

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f242-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC18F4X2 PINOUT I/O DESCRIPTIONS ((CONTINUED)
--	-------------

Pin Name	Pin Number			Pin Buffer		Description
Pin Name	DIP	PLCC	TQFP	Туре	Туре	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32			
RC0				I/O	ST	Digital I/O.
T1OSO T1CKI				0	ST	Timer1 oscillator output. Timer1/Timer3 external clock input.
	10	10	05	1	51	
RC1/T1OSI/CCP2 RC1	16	18	35	I/O	ST	Digital I/O.
T1OSI				1/0	CMOS	Timer1 oscillator input.
CCP2				I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1	17	19	36			
RC2	.,	10	00	I/O	ST	Digital I/O.
CCP1				I/O	ST	Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37			
RC3	_		_	I/O	ST	Digital I/O.
SCK				I/O	ST	Synchronous serial clock input/output for
						SPI mode.
SCL				I/O	ST	Synchronous serial clock input/output for
						l ² C mode.
RC4/SDI/SDA	23	25	42	1/0	от	
RC4 SDI				I/O I	ST ST	Digital I/O. SPI Data In.
SDA				1/O	ST	I^2 C Data I/O.
RC5/SDO	24	26	43	., C	01	
RC5	27	20		I/O	ST	Digital I/O.
SDO				0	_	SPI Data Out.
RC6/TX/CK	25	27	44			
RC6				I/O	ST	Digital I/O.
ТХ				0	_	USART Asynchronous Transmit.
CK				I/O	ST	USART Synchronous Clock (see related RX/DT).
RC7/RX/DT	26	29	1			
RC7				I/O	ST	Digital I/O.
RX					ST	USART Asynchronous Receive.
DT Legend: TTL = TTL c				I/O	ST	USART Synchronous Data (see related TX/CK). CMOS = CMOS compatible input or output

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

O = Output

OD = Open Drain (no P diode to VDD)

P = Power

I = Input

If the main oscillator is configured for HS-PLL mode, an oscillator start-up time (TOST) plus an additional PLL time-out (TPLL) will occur. The PLL time-out is typically 2 ms and allows the PLL to lock to the main oscillator frequency. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS-PLL mode is shown in Figure 2-10.

FIGURE 2-10: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)

If the main oscillator is configured in the RC, RCIO, EC or ECIO modes, there is no oscillator start-up time-out. Operation will resume after eight cycles of the main oscillator have been counted. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for RC, RCIO, EC and ECIO modes, is shown in Figure 2-11.

FIGURE 2-11: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)

4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 4-2).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.7 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB ='0'). Figure 4-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4). The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-5 shows how the instruction "GOTO 00006h' is encoded in the program memory. Program branch instructions which encode a relative address offset operate in the same manner. The offset value stored in a branch instruction represents the number of single word instructions that the PC will be offset by. Section 20.0 provides further details of the instruction set.

FIGURE 4-5: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program M				000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	Clh	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

8.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Flag Registers (PIR1, PIR2).

- **Note 1:** Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt, and after servicing that interrupt.

REGISTER 8-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
	bit 7							bit 0
bit 7		Parallel Slave			-			
		l or a write op ad or write has		aken place (i	must be cle	ared in soft	ware)	
bit 6	1 = An A/E	Converter In Conversion D conversion	completed (r	nust be clear	ed in softwa	are)		
bit 5	1 = The U	ART Receive SART receive SART receive	buffer, RCR	EG, is full (cl	eared wher	n RCREG is	s read)	
bit 4	1 = The U	ART Transmit SART transm SART transm	it buffer, TXF	REG, is empty				• ·
bit 3	1 = The tra	aster Synchro ansmission/re g to transmit/r	ception is co		•	l in softwar	e)	
bit 2	CCP1IF: CCP1 Interrupt Flag bit <u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred							
	<u>Compare mode:</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode:							
	Unused in							
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred							
bit 0	1 = TMR1	register overflo register overf register did no	lowed (must	-	n software)			
	Note 1:	This bit is res	erved on PIC) 18F2X2 dev	ices; alway	s maintain t	this bit clea	r.

