
Microchip Technology - PIC18F252T-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 23

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1.5K x 8

Voltage - Supply (Vcc/Vdd) 4.2V ~ 5.5V

Data Converters A/D 5x10b

Oscillator Type External

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f252t-e-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f252t-e-so-4426208
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18FXX2

DS

4.

An
Q2
pip
wh
cyc
eff
ca
the
(E

EX

4.

Th
tio
me
wo
wit
ex
gra
bo
LS

FIG

A
i

1.

2.

3.

4.

5.
6 Instruction Flow/Pipelining

 �Instruction Cycle� consists of four Q cycles (Q1,
, Q3 and Q4). The instruction fetch and execute are
elined such that fetch takes one instruction cycle,
ile decode and execute takes another instruction
le. However, due to the pipelining, each instruction

ectively executes in one cycle. If an instruction
uses the program counter to change (e.g., GOTO)
n two cycles are required to complete the instruction

xample 4-2).

A fetch cycle begins with the program counter (PC)
incrementing in Q1.

In the execution cycle, the fetched instruction is latched
into the �Instruction Register� (IR) in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3, and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).

AMPLE 4-2: INSTRUCTION PIPELINE FLOW

7 Instructions in Program Memory

e program memory is addressed in bytes. Instruc-
ns are stored as two bytes or four bytes in program
mory. The Least Significant Byte of an instruction
rd is always stored in a program memory location
h an even address (LSB =�0�). Figure 4-5 shows an
ample of how instruction words are stored in the pro-
m memory. To maintain alignment with instruction

undaries, the PC increments in steps of 2 and the
B will always read �0� (see Section 4.4).

The CALL and GOTO instructions have an absolute pro-
gram memory address embedded into the instruction.
Since instructions are always stored on word bound-
aries, the data contained in the instruction is a word
address. The word address is written to PC<20:1>,
which accesses the desired byte address in program
memory. Instruction #2 in Figure 4-5 shows how the
instruction �GOTO 000006h � is encoded in the program
memory. Program branch instructions which encode a
relative address offset operate in the same manner.
The offset value stored in a branch instruction repre-
sents the number of single word instructions that the
PC will be offset by. Section 20.0 provides further
details of the instruction set.

URE 4-5: INSTRUCTIONS IN PROGRAM MEMORY

ll instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction
s �flushed� from the pipeline while the new instruction is being fetched and then executed.

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
 MOVLW 55h Fetch 1 Execute 1
 MOVWF PORTB Fetch 2 Execute 2
 BRA SUB_1 Fetch 3 Execute 3
 BSF PORTA, BIT3 (Forced NOP) Fetch 4 Flush (NOP)
 Instruction @ address SUB_1 Fetch SUB_1 Execute SUB_1

Word Address
LSB = 1 LSB = 0 �

Program Memory
Byte Locations �

000000h
000002h
000004h
000006h

Instruction 1: MOVLW 055h 0Fh 55h 000008h
Instruction 2: GOTO 000006h EFh 03h 00000Ah

F0h 00h 00000Ch
Instruction 3: MOVFF 123h, 456h C1h 23h 00000Eh

F4h 56h 000010h
000012h
000014h
39564C-page 40 ! 2006 Microchip Technology Inc.

PIC18FXX2

e
its
g-
d
>
to
e
is

tly
y

o
rd
�.

ial

h
or
d

s-
at
o-
d
ul

y
re
o-
e
d
c-
1
w

4.3 Fast Register Stack

A �fast interrupt return� option is available for interrupts.
A Fast Register Stack is provided for the STATUS,
WREG and BSR registers and are only one in depth.
The stack is not readable or writable and is loaded with
the current value of the corresponding register when
the processor vectors for an interrupt. The values in the
registers are then loaded back into the working regis-
ters, if the FAST RETURN instruction is used to return
from the interrupt.

A low or high priority interrupt source will push values
into the stack registers. If both low and high priority
interrupts are enabled, the stack registers cannot be
used reliably for low priority interrupts. If a high priority
interrupt occurs while servicing a low priority interrupt,
the stack register values stored by the low priority inter-
rupt will be overwritten.

If high priority interrupts are not disabled during low pri-
ority interrupts, users must save the key registers in
software during a low priority interrupt.

If no interrupts are used, the fast register stack can be
used to restore the STATUS, WREG and BSR registers
at the end of a subroutine call. To use the fast register
stack for a subroutine call, a FAST CALL instruction
must be executed.

