-29). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition, Figure 15-30.

If, at the end of the BRG time-out both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

FIGURE 15-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

16.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

16.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the Transmit (serial) Shift Register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and interrupt bit TXIF (PIR1<4>) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE

(PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE, and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit, which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 16.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Note: TXIF is not cleared immediately upon loading data into the transmit buffer TXREG. The flag bit becomes valid in the second instruction cycle following the load instruction.

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART Transmit Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	e Genera	ator Regist	er					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Master Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

NOTES:

REGISTER 19-12: DEVICE ID REGISTER 1 FOR PIC18FXX2 (DEVID1: BYTE ADDRESS 3FFFFEh)

	R	R	R	R	R	R	R	R	
	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	
	bit 7							bit 0	
bit 7-5	DEV2:DEV 000 = PIC 001 = PIC 100 = PIC 101 = PIC	18F452 18F242	D bits						
bit 4-0		REV4:REV0: Revision ID bits These bits are used to indicate the device revision.							
	Legend:								
	R = Reada	ble bit	P =Progra	mmable bit	U = Unin	nplemented	bit, read as	'0'	
	- n = Value when device is unprogrammed u = Unchanged from programmed state								
REGISTER 19-13:	DEVICEID	REGISTE	R2FORP	IC18FXX2	(DEVID2: E	BYTE ADDI	RESS 3FFI	-FFh)	

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 **DEV10:DEV3:** Device ID bits These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

Legend:		
R = Readable bit	P =Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devi	ce is unprogrammed	u = Unchanged from programmed state

21.0 DEVELOPMENT SUPPORT

The ${\rm PICmicro}^{\circledast}$ microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

21.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

21.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PICmicro MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

21.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

21.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

21.9 PRO MATE II Universal Device Programmer

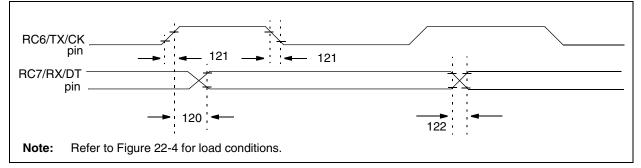
The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

21.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.


21.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

21.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

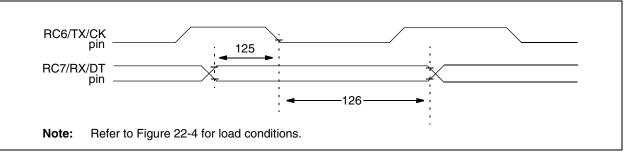

FIGURE 22-20: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 22-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
120	TckH2dtV	<u>SYNC XMIT (MASTER & SLAVE)</u> Clock high to data out valid	PIC18 F XXX	_	50	ns	
			PIC18LFXXX		150	ns	VDD = 2V
121	Tckr	Clock out rise time and fall time	PIC18FXXX	_	25	ns	
		(Master mode)	PIC18LFXXX	—	60	ns	VDD = 2V
122	Tdtr	Data out rise time and fall time	PIC18FXXX		25	ns	
			PIC18 LF XXX		60	ns	VDD = 2V

FIGURE 22-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 22-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
125	TdtV2ckl	<u>SYNC RCV (MASTER & SLAVE)</u> Data hold before CK \downarrow (DT hold time)		10		ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	PIC18FXXX	15		ns	
			PIC18LFXXX	20		ns	VDD = 2V

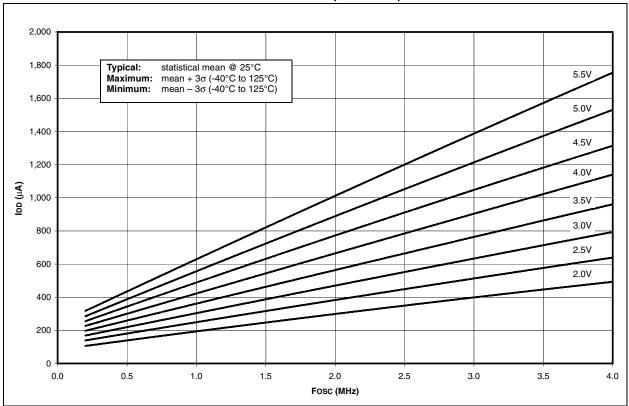
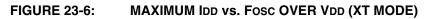
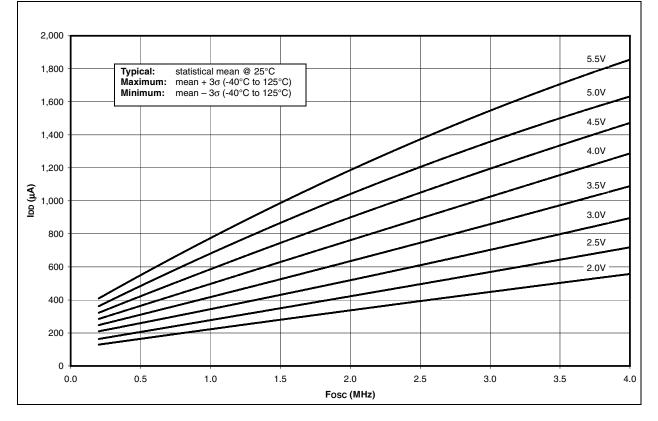




FIGURE 23-5: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

NOTES: