

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f242-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (i.e., exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

3.2 **Power-up Timer (PWRT)**

The Power-up Timer provides a fixed nominal time-out (parameter 33) only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter D033 for details.

3.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other Oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out (OST).

3.5 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter 35, the brown-out situation will reset the chip. A RESET may not occur if VDD falls below parameter D005 for less than parameter 35. The chip will remain in Brown-out Reset until VDD rises above BVDD. If the Power-up Timer is enabled, it will be invoked after VDD rises above BVDD; it then will keep the chip in RESET for an additional time delay (parameter 33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18FXXX device operating in parallel.

Table 3-2 shows the RESET conditions for some Special Function Registers, while Table 3-3 shows the RESET conditions for all the registers.

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
•	
•	
SUB1 •	
•	
•	
RETURN FAST	;RESTORE VALUES SAVED
	;IN FAST REGISTER STACK

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-4.

FIGURE 4-4:

CLOCK/INSTRUCTION CYCLE

FIGURE 4-9: INDIRECT ADDRESSING OPERATION

	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		_		EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF			
	bit 7							bit 0			
bit 7-5	Unimplem	Unimplemented: Read as '0'									
bit 4	EEIF: Data	a EEPROM/F	LASH Write	Operation Int	terrupt Flag	bit					
	1 = The W 0 = The W	rite operation rite operation	is complete is not comp	(must be cle lete, or has n	ared in soft ot been sta	ware) rted					
bit 3	BCLIF: Bu	is Collision In	terrupt Flag	oit							
	1 = A bus 0 = No bus	collision occu s collision occ	irred (must b curred	e cleared in s	software)						
bit 2	LVDIF: Lov	w Voltage De	tect Interrupt	Flag bit							
	1 = A low v	voltage condi	tion occurred	l (must be cle	eared in sof	tware)					
	0 = The de	vice voltage	is above the	Low Voltage	Detect trip	point					
bit 1	TMR3IF: T	MR3 Overflo	w Interrupt F	lag bit	<i>.</i>						
	1 = TMR3	register over	flowed (must	be cleared in	n software)						
540											
DILU		CPx interrup	t Flag bit								
	$\frac{Capture m}{1 - \Delta TME}$	<u>1000:</u> 21 register ca	ntura occurra	d (must he c	leared in so	oftwara)					
	0 = No TM	IR1 register ca	apture occur	red		Jilwaiej					
	<u>Compare r</u>	mode:	•								
	1 = A TMF	1 register co	mpare match	occurred (m	nust be clea	red in softw	vare)				
	0 = No TMR1 register compare match occurred										
	PWM mod	le:									
	Unusea in	this mode									
								·,			
	Legena:										

W = Writable bit

'1' = Bit is set

REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R = Readable bit

- n = Value at POR

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

Name	Bit#	Buffer	Function
RB0/INT0	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input0. Internal software programmable weak pull-up.
RB1/INT1	bit1	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input1. Internal software programmable weak pull-up.
RB2/INT2	bit2	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input2. Internal software programmable weak pull-up.
RB3/CCP2 ⁽³⁾	bit3	TTL/ST ⁽⁴⁾	Input/output pin or Capture2 input/Compare2 output/PWM output when CCP2MX configuration bit is enabled. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5/PGM ⁽⁵⁾	bit5	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Low voltage ICSP enable pin.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 9-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: A device configuration bit selects which I/O pin the CCP2 pin is multiplexed on.

4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.

5: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB5 I/O function. LVP must be disabled to enable RB5 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Data Output Register								xxxx xxxx	uuuu uuuu
TRISB	PORTB	Data Directio	on Register						1111 1111	1111 1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	11-0 0-00

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

9.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bi-directional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register reads and writes the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 9-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

Note: On a Power-on Reset, these pins are configured as digital inputs.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

RC1 is normally configured by configuration bit, CCP2MX, as the default peripheral pin of the CCP2 module (default/erased state, CCP2MX = '1').

EXAMPLE 9-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

FIGURE 9-7: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

14.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 14-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

14.2 CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 14-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1 or TMR3 depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1 or TMR3 depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

14.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 14-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	14	12	10	8	7	6.58

TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
TRISC	PORTC D	ata Direction	Register						1111 1111	1111 1111
TMR2	Timer2 Mc	dule Registe	ər						0000 0000	0000 0000
PR2	Timer2 Mc	dule Period	Register						1111 1111	1111 1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					xxxx xxxx	uuuu uuuu
CCPR1H	Capture/Compare/PWM Register1 (MSB)								xxxx xxxx	uuuu uuuu
CCP1CON	и — — — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0						CCP1M0	00 0000	00 0000	
CCPR2L	Capture/Compare/PWM Register2 (LSB)									uuuu uuuu
CCPR2H	Capture/Compare/PWM Register2 (MSB)									uuuu uuuu
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

16.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The USART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

In order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter:

- bit SPEN (RCSTA<7>) must be set (= 1),
- bit TRISC<6> must be cleared (= 0), and
- bit TRISC<7> must be set (=1).

Register 16-1 shows the Transmit Status and Control Register (TXSTA) and Register 16-2 shows the Receive Status and Control Register (RCSTA).

18.2 Operation

Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register), which selects the desired LVD Trip Point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 18-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 18-4: LOW VOLTAGE DETECT WAVEFORMS

20.1 Instruction Set

AD	DLW	ADD liter	ral to W						
Syn	tax:	[label] A	ADDLW	k					
Ope	rands:	$0 \le k \le 25$	$0 \le k \le 255$						
Ope	ration:	(W) + k –	→ W						
Stat	us Affected:	N, OV, C,	N, OV, C, DC, Z						
Enc	oding:	0000	1111	kkł	ck	kkkk			
Des	cription:	The conte 8-bit litera placed in	The contents of W are added to the 8-bit literal 'k' and the result is placed in W.						
Wor	ds:	1	1						
Сус	les:	1	1						
QC	Cycle Activity:								
	Q1	Q2	Q	Q3		Q4			
	Decode	Read literal 'k'	Proce Data	ss Wr a		ite to W			
<u>Exa</u>	mple: Before Instru W = After Instruct W =	ADDLW Iction 0x10 tion 0x25	0x15						

ADDWF	ADD W to	o f			
Syntax:	[label] A	DDWF	f [,•	d [,a]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5			
Operation:	(W) + (f) -	\rightarrow dest			
Status Affected:	N, OV, C,	DC, Z			
Encoding:	0010	01da	fff	f	ffff
Description.	result is s result is s (default). Bank will BSR is us	tored in tored ba If 'a' is 0 be selec sed.	W. If w. lf ck in , the ted. I	d is regi Acc f 'a'	is 0, the is 1, the ister 'f' ess is 1, the
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q	3		Q4
Decode	Read register 'f'	Proce Data	ess a	W des	/rite to stination
Example:	ADDWF	REG,	0, 0		
Before Instru	uction				
W REG	= 0x17 = 0xC2				
After Instruct	tion				
۱۸/					

W	=	0xD9
REG	=	0xC2

BNC	V	Branch if Not Overflow					
Synt	ax:	[<i>label</i>] B	NOV n				
Ope	rands:	-128 ≤ n ≤	127				
Ope	ration:	if overflow (PC) + 2 +	bit is '0' $2n \rightarrow PC$				
Statu	us Affected:	None					
Enco	oding:	1110	0101 nn	nn nnnn			
Desc	cription:	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction					
Word	ds:	1					
$\Gamma_{1(2)}$							
Q C If Ju	cycle Activity: ump: Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
If N	o Jump:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
<u>Exar</u>	<u>mple</u> :	HERE	BNOV Jump				
	Before Instru PC After Instruct	iction = ad	dress (HERE)			
If Overflow = 0; PC = address (Jump) If Overflow = 1; PC = address (HERE+2)							

BNZ	2	Branch if Not Zero					
Synt	ax:	[<i>label</i>] B	NZ n				
Ope	rands:	-128 ≤ n ≤	127				
Ope	ration:	if zero bit i (PC) + 2 +	s '0' - 2n \rightarrow F	ъС			
Statu	us Affected:	None					
Enco	oding:	1110	1110 0001 nnnn nnnn				
Des	cription:	If the Zero bit is '0', then the pro- gram will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.					
Wor	ds:	1					
Cycl	es:	1(2)					
Q C If Ju	Cycle Activity	:					
	Q1	Q2	Q3	;	Q4		
	Decode	Read literal 'n'	Proce Data	SS 1	Write to PC		
	No operation	No operation	No operat	ion	No operation		
lf N	o Jump:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proce Data	SS 1	No operation		
Example: HERE BNZ Jump							
Before Instruction PC = address (HERE)							

^r Instruction			
If Overflow PC If Overflow	= = =	0; address 1:	(Jump)
PC	=	address	(HERE+2

0; address (Jump) 1; address (HERE+2) = = =

=

After Instruction

If Zero PC If Zero PC

DAV	v	Decimal	Adjust W Re	gister	DE	CF	Decreme	nt f	
Synt	ax:	[label]	DAW		Syn	tax:	[label]	DECF f[,d[,a]
Ope	rands:	None			Ope	erands:	$0 \le f \le 255$	$0 \le f \le 255$	
Ope	ration:	lf [W<3:0 (W<3:0>)> >9] or [DC =) + 6 → W<3:0	= 1] then 0>;			d ∈ [0,1] a ∈ [0,1]	d ∈ [0,1] a ∈ [0,1]	
		else	/	,	Ope	eration:	(f) – 1 \rightarrow 0	dest	
		(W<3:0>	$) \rightarrow W < 3:0>;$		Stat	us Affected:	C, DC, N,	OV, Z	
		lf [W<7:4	>>9] or [C =	11 then	Enc	oding:	0000	01da ff	ff ffff
		(W<7:4>	$) + 6 \rightarrow W < 7$	4>;	Des	cription:	Decremer	nt register 'f'.	If 'd' is 0, the
		else					result is st	ored in W. If	'd' is 1, the
<u>.</u>	A.(())	(VV<7:4>	$) \rightarrow$ VV<7:4>;				result is st	ored back in f 'a' is 0 the	register 't'
Stati	us Affected:	C			1		Bank will b	be selected,	overriding
Enco	oding:	0000	0000 000	00 0111	J		the BSR v	alue. If 'a' =	1, then the
Des	cription:	DAW adj	usts the eight-	bit value in			bank will b	be selected a	is per the
		tion of tw	ing nom me e vo variables (e	ach in	14/2	ala .		e (delauit).	
		packed E	BCD format) a	nd produces	VVOI	as:			
		a correct	packed BCD	result.	Cyc	les:	1		
Wor	ds:	1			QO	Cycle Activity:		00	04
Cycl	es:	1				Decode	Q2 Bead	Process	Q4 Write to
QC	ycle Activity:					Decode	register 'f'	Data	destination
	Q1	Q2	Q3	Q4	ı				
	Decode	Read register W	Process Data	Write W	<u>Exa</u>	mple:	DECF (CNT, 1, 0	
Exa	mple1:	DAW			-	CNT	= 0x01		
	Before Instru	iction				Z	= 0		
	W	= 0xA5				After Instruct	tion		
	C DC	= 0 = 0				Z	= 0000		
	After Instruct	tion							
	W	= 0x05							
	C DC	= 1 = 0							
<u>Exa</u>	<u>mple 2</u> :	-							
	Before Instru	iction							
	W	= 0xCE							
	DC	= 0 = 0							
	After Instruct	tion							
	W	= 0x34							
	DC	= 1 = 0							

MOVFF	Move f to f					
Syntax:	[label]	MOVFF	f _s ,f _d			
Operands:	$\begin{array}{l} 0 \leq f_{s} \leq 40 \\ 0 \leq f_{d} \leq 40 \end{array}$)95)95				
Operation:	$(f_s) \to f_d$					
Status Affected:	None					
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d		
Description:	The conte are moved 'f _d '. Locat anywhere space (00 of destina where fror Either sou W (a useft MOVFF is transferrin to a periph transmit b The MOVF the PCL, T the destina Note: Th sh ify	The contents of source register 'f _s ' are moved to destination register 'f _d '. Location of source 'f _s ' can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination 'f _d ' can also be any- where from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. Note: The MOVFF instruction should not be used to mod- ify interrupt settings while any interrupt is enabled.				
	in	formatio	n.			
Words:	2					
Cycles:	2 (3)					
Q Cycle Activity:	_			_		
Q1	Q2	Q3		Q4		
Decode	Read register 'f' (src)	Proces Data	ss O	No peration		
Decode	No operation No dummy read	No operation	on re	Write egister 'f' (dest)		
Example: MOVFF REG1, REG2 Before Instruction						

0x33 0x11

0x33, 0x33

=

= =

Synt	ax:	[label]	[<i>label</i>] MOVLB k				
Ope	rands:	$0 \le k \le 25$	5				
Ope	ration:	$k \to BSR$					
Statu	us Affected:	None					
Encoding:		0000	0001	kkkk	kkkk		
Desc	cription:	The 8-bit the Bank	The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).				
Wor	ds:	1					
Cycl	es:	1					
QC	cycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k'	Proce: Data	ss ı li	Write iteral 'k' to BSR		