Example 4-1 shows a source code example that uses
the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK
CODE EXAMPLE

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of th
instruction to fetch for execution. The PC is 21-b
wide. The low byte is called the PCL register. This re
ister is readable and writable. The high byte is calle
the PCH register. This register contains the PC<15:8
bits and is not directly readable or writable. Updates
the PCH register may be performed through th
PCLATH register. The upper byte is called PCU. Th
register contains the PC<20:16> bits and is not direc
readable or writable. Updates to the PCU register ma
be performed through the PCLATU register.

The PC addresses bytes in the program memory. T
prevent the PC from becoming misaligned with wo
instructions, the LSB of PCL is fixed to a value of �0
The PC increments by 2 to address sequent
instructions in the program memory.

The CALL, RCALL, GOTO and program branc
instructions write to the program counter directly. F
these instructions, the contents of PCLATH an
PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be tran
ferred to the program counter by an operation th
writes PCL. Similarly, the upper two bytes of the pr
gram counter will be transferred to PCLATH an
PCLATU by an operation that reads PCL. This is usef
for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction
Cycle

The clock input (from OSC1) is internally divided b
four to generate four non-overlapping quadratu
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pr
gram counter (PC) is incremented every Q1, th
instruction is fetched from the program memory an
latched into the instruction register in Q4. The instru
tion is decoded and executed during the following Q
through Q4. The clocks and instruction execution flo
are shown in Figure 4-4.

FIGURE 4-4: CLOCK/ INSTRUCTION CYCLE

CALL SUB1, FAST ;STATUS, WREG, BSR
;SAVED IN FAST REGISTER
;STACK

�
�

SUB1 �
�
�

RETURN FAST ;RESTORE VALUES SAVED
;IN FAST REGISTER STACK

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC1

Q1

Q2
Q3

Q4
PC

OSC2/CLKO
(RC mode)

PC PC+2 PC+4

Fetch INST (PC)
Execute INST (PC-2)

Fetch INST (PC+2)
Execute INST (PC)

Fetch INST (PC+4)
Execute INST (PC+2)

Internal
Phase
Clock
! 2006 Microchip Technology Inc. DS39564C-page 39

PIC18FXX2

DS

EX

Ex
sig
us
RE
me
is t

EQ

;

;

;

R

AMPLE 7-3: 16 x 16 UNSIGNED
MULTIPLY ROUTINE

ample 7-4 shows the sequence to do a 16 x 16
ned multiply. Equation 7-2 shows the algorithm
ed. The 32-bit result is stored in four registers,
S3:RES0. To account for the sign bits of the argu-
nts, each argument pairs Most Significant bit (MSb)
ested and the appropriate subtractions are done.

UATION 7-2: 16 x 16 SIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 7-4: 16 x 16 SIGNED
MULTIPLY ROUTINE

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L ->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H ->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

ES3:RES0
= ARG1H:ARG1L • ARG2H:ARG2L
= (ARG1H • ARG2H • 216) +

(ARG1H • ARG2L • 28) +
(ARG1L • ARG2H • 28) +
(ARG1L • ARG2L) +
(-1 • ARG2H<7> • ARG1H:ARG1L • 216) +
(-1 • ARG1H<7> • ARG2H:ARG2L • 216)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L ->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H ->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg?
BRA SIGN_ARG1 ; no, check ARG1
MOVF ARG1L, W ;
SUBWF RES2 ;
MOVF ARG1H, W ;
SUBWFB RES3

;
SIGN_ARG1

BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?
BRA CONT_CODE ; no, done
MOVF ARG2L, W ;
SUBWF RES2 ;
MOVF ARG2H, W ;
SUBWFB RES3

;
CONT_CODE
 :
39564C-page 72 © 2006 Microchip Technology Inc.

PIC18FXX2
REGISTER 15-3: SSPSTAT: MSSP STATUS REGISTER (I2C MODE)

R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0

SMP CKE D/A P S R/W UA BF

bit 7 bit 0

bit 7 SMP: Slew Rate Control bit
In Master or Slave mode:
1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)
0 = Slew rate control enabled for High Speed mode (400 kHz)

bit 6 CKE: SMBus Select bit
In Master or Slave mode:
1 = Enable SMBus specific inputs
0 = Disable SMBus specific inputs

bit 5 D/A: Data/Address bit
In Master mode:
Reserved
In Slave mode:
1 = Indicates that the last byte received or transmitted was data
0 = Indicates that the last byte received or transmitted was address

bit 4 P: STOP bit
1 = Indicates that a STOP bit has been detected last
0 = STOP bit was not detected last
Note: This bit is cleared on RESET and when SSPEN is cleared.

bit 3 S: START bit
1 = Indicates that a start bit has been detected last
0 = START bit was not detected last
Note: This bit is cleared on RESET and when SSPEN is cleared.

bit 2 R/W: Read/Write bit Information (I2C mode only)
In Slave mode:
1 = Read
0 = Write

Note: This bit holds the R/W bit information following the last address match. This bit is only
valid from the address match to the next START bit, STOP bit, or not ACK bit.