Note 1: This bit is reserved on PIC18F2X2 devices; always maintain this bit clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority Registers (IPR1, IPR2). The operation of the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 8-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
	bit 7							bit 0
bit 7			e Port Read	/Write Interr	upt Priority	bit		
	1 = High pri 0 = Low pri	•						
bit 6		•	nterrupt Prio	rity bit				
	1 = High pri	•						
L:1 C	0 = Low price	,	late much D					
bit 5	1 = High pri		Interrupt Pr	iority dit				
	0 = Low prie	•						
bit 4			t Interrupt P	riority bit				
	1 = High pri							
bit 3	0 = Low prid	•	onous Serial	Port Interru	nt Priority b	;+		
DIL 3	1 = High pri	-	Shous Sena	FOILING	pt Fliolity b	11		
	0 = Low pri							
bit 2			pt Priority bi	t				
	1 = High pri 0 = Low pri							
bit 1		•	2 Match Inter	runt Priority	bit			
	1 = High pri			i apri nonty				
	0 = Low price	ority						
bit 0			ow Interrupt	Priority bit				
	1 = High pri 0 = Low pri	•						
	• = L on ph							

Note 1: This bit is reserved on PIC18F2X2 devices; always maintain this bit set.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 9-7:PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0.
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2.
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3.
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4.
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5.
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6.
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7.

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port mode.

TABLE 9-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD Data Output Register							xxxx xxxx	uuuu uuuu	
TRISD	PORTD Data Direction Register							1111 1111	1111 1111	
TRISE	IBF	OBF	IBOV	PSPMODE — PORTE Data Direction bits					0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

14.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 14-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

14.2 CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 14-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1 or TMR3 depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1 or TMR3 depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

PIC18FXX2

15.4.7 BAUD RATE GENERATOR

In I²C Master mode, the baud rate generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 15-17). When a write occurs to SSPBUF, the baud rate generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by \overline{ACK}), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 15-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 15-17: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 15-3: I²C CLOCK RATE W/BRG

Fcy	Fcy*2	BRG Value	Fsc∟ ⁽²⁾ (2 Rollovers of BRG)
10 MHz	20 MHz	19h	400 kHz ⁽¹⁾
10 MHz	20 MHz	20h	312.5 kHz
10 MHz	20 MHz	3Fh	100 kHz
4 MHz	8 MHz	0Ah	400 kHz ⁽¹⁾
4 MHz	8 MHz	0Dh	308 kHz
4 MHz	8 MHz	28h	100 kHz
1 MHz	2 MHz	03h	333 kHz ⁽¹⁾
1 MHz	2 MHz	0Ah	100kHz
1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

2: Actual frequency will depend on bus conditions. Theoretically, bus conditions will add rise time and extend low time of clock period, producing the effective frequency.

15.4.17.3 Bus Collision During a STOP Condition

Bus collision occurs during a STOP condition if:

- a) After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 15-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 15-32).

FIGURE 15-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 15-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

16.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 16.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.

- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
RCREG	USART Receive Register						0000 0000	0000 0000		
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	e Genera	tor Registe	er					0000 0000	0000 0000

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Reception. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

FIGURE 16-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

19.4 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 FLASH devices differs significantly from other PICmicro devices.

The user program memory is divided into five blocks. One of these is a boot block of 512 bytes. The remainder of the memory is divided into four blocks on binary boundaries. Each of the five blocks has three code protection bits associated with them. They are:

- Code Protect bit (CPn)
- Write Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 19-3 shows the program memory organization for 16- and 32-Kbyte devices, and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 19-3.

FIGURE 19-3: CODE PROTECTED PROGRAM MEMORY FOR PIC18F2XX/4XX

	MEMORY SI	ZE/DEVICE		Block Code Protection
	16 Kbytes (PIC18FX42)	32 Kbytes (PIC18FX52)	Address Range	Controlled By:
	Boot Block	Boot Block	000000h 0001FFh	CPB, WRTB, EBTRB
-	Block 0	Block 0	000200h 001FFFh	CP0, WRT0, EBTR0
	Block 1	Block 1	002000h 003FFFh	CP1, WRT1, EBTR1
	Unimplemented Read 0's	Block 2	004000h 005FFFh	CP2, WRT2, EBTR2
	Unimplemented Read 0's	Block 3	006000h 007FFFh	CP3, WRT3, EBTR3
	Unimplemented Read 0's	Unimplemented Read 0's	008000h	(Unimplemented Memory Space)
			1FFFFFh	

TABLE 19-3: SUMMARY OF CODE PROTECTION REGISTERS

File I	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	—	—			CP3	CP2	CP1	CP0
300009h	CONFIG5H	CPD	CPB	_	_	—	—	—	_
30000Ah	CONFIG6L	_	—	_	_	WRT3	WRT2	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	—	—	—	
30000Ch	CONFIG7L	_	—	_	_	EBTR3	EBTR2	EBTR1	EBTR0
30000Dh	CONFIG7H		EBTRB	_	_	—	_	—	

Legend: Shaded cells are unimplemented.

