

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f252-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0L register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, x....etc.) will clear the prescaler count.

Note:	Writing to TMR0L when the prescaler is
	assigned to Timer0 will clear the prescaler
	count, but will not change the prescaler
	assignment.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, (i.e., it can be changed "on-the-fly" during program execution).

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IE bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

10.4 16-Bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (refer to Figure 10-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16-bits of Timer0 without having to verify that the read of the high and low byte were valid due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16-bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
TMR0L	Timer0 Module Low Byte Register								xxxx xxxx	uuuu uuuu
TMR0H	Timer0 Module High Byte Register								0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 0000	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	PORTA Data Direction Register								-111 1111	-111 1111

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

11.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

When TMR1CS = 0, Timer1 increments every instruction cycle. When TMR1CS = 1, Timer1 increments on every rising edge of the external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored, and the pins are read as '0'.

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 14.0).

FIGURE 11-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE

FIGURE 11-1: TIMER1 BLOCK DIAGRAM

13.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- RESET from CCP module trigger

Figure 13-1 is a simplified block diagram of the Timer3 module.

Register 13-1 shows the Timer3 control register. This register controls the Operating mode of the Timer3 module and sets the CCP clock source.

Register 11-1 shows the Timer1 control register. This register controls the Operating mode of the Timer1 module, as well as contains the Timer1 oscillator enable bit (T1OSCEN), which can be a clock source for Timer3.

REGISTER 13-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write I 1 = Enables register Read 0 = Enables register Read	Mode Enable bit I/Write of Timer3 in on I/Write of Timer3 in two	e 16-bit operation o 8-bit operations	
bit 6-3	T3CCP2:T3CCP1: Timer3 1x = Timer3 is the clock so 01 = Timer3 is the clock so Timer1 is the clock so 00 = Timer1 is the clock so	3 and Timer1 to CCPx ource for compare/cap ource for compare/cap ource for compare/cap ource for compare/cap	Enable bits oture CCP modules oture of CCP2, oture of CCP1 oture CCP modules	
bit 5-4	T3CKPS1:T3CKPS0 : Tim 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value	er3 Input Clock Presc	ale Select bits	
bit 2	T3SYNC: Timer3 External (Not usable if the system of <u>When TMR3CS = 1:</u> 1 = Do not synchronize external0 = Synchronize externalWhen TMR3CS = 0:This bit is ignored. Timer3	I Clock Input Synchror clock comes from Time kternal clock input clock input	hization Control bit er1/Timer3) k when TMR3CS = 0.	
bit 1	TMR3CS: Timer3 Clock S 1 = External clock input fr (on the rising edge af 0 = Internal clock (Fosc/4	ource Select bit om Timer1 oscillator c ter the first falling edge	ər T1CKI ə)	
bit 0	TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3			
	Legend:			
	R = Readable bit - n = Value at POR	W = Writable bit '1' = Bit is set	U = Unimplemented '0' = Bit is cleared	bit, read as '0' x = Bit is unknown

13.1 Timer3 Operation

Timer3 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The Operating mode is determined by the clock select bit, TMR3CS (T3CON<1>).

When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored, and the pins are read as '0'.

Timer3 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 14.0).

FIGURE 13-2: TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE

FIGURE 13-1: TIMER3 BLOCK DIAGRAM

14.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 14-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

14.2 CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 14-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1 or TMR3 depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1 or TMR3 depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

14.5 PWM Mode

In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	aun.

Figure 14-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 14.5.3.

FIGURE 14-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 14-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

14.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

$$PWM period = (PR2) + 1] \bullet 4 \bullet TOSC \bullet$$

(TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 12.0)						
	is not used in the determination of the						
	PWM frequency. The postscaler could be						
	used to have a servo update rate at a						
	different frequency than the PWM output.						

