

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f252-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18F2X2 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Norro	Pin N	umber	Pin Buffer Type Type		Description			
Pin Name	DIP	SOIC			Description			
					PORTC is a bi-directional I/O port.			
RC0/T1OSO/T1CKI RC0 T1OSO T1CKI	11	11	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.			
RC1/T1OSI/CCP2 RC1 T1OSI CCP2	12	12	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture2 input, Compare2 output, PWM2 output.			
RC2/CCP1 RC2 CCP1	13	13	I/O I/O	ST ST	Digital I/O. Capture1 input/Compare1 output/PWM1 output.			
RC3/SCK/SCL RC3 SCK SCL	14	14	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode			
RC4/SDI/SDA RC4 SDI SDA	15	15	I/O I I/O	ST ST ST	Digital I/O. SPI Data In. I ² C Data I/O.			
RC5/SDO RC5 SDO	16	16	I/O O	ST —	Digital I/O. SPI Data Out.			
RC6/TX/CK RC6 TX CK	17	17	I/O O I/O	ST — ST	Digital I/O. USART Asynchronous Transmit. USART Synchronous Clock (see related RX/DT).			
RC7/RX/DT RC7 RX DT	18	18	I/O I I/O	ST ST ST	Digital I/O. USART Asynchronous Receive. USART Synchronous Data (see related TX/CK).			
Vss	8, 19	8, 19	Р	_	Ground reference for logic and I/O pins.			
Vdd	20	20	Р	_	Positive supply for logic and I/O pins.			
Legend: TTL = TTL o	compati	ble inpu	ıt		CMOS = CMOS compatible input or output			

ST = Schmitt Trigger input with CMOS levels

I = Input P = Power

O = Output OD = Open Drain (no P diode to VDD)

3.1 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (i.e., exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

3.2 **Power-up Timer (PWRT)**

The Power-up Timer provides a fixed nominal time-out (parameter 33) only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter D033 for details.

3.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other Oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out (OST).

3.5 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter 35, the brown-out situation will reset the chip. A RESET may not occur if VDD falls below parameter D005 for less than parameter 35. The chip will remain in Brown-out Reset until VDD rises above BVDD. If the Power-up Timer is enabled, it will be invoked after VDD rises above BVDD; it then will keep the chip in RESET for an additional time delay (parameter 33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18FXXX device operating in parallel.

Table 3-2 shows the RESET conditions for some Special Function Registers, while Table 3-3 shows the RESET conditions for all the registers.

TABLE 3-1:	TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up	(2)		Wake-up from
Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc + 2ms	1024 Tosc + 2 ms	72 ms ⁽²⁾ + 1024 Tosc + 2 ms	1024 Tosc + 2 ms
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms ⁽²⁾ + 1024 Tosc	1024 Tosc
EC	72 ms	—	72 ms ⁽²⁾	—
External RC	72 ms	—	72 ms ⁽²⁾	—

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal power-up timer delay, if implemented.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note 1: Refer to Section 4.14 (page 53) for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	0u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x00008h or 0x000018h).

4.10 Access Bank

The Access Bank is an architectural enhancement which is very useful for C compiler code optimization. The techniques used by the C compiler may also be useful for programs written in assembly.

This data memory region can be used for:

- Intermediate computational values
- · Local variables of subroutines
- Faster context saving/switching of variables
- Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 128 bytes in Bank 15 (SFRs) and the lower 128 bytes in Bank 0. These two sections will be referred to as Access RAM High and Access RAM Low, respectively. Figure 4-6 and Figure 4-7 indicate the Access RAM areas.

A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register or in the Access Bank. This bit is denoted by the 'a' bit (for access bit).

When forced in the Access Bank (a = 0), the last address in Access RAM Low is followed by the first address in Access RAM High. Access RAM High maps the Special Function registers, so that these registers can be accessed without any software overhead. This is useful for testing status flags and modifying control bits.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's, and writes will have no effect.

A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The STATUS register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR, since the 12-bit addresses are embedded into the instruction word.