19.4.1 PROGRAM MEMORY CODE PROTECTION

The user memory may be read to or written from any location using the Table Read and Table Write instructions. The device ID may be read with Table Reads. The configuration registers may be read and written with the Table Read and Table Write instructions.

In User mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from Table Writes if the WRTn configuration bit is '0'. The EBTRn bits control Table Reads. For a block of user memory with the EBTRn bit set to '0', a Table Read instruction that executes from within that block is allowed to read. A Table Read instruction that executes from a location

outside of that block is not allowed to read, and will result in reading '0's. Figures 19-4 through 19-6 illustrate Table Write and Table Read protection.

Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP or an external programmer.

FIGURE 19-4: TABLE WRITE (WRTn) DISALLOWED

TABLE 20-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Mnem	onic,	Description	Cycles	16	6-Bit Ins	truction	Word	Status	Notes
Opera	ands	Description	Cycles	MSb		LSb	Affected	Notes	
LITERAL (OPERAT	IONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSRx 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	MORY ↔	PROGRAM MEMORY OPERATION	s						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2 (5)	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

PIC18FXX2

URN	Return fr	Return from Subroutine					
ax:	[label]	RETURI	N [s]				
rands:	$s \in [0,1]$						
ration:	$\begin{array}{l} (\text{TOS}) \rightarrow \text{PC},\\ \text{if }s=1\\ (\text{WS}) \rightarrow \text{W},\\ (\text{STATUSS}) \rightarrow \text{STATUS},\\ (\text{BSRS}) \rightarrow \text{BSR},\\ \text{PCLATU, PCLATH are unchanged} \end{array}$						
us Affected:	ted: None						
oding:	0000	0000 0000 0001 00					
cription:	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If 's'= 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their co responding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default)						
ds:	1						
es:	2	2					
Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	No operation			PC from stack			
No	No	No		No			
operation	operation	operati	ion o	peration			
	tax: rands: ration: us Affected: oding: cription: ds: es: Cycle Activity: Q1 Decode No	tax: [label] rands: $s \in [0,1]$ ration: (TOS) → if $s = 1$ (WS) → V (STATUSE (BSRS) – PCLATU, us Affected: None oding: 0000 cription: Return from is popped (TOS) is less counter. If shadow re and BSRS responding and BSRS responding responding and BSRS responding res	tax:[label]RETURIrands: $s \in [0,1]$ ration:(TOS) \rightarrow PC, if $s = 1$ (WS) \rightarrow W, (STATUSS) \rightarrow ST. (BSRS) \rightarrow BSR, PCLATU, PCLATH us Affected:us Affected:Noneoding:0000cription:Return from subro is popped and the (TOS) is loaded in counter. If 's'= 1, the shadow registers 'a and BSRS are load responding register and BSRS. If 's' = 0 these registers ocds:1es:2Cycle Activity:Q1Q1Q2Q3DecodeNoNoNoNo	tax:[label]RETURN [s]rands: $s \in [0,1]$ ration:(TOS) \rightarrow PC, if $s = 1$ (WS) \rightarrow W, (STATUSS) \rightarrow STATUS, (BSRS) \rightarrow BSR, PCLATU, PCLATH are unus Affected:us Affected:Noneoding:00000001cription:Return from subroutine. This popped and the top of the (TOS) is loaded into the pucture. If 's' = 1, the content shadow registers WS, STA and BSRS are loaded into responding registers, W, Sand BSR. If 's' = 0, no upped these registers occurs (dedds:1es:2Cycle Activity:Q1Q2Q3DecodeNoProcesspop operationNoNoNoNo			

Example	RETURN

After Interrupt PC = TOS

RLCF	Rotate L	eft f throug	h Carry
Syntax:	[label]	RLCF f[,	d [,a]
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5	
Operation:	$(f{<}n{>}) ightarrow (f{<}7{>}) ightarrow (C) ightarrow de$		
Status Affected:	C, N, Z		
Encoding:	0011	01da f:	fff ffff
	is placed is stored (default). Bank will	Flag. If 'd' is in W. If 'd' is back in regis If 'a' is 0, the be selected value. If 'a' =	a 1, the resul ster 'f' e Access , overriding
		be selected le (default). register	as per the
Words:	BSR valu	e (default).	
Words: Cycles:	BSR valu	e (default).	·
	BSR valu C 1 1	e (default).	·
Cycles:	BSR valu C 1 1	e (default).	·
Cycles: Q Cycle Activity:	BSR valu C 1 1	ie (default). 	f -
Cycles: Q Cycle Activity: Q1	BSR valu C 1 1 Q2 Read	e (default). register Q3 Process	f Q4 Write to destination

Before Instr	uctio	า	
REG C	=	1110 0	0110
After Instruc	tion		
REG	=	1110	0110
W	=	1100	1100
С	=	1	

© 2006 Microchip Technology Inc.