14.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution (max) =
$$\frac{\log(\frac{\text{Fosc}}{\text{FPWM}})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

15.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

15.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)
 - Full Master mode
 - Slave mode (with general address call)

The I^2C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode

15.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and their individual configuration bits differ significantly, depending on whether the MSSP module is operated in SPI or I^2C mode.

Additional details are provided under the individual sections.

15.3 SPI Mode

The SPI mode allows 8-bits of data to be synchronously transmitted and received, simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL/LVDIN

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) - RA5/SS/AN4

Figure 15-1 shows the block diagram of the MSSP module when operating in SPI mode.

15.4.3.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON1<0>=1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit CKP (SSPCON<4>). See Section 15.4.4 ("Clock Stretching"), for more detail.

15.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low, regardless of SEN (see "Clock Stretching", Section 15.4.4, for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/ SCK/SCL should be enabled by setting bit CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 15-9).

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not \overline{ACK}), then the data transfer is complete. In this case, when the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another <u>occurrence</u> of the START bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPBUF register. Again, pin RC3/SCK/SCL must be enabled by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

15.4.17.2 Bus Collision During a Repeated START Condition

During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 15-29). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition, Figure 15-30.

If, at the end of the BRG time-out both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

FIGURE 15-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc =	40 MHz	SPBRG	33	MHz	SPBRG	RG 25 MHz SF		25 MHz SPBRG 20 MHz		MHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	162	2.40	+0.16	129
9.6	9.62	+0.16	64	9.55	-0.54	53	9.53	-0.76	40	9.47	-1.36	32
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	7	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3
96	89.29	-6.99	6	103.13	+7.42	4	97.66	+1.73	3	104.17	+8.51	2
300	312.50	+4.17	1	257.81	-14.06	1	NA	-	-	312.50	+4.17	0
500	625	+25.00	0	NA	-	-	NA	-	-	NA	-	-
HIGH	625	-	0	515.63	-	0	390.63	-	0	312.50	-	0
LOW	2.44	-	255	2.01	-	255	1.53	-	255	1.22	-	255
BAUD	Fosc =	16 MHz	SPBRG	10	MHz	SPBRG	7.159	09 MHz	SPBRG	5.068	8 MHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	83.33	+8.51	2	78.13	+1.73	1	111.86	+45.65	0	79.20	+3.13	0
96	83.33	-13.19	2	78.13	-18.62	1	NA	-	-	NA	-	-
300	250	-16.67	0	156.25	-47.92	0	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255
BAUD	Fosc	= 4 MHz	SPBRG	3.5795	645 MHz	SPBRG	1	MHz	SPBRG	32.76	8 kHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	0.30	-0.16	207	0.30	+0.23	185	0.30	+0.16	51	0.26	-14.67	1
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	2.23	-6.99	6	NA	-	-
9.6	8.93	-6.99	6	9.32	-2.90	5	7.81	-18.62	1	NA	-	-
19.2	20.83	+8.51	2	18.64	-2.90	2	15.63	-18.62	0	NA	-	-
76.8	62.50	-18.62	0	55.93	-27.17	0	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	62.50	-	0	55.93	-	0	15.63	-	0	0.51	-	0
LOW	0.24	-	255	0.22	-	255	0.06	-	255	0.002	-	255

18.2 Operation

Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register), which selects the desired LVD Trip Point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 18-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 18-4: LOW VOLTAGE DETECT WAVEFORMS

ADD	OWFC	ADD W a	ADD W and Carry bit to f					
Synt	tax:	[<i>label</i>] Al	[<i>label</i>] ADDWFC f [,d [,a]					
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Ope	ration:	(W) + (f) +	$(C) \rightarrow de$	est				
Stat	us Affected:	N,OV, C, I	DC, Z					
Enc	oding:	0010	00da	ffff	ffff			
Des	cription:	Add W, th memory lo result is pl tion 'f'. If 'a will be sel- will not be	Add W, the Carry Flag and data memory location 'f'. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in data memory loca- tion 'f'. If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR will not be overridden					
Wor	ds:	1						
Cyc	les:	1						
QC	Cycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Process Data	s Wr dest	rite to ination			
Exa	<u>mple</u> :	ADDWFC	REG, (), 1				
	Before Instru	iction						
	Carry bit REG W	= 1 = 0x02 = 0x4D						
	After Instruct	ion						
	Carry bit REG W	= 0 = 0x02 = 0x50						