Section 4.12 provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

REGISTER 5-1: EECON1 REGISTER (ADDRESS FA6h)

	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD
	bit 7	-						bit 0
bit 7	EEPGD: F 1 = Access	LASH Progr s FLASH Pro	ram or Data ogram mem		√emory Select I	bit		
	0 = Access	s Data EEPF	ROM memo	ry				
bit 6	CFGS: FL/	ASH Progra	.m/Data EE	or Configura	ation Select bit			
	1 = Access 0 = Access	ঃ Configurati s FLASH Prc	ion registers ogram or Da	₃ ata EEPRO№	√ memory			
bit 5	Unimplem	ented: Rea	d as '0'					
bit 4	FREE: FLA	ASH Row Er	rase Enable) bit				
	1 = Erase t (cleare 0 = Perforr	the program d by comple m write only	memory ro ition of eras	w addresse	d by TBLPTR o)	n the next	WR comma	and
bit 3	WRERR: F	FLASH Prog	jram/Data E	E Error Flaç	y bit			
	1 = A write (any R 0 = The wr	operation is ESET during rite operatior	s premature g self-timed n completec	ly terminate programmir d	d ng in normal op	eration)		
	Note: Wh tra	hen a WREF acing of the e	R occurs, t error conditi	the EEPGD ion.	and CFGS bits	are not cle	ared. This	allows
bit 2	WREN: FL	_ASH Progra	am/Data EE	Write Enab	le bit			
	1 = Allows 0 = Inhibits	write cycles write to the	; ; EEPROM					
bit 1	WR: Write	Control bit						
	1 = Initiates (The or WR bit 0 = Write c	s a data EEF peration is s can only be cycle to the F	PROM erase elf timed an set (not cle EEPROM is	Hyrite cycle Ind the bit is of eared) in sof complete	or a program m leared by hard tware.)	emory eras ware once	se cycle or v write is com	vrite cycle. 1plete. The
bit 0	RD: Read	Control bit						
	1 = Initiates (Read f in softv 0 = Does n	s an EEPRC takes one cy vare. RD bit not initiate ar)M read /cle. RD is c cannot be s n EEPROM	cleared in ha set when EE read	Irdware. The RE PGD = 1.)) bit can or	ıly be set (n	ot cleared)
	·							
	Legend:							

W = Writable bit

'1' = Bit is set

R = Readable bit

- n = Value at POR

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

NOTES:

15.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 15-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 15-3, Figure 15-5, and Figure 15-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 15-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

REGISTER 15-4: SSPCON1: MSSP CONTROL REGISTER1 (I²C MODE)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit

In Master Transmit mode:

- 1 = A write to the SSPBUF register was attempted while the I^2C conditions were not valid for a transmission to be started (must be cleared in software)
- 0 = No collision
- In Slave Transmit mode:
- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- $0 = No \ collision$
- In Receive mode (Master or Slave modes):

This is a "don't care" bit

bit 6 SSPOV: Receive Overflow Indicator bit

- In Receive mode:
 - 1 = A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in software)
 - 0 = No overflow
 - In Transmit mode:

This is a "don't care" bit in Transmit mode

bit 5 SSPEN: Synchronous Serial Port Enable bit

- 1 = Enables the serial port and configures the SDA and SCL pins as the serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

When enabled, the SDA and SCL pins must be properly configured as input or output. Note:

bit 4 CKP: SCK Belease Control bit

- In Slave mode:
- 1 = Release clock
- 0 = Holds clock low (clock stretch), used to ensure data setup time
- In Master mode:

Unused in this mode

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

- 1111 = I^2C Slave mode, 10-bit address with START and STOP bit interrupts enabled
- $1110 = I^2C$ Slave mode, 7-bit address with START and STOP bit interrupts enabled
- $1011 = I^2C$ Firmware Controlled Master mode (Slave IDLE)
- 1000 = I²C Master mode, clock = Fosc / (4 * (SSPADD+1))
- $0111 = I^2C$ Slave mode, 10-bit address
- $0110 = I^2C$ Slave mode, 7-bit address
 - Note: Bit combinations not specifically listed here are either reserved, or implemented in SPI mode only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a START bit detect, 8-bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware. If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set, and the slave will begin receiving data after the Acknowledge (Figure 15-15).