PIC18FXX2

NOTES:

TABLE 22-11:	EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)
--------------	--

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	or SCK↑ input		-	ns	
71	TscH	SCK input high time	Continuous	1.25 TCY + 30	—	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100		ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	_	ns	
75	TdoR	SDO data output rise time	PIC18FXXX		25	ns	
			PIC18 LF XXX	—	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18 F XXX	—	25	ns	
			PIC18 LF XXX	—	60	ns	VDD = 2V
78	TscR	SCK output rise time	PIC18 F XXX	—	25	ns	
		(Master mode)	PIC18 LF XXX	—	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXX		25	ns	
			PIC18 LF XXX		60	ns	VDD = 2V
80		SDO data output valid after SCK	PIC18 F XXX	—	50	ns	
	TscL2doV	edge	PIC18 LF XXX		150	ns	VDD = 2V

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

TBLRD249
TBLWT250
TSTFSZ251
XORLW251
XORWF
Summary Table214
Instructions in Program Memory40
Two-Word Instructions
INT Interrupt (RB0/INT). See Interrupt Sources
INTCON Register
RBIF Bit
INTCON Registers
Inter-Integrated Circuit. See I ² C
Interrupt Sources
A/D Conversion Complete
Capture Complete (CCP)
Compare Complete (CCP)
INTO
Interrupt-on-Change (RB7:RB4)
PORTB, Interrupt-on-Change
RB0/INT Pin, External85
TMR0
TMR0 Overflow
TMR1 Overflow107, 109
TMR2 to PR2 Match112
TMR2 to PR2 Match (PWM) 111, 122
TMR3 Overflow113, 115
USART Receive/Transmit Complete
Interrupts73
Logic74
Interrupts, Enable Bits
CCP1 Enable (CCP1IE Bit)119
Interrupts, Flag Bits
A/D Converter Flag (ADIF Bit)183
CCP1 Flag (CCP1IF Bit)119
CCP1IF Flag (CCP1IF Bit)120
Interrupt-on-Change (RB7:RB4) Flag
(RBIF Bit)
IORLW
IORWF
IPR Registers

Κ

KEELOQ	Evaluation	and	Programming	Tools	256
--------	------------	-----	-------------	-------	-----

L

LFSR		
Lookup Tables		
Computed GOTO	41	
Table Reads, Table Writes	41	
Low Voltage Detect	189	
Converter Characteristics		
Effects of a RESET	193	
Operation	192	
Current Consumption	193	
During SLEEP	193	
Reference Voltage Set Point	193	
Typical Application	189	
LVD. See Low Voltage Detect.		

Μ

Master SSP (MSSP) Module Overview
Master Synchronous Serial Port (MSSP). <i>See</i> MSSP. Master Synchronous Serial Port. <i>See</i> MSSP
Master Synchronous Serial Port. See MSSP Memory Organization
Data Memory
Program Memory
Memory Programming Requirements
Migration from Baseline to Enhanced Devices
Migration from High-End to Enhanced Devices
Migration from Mid-Range to Enhanced Devices
MOVF
MOVFF
MOVLB
MOVLW
MOVWF
MPLAB C17 and MPLAB C18 C Compilers
MPLAB ICD In-Circuit Debugger
MPLAB ICE High Performance Universal In-Circuit
Emulator with MPLAB IDE 254
MPLAB Integrated Development
Environment Software
MPLINK Object Linker/MPLIB Object Librarian
MSSP 125
Control Registers (general) 125
Enabling SPI I/O 129
Operation 128
Typical Connection 129
MSSP Module
SPI Master Mode 130
SPI Master./Slave Connection 129
SPI Slave Mode
MULLW
MULWF
Ν
NEGF
NOP
0
Opcode Field Descriptions
OPTION_REG Register

opecae i leia 2 coci piccie i	
OPTION_REG Register	
PSA Bit	105
TOCS Bit	105
T0PS2:T0PS0 Bits	105
T0SE Bit	105
Oscillator Configuration	
EC	17
ECIO	
HS	
HS + PLL	
LP	
RC	
RCIO	
ХТ	
Oscillator Selection	195
Oscillator, Timer1	
Oscillator, Timer3	113
Oscillator, WDT	