In Master mode:
1 = Transmit is in progress
0 = Transmit is not in progress
Note: ORing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is

in IDLE mode.

bit 1 UA: Update Address (10-bit Slave mode only)
1 = Indicates that the user needs to update the address in the SSPADD register
0 = Address does not need to be updated

bit 0 BF: Buffer Full Status bit
In Transmit mode:
1 = Receive complete, SSPBUF is full
0 = Receive not complete, SSPBUF is empty
In Receive mode:
1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full
0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
© 2006 Microchip Technology Inc. DS39564C-page 135

PIC18FXX2
TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD
RATE
(Kbps)

FOSC = 40 MHz SPBRG
value

(decimal)

33 MHz SPBRG
value

(decimal)

25 MHz SPBRG
value

(decimal)

20 MHz SPBRG
value

(decimal)KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR

0.3 NA - - NA - - NA - - NA - -

1.2 NA - - NA - - NA - - NA - -

2.4 NA - - NA - - NA - - NA - -

9.6 NA - - 9.60 -0.07 214 9.59 -0.15 162 9.62 +0.16 129

19.2 19.23 +0.16 129 19.28 +0.39 106 19.30 +0.47 80 19.23 +0.16 64

76.8 75.76 -1.36 32 76.39 -0.54 26 78.13 +1.73 19 78.13 +1.73 15

96 96.15 +0.16 25 98.21 +2.31 20 97.66 +1.73 15 96.15 +0.16 12

300 312.50 +4.17 7 294.64 -1.79 6 312.50 +4.17 4 312.50 +4.17 3

500 500 0 4 515.63 +3.13 3 520.83 +4.17 2 416.67 -16.67 2

HIGH 2500 - 0 2062.50 - 0 1562.50 - 0 1250 - 0

LOW 9.77 - 255 8,06 - 255 6.10 - 255 4.88 - 255

BAUD
RATE
(Kbps)

FOSC = 16 MHz SPBRG
value

(decimal)

10 MHz SPBRG
value

(decimal)

7.15909 MHz SPBRG
value

(decimal)

5.0688 MHz SPBRG
value

(decimal)KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR

0.3 NA - - NA - - NA - - NA - -

1.2 NA - - NA - - NA - - NA - -

2.4 NA - - NA - - 2.41 +0.23 185 2.40 0 131

9.6 9.62 +0.16 103 9.62 +0.16 64 9.52 -0.83 46 9.60 0 32

19.2 19.23 +0.16 51 18.94 -1.36 32 19.45 +1.32 22 18.64 -2.94 16

76.8 76.92 +0.16 12 78.13 +1.73 7 74.57 -2.90 5 79.20 +3.13 3

96 100 +4.17 9 89.29 -6.99 6 89.49 -6.78 4 105.60 +10.00 2

300 333.33 +11.11 2 312.50 +4.17 1 447.44 +49.15 0 316.80 +5.60 0

500 500 0 1 625 +25.00 0 447.44 -10.51 0 NA - -

HIGH 1000 - 0 625 - 0 447.44 - 0 316.80 - 0

LOW 3.91 - 255 2.44 - 255 1.75 - 255 1.24 - 255

BAUD
RATE
(Kbps)

FOSC = 4 MHz SPBRG
value

(decimal)

3.579545 MHz SPBRG
value

(decimal)

1 MHz SPBRG
value

(decimal)

32.768 kHz SPBRG
value

(decimal)KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR

0.3 NA - - NA - - 0.30 +0.16 207 0.29 -2.48 6

1.2 1.20 +0.16 207 1.20 +0.23 185 1.20 +0.16 51 1.02 -14.67 1

2.4 2.40 +0.16 103 2.41 +0.23 92 2.40 +0.16 25 2.05 -14.67 0

9.6 9.62 +0.16 25 9.73 +1.32 22 8.93 -6.99 6 NA - -

19.2 19.23 +0.16 12 18.64 -2.90 11 20.83 +8.51 2 NA - -

76.8 NA - - 74.57 -2.90 2 62.50 -18.62 0 NA - -

96 NA - - 111.86 +16.52 1 NA - - NA - -

300 NA - - 223.72 -25.43 0 NA - - NA - -

500 NA - - NA - - NA - - NA - -

HIGH 250 - 0 55.93 - 0 62.50 - 0 2.05 - 0

LOW 0.98 - 255 0.22 - 255 0.24 - 255 0.008 - 255
© 2006 Microchip Technology Inc. DS39564C-page 171