15.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the I^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2C operation. See Section 15.4.7 ("Baud Rate Generator"), for more detail. A typical transmit sequence would go as follows:

- 1. The user generates a START condition by setting the START enable bit, SEN (SSPCON2<0>).
- SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP Module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- 9. The MSSP Module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a STOP condition by setting the STOP enable bit PEN (SSPCON2<2>).
- 12. Interrupt is generated once the STOP condition is complete.

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0			
	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D			
	bit 7							bit 0			
bit 7	CSRC: Clo	ock Source Se	elect bit								
	<u>Asynchronous mode:</u> Don't care										
	Synchrono	us mode:			550						
	1 = Master 0 = Slave r	mode (clock mode (clock fr	generated in om external	source)	BRG)						
bit 6	TX9 9-bit	Transmit Enal	ole bit	Source)							
bit o	1 = Selects	s 9-bit transmi	ission								
	0 = Selects	s 8-bit transmi	ission								
bit 5	TXEN: Trai	nsmit Enable	bit								
	1 = Iransm 0 = Transm	nit enabled									
	Note:	SBEN/CBEN	l overrides T	XEN in SYN	C mode						
bit 4	SYNC: US	ART Mode Se	elect bit		e medei						
	1 = Synchr	ronous mode									
	0 = Asynch	nronous mode)								
bit 3	Unimplem	ented: Read	as '0'								
bit 2	BRGH: Hig	h Baud Rate	Select bit								
	Asynchron	<u>ous mode:</u> beed									
	0 = Low sp	eed									
	<u>Synchrono</u>	us mode:									
	Unused in	this mode									
bit 1	TRMT: Trai	nsmit Shift Re	egister Status	s bit							
	1 = 1SR er 0 = TSR fu	npty II									
bit 0	TX9D: 9th	bit of Transmi	it Data								
	Can be Ad	dress/Data bit	t or a parity l	oit.							
	Legend:										
	R = Reada	ble bit	W = Wr	itable bit	U = Unimp	plemented b	oit, read as '	0'			
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is u	nknown			

REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

16.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits and one STOP bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

16.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the Transmit (serial) Shift Register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and

flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1: The TSR register is not mapped in data memory, so it is not available to the user.
 Flag bit TXIF is set when enable bit TXEN is set.

To set up an asynchronous transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 16.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

Note: TXIF is not cleared immediately upon loading data into the transmit buffer TXREG. The flag bit becomes valid in the second instruction cycle following the load instruction.

FIGURE 16-1: USART TRANSMIT BLOCK DIAGRAM

17.5 Use of the CCP2 Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead

(moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
PIR2			_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	0 0000	0 0000
PIE2		-	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	0 0000	0 0000
IPR2			_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	1 1111	1 0000
ADRESH	A/D Resul	t Register							xxxx xxxx	uuuu uuuu
ADRESL	A/D Resul	t Register							xxxx xxxx	uuuu uuuu
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	000	000
PORTA		RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA		PORTA D	ata Directio	on Register					11 1111	11 1111
PORTE	_	—	—	—	_	RE2	RE1	RE0	000	000
LATE	_		_	_	_	LATE2	LATE1	LATE0	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Data	a Direction I	oits	0000 -111	0000 -111

TABLE 17-2:SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion. Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

18.0 LOW VOLTAGE DETECT

In many applications, the ability to determine if the device voltage (VDD) is below a specified voltage level is a desirable feature. A window of operation for the application can be created, where the application software can do "housekeeping tasks" before the device voltage exits the valid operating range. This can be done using the Low Voltage Detect module.

This module is a software programmable circuitry, where a device voltage trip point can be specified. When the voltage of the device becomes lower then the specified point, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to that interrupt source. The Low Voltage Detect circuitry is completely under software control. This allows the circuitry to be "turned off" by the software, which minimizes the current consumption for the device.

Figure 18-1 shows a possible application voltage curve (typically for batteries). Over time, the device voltage decreases. When the device voltage equals voltage VA, the LVD logic generates an interrupt. This occurs at time TA. The application software then has the time, until the device voltage is no longer in valid operating range, to shutdown the system. Voltage point VB is the minimum valid operating voltage specification. This occurs at time TB. The difference TB - TA is the total time for shutdown.