	DLW	AND liter	AND literal with W					
Synt	ax:	[label] A	[label] ANDLW k					
Ope	rands:	$0 \le k \le 25$	5					
Ope	ration:	(W) .AND	. $k \to W$					
Statu	us Affected:	N,Z						
Enco	oding:	0000	1011	kkk	k	kkkk		
Des	cription:	the conte the 8-bit li placed in	ents of W teral 'k'. W.	I are The	ANL	Jed with Ilt is		
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	3		Q4		
Decode		Read literal 'k'	Proce Data	SS A	Wr	ite to W		
<u>Exar</u>	<u>mple</u> :	ANDLW	0x5F					
Before Instruction								

W	=	0xA3				
After Instruction						
W	=	0x03				

BCF	Bit Clear	f			
Syntax:	[<i>label</i>] E	BCF f,	b[,a]		
Operands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$			
Operation: $0 \rightarrow f < b >$					
Status Affected: None					
Encoding:	1001	bbba	ffff	ffff	
Description:	Bit 'b' in re is 0, the A selected, If 'a' = 1, t selected a (default).	egister 'f Access E overridir then the as per th	' is cleare ank will b ng the BS bank will e BSR va	ed. If 'a' De R value. I be alue	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q	}	Q4	
Decode	Read register 'f'	Proce Data	ss a re	Write gister 'f'	
Example:	BCF 1	FLAG_RE	G, 7,	D	
Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47					

BN		Branch if	Negativ	/e	
Synt	ax:	[<i>label</i>] B	[<i>label</i>] BN n		
Ope	rands:	-128 ≤ n ≤	-128 ≤ n ≤ 127		
Ope	ration:	if negative (PC) + 2 +	if negative bit is '1' $(PC) + 2 + 2n \rightarrow PC$		
Statu	us Affected:	None			
Enco	oding:	1110	0110	nnnn	nnnn
Desi		The 2's co added to t have incre instruction PC+2+2n. a two-cycl	will brand ompleme he PC. emented i, the ne This in e instruc	ent num Since ti to fetcl w addre structio	ber '2n' is he PC will h the next ess will be on is then
Wor	ds:	1			
Cycl	es:	1(2)			
Q Cycle Activity:					
	Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Proce Data	ss W ເ	/rite to PC
	No operation	No operation	No operat	ion d	No operation
lf N	o Jump:				
	Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Proce Data	ss i (No operation
<u>Exai</u>	<u>mple</u> :	HERE	BN	Jump	
	Before Instr	uction			
	PC	= ad	dress (H	ERE)	

PC	=	address	(HERE)
After Instruction			
If Negative PC If Negative PC	= = =	1; address 0; address	(Jump) (HERE+2)