Move literal to low nibble in BSR

Example: MOVLB 5

MOVLB

Before Instruction				
BSR register =	0x02			
After Instruction				
BSR register =	0x05			

REG1 REG2

After Instruction REG1 REG2

MO\	/LW	Move literal to W					
Synt	ax:	[label]	MOVLW	/ k			
Ope	rands:	$0 \le k \le 2$	55				
Ope	ration:	$k\toW$					
Statu	us Affected:	None					
Enco	oding:	0000	1110	kkk	k	kkkk	
Dese	cription:	The eigh into W.	The eight-bit literal 'k' is loaded into W.				
Wor	ds:	1	1				
Cycl	es:	1					
QC	cycle Activity:						
	Q1	Q2	Q	Q3		Q4	
	Decode	Read literal 'k'	Proce Data	ess a	Wr	ite to W	
<u>Exa</u>	<u>mple</u> :	MOVLW	0x5A				
	After Instruct	ion					

er Ins	truction	
W	=	0x5A

MOVWF	Move W t	o f				
Syntax:	[label]	MOVWF	f [,a]			
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5				
Operation:	$(W)\tof$					
Status Affected:	None					
Encoding:	0110	111a	ffff	ffff		
	Location 5 256 byte I Access Bariding the the bank v BSR value	Location 'f' can be anywhere in the 256 byte bank. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				
Words:	1					
Cycles:	1					
Q Cycle Activity	:					
Q1	Q2	Q3	;	Q4		
Decode	Read register 'f'	Proce Data	ss a re	Write gister 'f'		
Example: Before Instru	MOVWF	REG, O				

W REG	= =	0x4F 0xFF
After Instruc	tion	
W	=	0x4F
REG	=	0x4F

© 2006 Microchip Technology Inc.

RETFIE Return from Interrupt						
Syntax:	[label]	RETFIE	[s]			
Operands:	s ∈ [0,1]					
Operation:	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCI ATU PCI ATH are unchanged					
Status Affected:	GIE/GIEH	, PEIE/G	IEL.			
Encoding:	0000	0000	000	1 000s		
Description:	scription: Return from Interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs					
Words:	1					
Cycles:	2					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	No operation	No operatio	on	pop PC from stack Set GIEH or GIEL		
No	No	No		No		
operation	operation	operatio	on	operation		
Example: RETFIE 1						
After Interrupt		_ тс	20			

r interrupt		
PC	=	TOS
W	=	WS
BSR	=	BSRS
STATUS	=	STATUSS
GIE/GIEH, PEIE/GIEL	=	1

RET	LW	Return L	iteral to	w		
Synt	ax:	[label]	RETLW	k		
Ope	rands:	$0 \le k \le 25$	55			
Ope	ration:	$\begin{array}{l} k \rightarrow W, \\ (TOS) \rightarrow \\ PCLATU, \end{array}$	PC, PCLATI	H are	unchange	ed
Statu	us Affected:	None				
Enco	oding:	0000	1100	kkk	k kkkł	۲.
Desc	cription:	W is loaded with the eight-bit litera 'k'. The program counter is loaded from the top of the stack (the retur address). The high address latch (PCLATH) remains unchanged				ral d rn
Wor	ds:	1				
Cycl	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q3	3	Q4	
	Decode	Read literal 'k'	Proce Data	SS A	pop PC from stack, Write to W	
	No operation	No operation	No operat	ion	No operation	
Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value						

: TABLE

B.	LE			
	ADDWF	PCL	;	W = offset
	RETLW	k0	;	Begin table
	RETLW	k1	;	
	:			
	:			
	RETLW	kn	;	End of table

Before Instruction

W	=	0x07
VV	=	UXU7

After Instruction

W = value of kn

21.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

21.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

21.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

21.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

21.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

FIGURE 22-20: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 22-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)					
		Clock high to data out valid	PIC18FXXX	_	50	ns	
			PIC18LFXXX		150	ns	VDD = 2V
121	Tckr	Clock out rise time and fall time	PIC18FXXX		25	ns	
	(Master mode)	PIC18LFXXX	-	60	ns	VDD = 2V	
122	Tdtr	Data out rise time and fall time	PIC18FXXX		25	ns	
			PIC18LFXXX	_	60	ns	VDD = 2V

FIGURE 22-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 22-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK \downarrow (DT hold time)		10	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	PIC18FXXX	15	—	ns	
			PIC18LFXXX	20	—	ns	VDD = 2V

FIGURE 23-13: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, $+25^{\circ}$ C)