FIGURE 18-1: TYPICAL LOW VOLTAGE DETECT APPLICATION

The block diagram for the LVD module is shown in Figure 18-2. A comparator uses an internally generated reference voltage as the set point. When the selected tap output of the device voltage crosses the set point (is lower than), the LVDIF bit is set.

Each node in the resistor divider represents a "trip point" voltage. The "trip point" voltage is the minimum supply voltage level at which the device can operate before the LVD module asserts an interrupt. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the 1.2V internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal setting the LVDIF bit. This voltage is software programmable to any one of 16 values (see Figure 18-2). The trip point is selected by programming the LVDL3:LVDL0 bits (LVDCON<3:0>).

Byte-oriented file register operations Example Instruction 15 10 9 8 7 0 OPCODE d a f (FILE #) ADDWF MYREG, W, B
15 10 9 8 7 0 OPCODE d a f (FILE #) ADDWF MYREG, W, B
d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address
Byte to Byte move operations (2-word)
15 12 11 0 OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2 15 12 11 0 1111 f (Destination FILE #) f = 12-bit file register address
Bit-oriented file register operations
15 12 11 9 8 7 0 OPCODE b (BIT #) a f (FILE #) BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address f BSF MYREG, bit, B
Literal operations
15 8 7 0 OPCODE k (literal) MOVLW 0x7F k = 8-bit immediate value K K
Control operations
CALL, GOTO and Branch operations
15 8 7 0 OPCODE n<7:0> (literal) GOTO Label 15 12 11 0 1111 n<19:8> (literal) 1111
n = 20-bit immediate value
15 8 7 0 OPCODE S n<7:0> (literal) CALL MYFUNC 15 12 11 0 15 12 11 0 S = Fast bit S = Fast bit S = Fast bit
15 11 10 0 OPCODE n<10:0> (literal) BRA MYFUNC
15 8 7 0 OPCODE n<7:0> (literal) BC MYFUNC

MULLW	Multiply I	_iteral with \	N	MULWF	Multiply \	W with f		
Syntax:	[label]	MULLW k		Syntax:	[label]	MULWF f	[,a]	
Operands:	$0 \le k \le 25$	5		Operands:	$0 \le f \le 25$	5		
Operation:	(W) x k \rightarrow	PRODH:PR	ODL		a ∈ [0,1]			
Status Affected:	None			Operation:	(W) x (f) -	→ PRODH:PI	RODL	
Encoding:	0000	1101 kk	kk kkkk	Status Affected:	None			
Description:	An unsign	ed multiplica	tion is car-	Encoding:	0000	001a fff	f fff	
Worde:	ried out be W and the 16-bit resu PRODH:F PRODH c W is unch None of th affected. Note that carry is po tion. A zer not detect	etween the c a 8-bit literal ' ult is placed i PRODL registion ontains the hanged. the status flag neither overfices possible in this ro result is po- red.	ontents of k'. The in ter pair. high byte. is are low nor s opera- ossible but	Description:	An unsign ried out b W and the The 16-bi PRODH:F PRODH c Both W a None of th affected. Note that carry is po tion. A zet not detect	An unsigned multiplication is car- ried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the status flags are affected. Note that neither overflow nor carry is possible in this opera- tion. A zero result is possible but not detected. If 'a' is 0, the		
Cyclos:	1				Access Ba	ank will be se	elected,	
	I				overriding	the BSR val	ue. If vill be	
Q Cycle Activity.	02	Q3	Q4		selected a	as per the BS	SR value	
Decode	Read	Process	Write]	(default).			
	literal 'k'	Data	registers	Words:	1			
			PRODH: PRODL	Cycles:	1			
LL				Q Cycle Activity:				
Example:	MULLW	0xC4		Q1	Q2	Q3	Q4	
Before Instru	ction			Decode	Read	Process	Write	
W PRODH PRODL	= 0x = ? = ?	E2				Dala	PRODH: PRODL	
After Instructi	on			Evenenie	MITT LIE			
W	= 0x	E2		Example:	MULWF	REG, I		
PRODH	= 0x = 0x	AD 08		Before Instru	JCTION	C4		
				w REG PRODH PRODL	= 0x = 0x = ? = ?	B5		
				After Instruct	tion			