BRA	N N	Unconditi	onal Brancl	n	BSF	=	Bit Set f		
Syn	ax:	[label] B	RA n		Syn	tax:	[<i>label</i>] B	SF f,b[,a]	
Ope	rands:	-1024 ≤ n	≤ 1023		Оре	erands:	$0 \le f \le 255$	5	
Ope	ration:	(PC) + 2 +	$2n \rightarrow PC$				$0 \le b \le 7$		
Stat	us Affected:	None			One	aration:	a ∈ [0,1] 1 → f~h>		
Enc	oding:	1101	0nnn nni	nn nnnn	Stat	us Affected	None		
Des	cription:	Add the 2' '2n' to the	s compleme PC. Since th	nt number ne PC will	Enc	oding:	1000	bbba ffi	ff ffff
		have incre instruction PC+2+2n. two-cycle	mented to fe , the new ad This instruction.	etch the next dress will be tion is a	Des	cription:	Bit 'b' in re Access Ba riding the I the bank w	gister 'f' is se ank will be se 3SR value. If vill be selecte	et. If 'a' is 0 elected, over- f 'a' = 1, then ed as per the
Wor	ds:	1					BSR value) .	
Cyc	es:	2			Wor	rds:	1		
QC	Cycle Activity:	1			Cyc	les:	1		
	Q1	Q2	Q3	Q4	QQ	Cycle Activity:	:		
	Decode	Read literal	Process	Write to PC		Q1	Q2	Q3	Q4
	No	No	Data No	No		Decode	Read register 'f'	Process Data	Write register 'f'
	operation	operation	operation	operation	<u>Exa</u>	<u>mple</u> :	BSF F	LAG_REG, 7	, 1
<u>Exa</u>	<u>mple</u> : Before Instri	HERE	BRA Jump			Before Instru FLAG_R	uction EG = 0x0	DA	
	PC After Instruct	= add	dress (HERE))		After Instruc FLAG_R	tion EG = 0x8	3A	
	PU	= ad	uless (Jump))					

BTF	SC	Bit Test Fi	le, Skip if Cle	ear	BTF	SS	Bit Test Fi	le, Skip if Se	t
Synt	ax:	[label] B1	FSC f,b[,a]		Syn	tax:	[label] B	FSS f,b[,a]	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Ope	rands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]		
Ope	ration:	skip if (f <b< td=""><td>>) = 0</td><td></td><td>Ope</td><td>ration:</td><td>skip if (f<b< td=""><td>>) = 1</td><td></td></b<></td></b<>	>) = 0		Ope	ration:	skip if (f <b< td=""><td>>) = 1</td><td></td></b<>	>) = 1	
Statu	us Affected:	None			Stat	us Affected:	None		
Enco	oding:	1011	bbba ff	ff ffff	Enc	oding:	1010	bbba ffi	ff fff
Desc	cription:	If bit 'b' in r next instruct If bit 'b' is 0 fetched dur execution i executed in cycle instru Access Baa riding the E the bank w BSR value	egister 'f' is 0 ction is skippe), then the ne: ring the currer s discarded, a nstead, makir uction. If 'a' is nk will be sele 3SR value. If ill be selected (default).	, then the ed. at instruction and a NOP is ng this a two- 0, the ected, over- ta' = 1, then d as per the	Des	cription:	If bit 'b' in r next instru If bit 'b' is 1 fetched du tion execut NOP is exe a two-cycle Access Ba riding the E the bank w BSR value	register 'f' is 1, ction is skippe I, then the new ring the current tion, is discard cuted instead e instruction. I nk will be sele 3SR value. If 'ill be selected (default).	, then the ed. At instruct the instruct ded and a , making t f 'a' is 0, the ected, ove a' = 1, the l as per th
Wor	ds:	1			Wor	ds:	1		
Cycl	es:	1(2) Note: 3 c by	ycles if skip a a 2-word inst	and followed ruction.	Сус	les:	1(2) Note: 3 o by	cycles if skip a a 2-word inst	and follow ruction.
QC	cycle Activity:				QC	Cycle Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process Data	No operation		Decode	Read register 'f'	Process Data	No operatio
lf sk		109.000		oportation	lf s	kip:	. egietei i		oporadio
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operatio
lf sk	kip and follow	ed by 2-word	l instruction:		lf sl	kip and follow	ed by 2-word	instruction:	
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No operation	No operation	No operation	No operation		No	No	No operation	No operatio
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operatio
<u>Exar</u>	<u>nple</u> :	HERE B' FALSE : TRUE :	IFSC FLAG	, 1, 0	<u>Exa</u>	<u>mple</u> :	HERE B FALSE : TRUE :	TFSS FLAG	, 1, 0
	Before Instru	ction				Before Instru	iction		
	PC	= add	Iress (HERE)			PC	= add	dress (HERE)	
	After Instruct If FLAG< PC If FLAG< PC	ion 1> = 0; = add 1> = 1; = add	Iress (TRUE) Iress (False)			After Instruct If FLAG< PC If FLAG< PC	tion 1> = 0; = ado 1> = 1; = ado	dress (FALSE) dress (TRUE)	