PORTE
Analog Port Pins
Associated Registers
LATE Register
PORTE Register97
PSP Mode Select (PSPMODE Bit)
BE0/BD/AN5 Pin
BE1/WB/AN6 Pin 99 100
BE2/CS/AN7 Pin 99 100
TBISE Begister 97
Postscaler WDT
Assignment (PSA Bit) 105
Bate Select (TOPS2:TOPS0 Bits) 105
Switching Botwoon Timor() and WDT 105
Bower down Mode, See SLEED
Power on Poost (POP)
Power-on Resei (POR)
Device up Timer (DMDT)
Power-up Timer (PWRT)
Prescaler, Capture
Prescaler, Timeru
Assignment (PSA Bit)105
Rate Select (T0PS2:T0PS0 Bits)105
Switching Between Timer0 and WDT105
Prescaler, Timer2 122
PRO MATE II Universal Device Programmer255
Product Identification System
Program Counter
PCL Register
PCLATH Register
PCLATU Register
Program Memory
Interrupt Vector
Map and Stack for PIC18F442/242
Map and Stack for PIC18F452/252
RESET Vector
Program Verification and Code Protection
Associated Registers
Programming, Device Instructions 211
PSP. See Parallel Slave Port.
Pulse Width Modulation See PWM (CCP Module)
PLISH 240
PW/M (CCP Module) 122
Associated Begisters
CCPD1H:CCPD1L Degisters
Duty Cycle 122
Evenale Frequencies/Pesselutions
Example Frequencies/nesolutions
Period
Setup for PWW Operation
I MH2 TO PH2 MATCH 111, 122
Q

R

RAM. See Data Memory	
RC Oscillator	
RCALL	
RCSTA Register	
SPEN Bit	
Register File	

Registers		
ADCON	N0 (A/D Control 0)	181
ADCON	V1 (A/D Control 1)	182
CCP1C	CON and CCP2CON	
	apture/Compare/PWM Control)	117
CONFI	G1H (Configuration 1 Hign)	196
CONFI	G2H (Configuration 2 Low)	197
CONFI	G3H (Configuration 3 High)	197
CONFI	G41 (Configuration 4 I ow)	198
CONFI	G5H (Configuration 5 High)	199
CONFI	G5L (Configuration 5 Low)	199
CONFI	G6H (Configuration 6 High)	200
CONFI	G6L (Configuration 6 Low)	200
CONFI	G7H (Configuration 7 High)	201
CONFI	G7L (Configuration 7 Low)	201
DEVID	1 (Device ID Register 1)	202
DEVID	2 (Device ID Register 2)	202
EECON	V1 (Data EEPROM Control 1)	57, 66
File Su	mmary	46–48
INTCO	N (Interrupt Control)	75
INTCO	N2 (Interrupt Control 2)	
	N3 (Interrupt Control 3)	/ /
	Peripheral Interrupt Priority 2)	20
	N (LVD Control)	101
	N (Oscillator Control)	191 21
PIF1 (F	Peripheral Interrupt Enable 1)	
PIE2 (F	Peripheral Interrupt Enable 2)	81
PIR1 (F	Peripheral Interrupt Request 1)	
PIR2 (F	Peripheral Interrupt Request 2)	79
RCON	(Register Control)	84
RCON	(RESET Control)	53
RCSTA	(Receive Status and Control)	167
SSPCC	ON1 (MSSP Control 1)	
1 ² (C Mode	136
SF	PI Mode	127
SSPCC	DN2 (MSSP Control 2)	
²(137
SSPST	AT (MSSP Status)	405
I-(J Mode	135
OF ATATU		120
STATU	B (Stack Pointer)	20
TOCON	I (Timer() Control)	103
T1CON	(Timer 1 Control)	107
T2CON	(Timer 2 Control)	107
T3CON	(Timer3 Control)	113
TRISE		98
TXSTA	(Transmit Status and Control)	166
WDTC	ON (Watchdog Timer Control)	203
RESET		95, 241
Brown-	out Reset (BOR)	195
MCLR	Reset (During SLEEP)	25
MCLR	Reset (Normal Operation)	25
Oscillat	or Start-up Timer (OST)	195
Power-	on Reset (POR)	25, 195
Power-	up limer (PWKI)	195
Program	Innable Brown-out Reset (BOR)	
RESEI Stock F	msuuciion Sull Reset	25 25
Stack F	Inderflow Reset	20 25
Watcho	log Timer (WDT) Reset	20 25
**atont		