W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

POF	5	Pop Top of Return Stack		PU	SH	Push Top of Return Stack			ack		
Syn	tax:	[label]	POP		Syr	Syntax:		PUSH			
Ope	erands:	None			Ор	Operands:		None			
Ope	eration:	: $(TOS) \rightarrow bit bucket$ Operation:		(PC+2) \rightarrow	$(PC+2) \rightarrow TOS$						
Stat	us Affected:	None			Sta	tus Affected:	None				
Enc	oding:	0000	0000 00	00 0110	End	coding:	0000	0000	0000	0 0101	
Des	cription:	The TOS or return state TOS value ous value return state This instru- enable the the return software s	value is pulle ck and is dis e then becon that was pus ck. uction is prov e user to prop stack to inco stack.	ed off the carded. The nes the previ- shed onto the vided to perly manage orporate a	Description: Words:		The PC+2 the return value is po This instru a software and then p stack.	The PC+2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack This instruction allows to implement a software stack by modifying TOS and then push it onto the return stack.			
Wor	ds:	1			Cyc	cles:	1				
Cyc	les:	1			Q	Cycle Activity	/:	~		<u></u>	
QC	Cycle Activity:					Q1 Decede		Qa	3	Q4	
	Q1	Q2	Q3	Q4		Decoue	onto return	operat	tion	operation	
	Decode	No operation	POP TOS value	No operation			stack				
					Exa	ample:	PUSH				
Example: Before Instruct TOS Stack (1 lev After Instruction TOS PC		POP GOTO ction evel down)	D = 0031A2h P = 014332h			Before Instr TOS PC After Instruc	ruction	= (= ()0345A)00124	h h	
		ion = 014332h = NEW			PC TOS Stack (1	level down)	= (= (= (0001261 0001261 00345A	h h h		

XOF	RWF	Exclusiv	Exclusive OR W with f						
Synt	tax:	[label]	XORWF	f [,d [,	a]			
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(W) .XOF	(W) .XOR. (f) \rightarrow dest						
State	us Affected:	N, Z	N, Z						
Enco	oding:	0001	10da	fff	f	ffff			
Des	cription:	Exclusive with regis is stored is stored ba (default). Bank will the BSR bank will BSR valu	Exclusive OR the contents of W with register 'f'. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in the register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).						
Wor	ds:	1							
Cycl	es:	1							
QC	Cycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proce Data	ess a	W des	/rite to stination			
<u>Exa</u>	mple:	XORWF	REG, 1,	, 0					
	Before Instru REG W After Instruct	iction = 0xAF = 0xB5 tion							
	REG W	= 0x1A = 0xB5							

22.2 DC Characteristics: PIC18FXX2 (Industrial, Extended) PIC18LFXX2 (Industrial) (Continued)

DC CHARACTERISTICS			$\label{eq:standard operating Conditions (unless otherwise stated)} Operating temperature & -40^\circ C \leq Ta \leq +85^\circ C \text{ for industrial} \\ & -40^\circ C \leq Ta \leq +125^\circ C \text{ for extended} \end{aligned}$				
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O ports	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D080A			—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C	
D083		OSC2/CLKO (RC mode)	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
D083A			—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C	
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C	
D090A			Vdd - 0.7	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С	
D092		OSC2/CLKO (RC mode)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C	
D092A			Vdd - 0.7	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С	
D150	Vod	Open Drain High Voltage	—	8.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins					
D100 ⁽⁴⁾	Cosc2	OSC2 pin	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	50	pF	To meet the AC Timing Specifications	
D102	Св	SCL, SDA	—	400	pF	In I ² C mode	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PICmicro device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Parameter is characterized but not tested.

TABLE 22-15:	I ² C BUS START/STOP	BITS REQUIREMENTS	(SLAVE MODE)
--------------	---------------------------------	--------------------------	--------------

Param. No.	Symbol	Characte	Min	Max	Units	Conditions	
90	TSU:STA	START condition	100 kHz mode	4700	—	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_		START condition
91	THD:STA	START condition	100 kHz mode	4000	_	ns	After this period, the first
		Hold time	400 kHz mode	600	_		clock pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	ns	
		Setup time	400 kHz mode	600	_		
93	THD:STO	STOP condition	100 kHz mode	4000	_	ns	
		Hold time	400 kHz mode	600			