tion is skipped. then the next instruction ring the current instrucion, is discarded and a cuted instead, making this instruction. If 'a' is 0, the nk will be selected, over-SR value. If 'a' = 1, then ill be selected as per the (default). cycles if skip and followed a 2-word instruction. Q3 Q4 Process Data No operation Q3 Q4 No No operation operation instruction: Q3 Q4 No No operation operation No No operation operation FSS FLAG, 1, 0

ffff

RET	URN	Return fr	om Subr	outin	е	
Synt	ax:	[label]	RETURN	s] ۱		
Ope	rands:	$s \in [0,1]$				
Ope	ration:	$\begin{array}{l} (\text{TOS}) \rightarrow \text{PC},\\ \text{if s = 1}\\ (\text{WS}) \rightarrow \text{W},\\ (\text{STATUSS}) \rightarrow \text{STATUS},\\ (\text{BSRS}) \rightarrow \text{BSR},\\ \text{PCLATU, PCLATH are unchanged} \end{array}$				
Statu	us Affected:	None				
Enco	oding:	0000	0000	0001	001s	
Des	enpuon:	is popped (TOS) is la counter. If shadow re and BSRS respondin and BSR. these regi	and the paded ini- c's'= 1, th egisters V S are load g registe If 's' = 0 sters occ	top of to the le cont WS, S ded int ers, W, , no up curs (c	the stack program tents of the TATUSS to their cor- , STATUS pdate of default).	
Wor	ds:	1				
Cycl	es:	2				
QC	cycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	No operation	Proces Data	ss p	op PC from stack	
	No	No	No		No	
	operation	operation	operation	on	operation	

Example: RETURN	Example:	RETURN
-----------------	----------	--------

After Interrupt PC = TOS

[label] $0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$ $(f < n >) \rightarrow$ $(f < 7 >) \rightarrow$ $(C) \rightarrow de$	RLCF 5 dest <n+ C,</n+ 	f [,c 1>,	1 [,a]
$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$ $(f < n >) \rightarrow$ $(f < 7 >) \rightarrow$ $(C) \rightarrow de$	dest <n+ C,</n+ 	1>,	
$(f < n >) \rightarrow$ $(f < 7 >) \rightarrow$ $(C) \rightarrow de$	dest <n+ C,</n+ 	1>,	
0 N 7	st<0>		
C, N, Z			
0011	01da	ff	ff ffff
the Carry is placed is stored (default). Bank will the BSR bank will BSR valu	Flag. If Flag. If in W. If back in r If 'a' is 0 be select value. If be select ie (defau	the left is d' is register, the control of the cont	ent through 0, the result 1, the result ter 'f' Access overriding 1, then the as per the
1			
1			
Q2	Q3		Q4
Read register 'f'	Proces Data	s	Write to destination
RLCF	REG,	Ο,	0
	C, N, Z 0011 The conterrotated of the Carry is placed is stored (default). Bank will BSR value C 1 1 1 Q2 Read register 'f' RLCF tion	C, N, Z 0011 01da The contents of re- rotated one bit to the Carry Flag. If is placed in W. If ' is stored back in r (default). If 'a' is 0 Bank will be select BSR value. If bank will be select BSR value (default) C reg 1 1 2 Q2 Q3 Read Process register 'f' Data RLCF REG, tion	C, N, Z 0011 01da ff The contents of register rotated one bit to the le the Carry Flag. If 'd' is is placed in W. If 'd' is is stored back in regist (default). If 'a' is 0, the Bank will be selected, the BSR value. If 'a' = bank will be selected a BSR value (default). C register t 1 1 2 Q2 Q3 Read Process register 'f' Data RLCF REG, 0, tion

Before Instruction						
REG	=	1110	0110			
U	_	0				
After Instruction						
REG	=	1110	0110			
W	=	1100	1100			
С	=	1				

© 2006 Microchip Technology Inc.

TBLRD	Table Rea	ıd				
Syntax:	[label]	TBLRD (*; *+; *-; •	+*)		
Operands:	None					
Operation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR - No Change; if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) +1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) -1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) +1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT;					
Status Affecte	ed:None					
Encoding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*		
Description:	This instruction is used to read the con- tents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment					
	post-decpre-incr	crement ement				
Words:	1					
Cycles:	2					
Q Cycle Acti	vity:	~	NO	04		
Q1	Q2	G	13	Q4		

QI	QZ	Q3	Q4
Decode	No	No	No
	operation	operation	operation
No operation	No operation (Read Program Memory)	No operation	No operation (Write TABLAT)

TBLRD Table Read (cont'd)

<u>Example1</u> :	TBLRD	*+	;	
Before Instruc	ction			
TABLAT			=	0x55
MEMORY	(0x00A35	6)	=	0x00A356 0x34
After Instruction	on	,		
TABLAT			=	0x34
TBLPTR			=	0x00A357
<u>Example2</u> :	TBLRD	+*	;	
Before Instruc	ction			
TABLAT			=	0xAA
TBLPTR MEMORY	(0x01A35	7)	=	0x01A357 0x12
MEMORY	(0x01A35	8)	=	0x34
After Instruction	on			
TABLAT			=	0x34
IBLAIK			=	UXU1A358

Param. No.	Symbol	Characteristic	;	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKO↓		—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 [↑] to CLKO [↑]		—	75	200	ns	(Note 1)
12	TckR	CLKO rise time		—	35	100	ns	(Note 1)
13	TckF	CLKO fall time		—	35	100	ns	(Note 1)
14	TckL2ioV	CLKO↓ to Port out valid		—	_	0.5 Tcy + 20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKO \uparrow		0.25 TCY + 25		_	ns	(Note 1)
16	TckH2iol	Port in hold after CLKO ↑		0		—	ns	(Note 1)
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		—	50	150	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC18FXXX	100	_	_	ns	
18A		input invalid (I/O in hold time)	PIC18 LF XXX	200	_	_	ns	
19	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)		0	_	_	ns	
20	TioR	Port output rise time	PIC18FXXX	—	10	25	ns	
20A			PIC18 LF XXX	—	_	60	ns	VDD = 2V
21	TioF	Port output fall time	PIC18 F XXX	—	10	25	ns	
21A			PIC18 LF XXX	—	_	60	ns	VDD = 2V
22††	TINP	INT pin high or low time		Тсү	_	—	ns	
23††	TRBP	RB7:RB4 change INT high or low time		Тсү	_	—	ns	
24††	TRCP	RC7:RC4 change INT high or low time		20			ns	

TABLE 22-6: CLKO AND I/O TIMING REQUIREMENTS

†† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

FIGURE 22-8: BROWN-OUT RESET TIMING

TABLE 22-7:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2		_	μs	
31	Twdt	Watchdog Timer Time-out Period (No Postscaler)	7	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	-	1024 Tosc	—	Tosc = OSC1 period
33	TPWRT	Power up Timer Period	28	72	132	ms	
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μs	
35	TBOR	Brown-out Reset Pulse Width	200	_	—	μs	VDD ≤ BVDD (see D005)
36	TIVRST	Time for Internal Reference Voltage to become stable	_	20	500	μs	
37	TLVD	Low Voltage Detect Pulse Width	200		_	μs	VDD ≤ VLVD (see D420)