

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f252t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

PIC18F242	PIC18F442
PIC18F252	PIC18F452

These devices come in 28-pin and 40/44-pin packages. The 28-pin devices do not have a Parallel Slave Port (PSP) implemented and the number of Analog-to-Digital (A/D) converter input channels is reduced to 5. An overview of features is shown in Table 1-1.

TABLE 1-1: DEVICE FEATURES

		1	1	
Features	PIC18F242	PIC18F252	PIC18F442	PIC18F452
Operating Frequency	DC - 40 MHz	DC - 40 MHz	DC - 40 MH	z DC - 40 MHz
Program Memory (Bytes)	16K	32K	16K	32K
Program Memory (Instructions)	8192	16384	8192	16384
Data Memory (Bytes)	768	1536	768	1536
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	17	17	18	18
I/O Ports	Ports A, B, C	Ports A, B, C	Ports A, B, C, D	, E Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Module	es 2	2	2	2
Serial Communications	MSSP, Addressable USART	MSSP, Addressable USART	MSSP, Addressable USART	MSSP, Addressable USART
Parallel Communications			PSP	PSP
10-bit Analog-to-Digital Module	5 input chann	els 5 input char	nnels 8 input ch	annels 8 input chan
RESETS (and Delays)	POR, BOR, RESET Instruction Stack Full, Stack Underflow (PWRT, OST)	POR, BOR, , RESET Instruction Stack Full, Stack Underflow (PWRT, OST)	POR, BOR, RESET Instruction Stack Full, Stack Underflow (PWRT, OST)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST)
Programmable Low Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Rese	Yes	Yes	Yes	Yes
Instruction Set	75 Instruction	s 75 Instructi	ons 75 Instruc	tions 75 Instructi
Packages	28-pin DIP 28-pin SOIC	28-pin DIP 28-pin SOIC	40-pin DIP 44-pin PLCC 44-pin TQFP	40-pin DIP 44-pin PLCC 44-pin TQFP

The following two figures are device block diagrams sorted by pin count: 28-pin for Figure 1-1 and 40/44-pin for Figure 1-2. The 28-pin and 40/44-pin pinouts are listed in Table 1-2 and Table 1-3, respectively.

4.3 Fast Register Stack

A fast interrupt return option is available for interrupts. The program counter (PC) specifies the address of the A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth.

The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if th€AST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be The PC addresses bytes in the program memory. To used reliably for low priority interrupts. If a high priority prevent the PC from becoming misaligned with word interrupt occurs while servicing a low priority interrupt, instructions, the LSB of PCL is fixed to a value of 0. the stack register values stored by the low priority inter-The PC increments by 2 to address sequential rupt will be overwritten.

If high priority interrupts are not disabled during low pri- The CALL, RCALL, GOTO ority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine callFAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

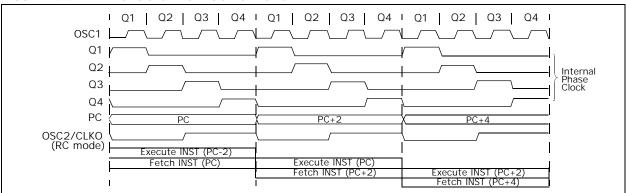
EXAM	PLE 4-1:	FAST REGISTER STACK CODE EXAMPLE
CALL	SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1		
F	RETURN FAST	RESTORE VALUES SAVED

44 PCL, PCLATH and PCLATU

instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register may be performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

instructions in the program memory.

and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.


The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 **Clocking Scheme/Instruction** Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping guadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-4.

FIGURE 4-4: CLOCK/ INSTRUCTION CYCLE

IN FAST REGISTER STACK

PIC18FXX2

EXAMPLE 7-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L,	W		
	MULWF	-		;	ARG1L * ARG2L ->
				'	PRODH: PRODL
	MOVFF	PRODH,	RES1		
	MOVFF				
	110 111	110001,	ICED 0	'	
'	MOVF	ARG1H,	W		
	MULWF				ARG1H * ARG2H ->
	пошл	1110211			PRODH: PRODL
	MOVFF	PRODH,	PEGS		TRODITIRODE
		PRODL,			
	110 11 1	IRODE,	KH02	'	
;	MOVF	ARG1L,	W		
	MULWF				ARG1L * ARG2H ->
	MUT	ARGZII		'	PRODH: PRODL
	MOVF	PRODL,	TAT	;	FRODITERRODE
	ADDWF				Add cross
		PRODH,			products
		RES2,		;	produces
	CLRF	-	1	;	
		RES3,	r.		
	ADDWIC	кцор,	Ľ	;	
'	MOVF	ARG1H,	TAT		
	MULWF		**	;	ARG1H * ARG2L ->
	MOLWF	AKGZL		'	PRODH:PRODL
	MOVF	PRODL,	TAT.		
	ADDWF			;	Add cross
	MOVF				products
		RES2,			products
	CLRF		г	;	
		RES3,	r.	;	
	ADDWFC	керр,	г	;	

Example 7-4 shows the sequence to do a 16 x 16 signed multiply. Equation 7-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 7-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:R	ESO
=	ARG1H:ARG1L • ARG2H:ARG2L
=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H \bullet 2^8) +$
	$(ARG1L \bullet ARG2L) +$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16})$

EXAMPLE 7-4: 16 x 16 SIGNED MULTIPLY ROUTINE

			-		
	MOVF	ARG1L,	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
					PRODH: PRODL
	MOVFF	PRODH,	RES1	;	
	MOVFF	PRODL,			
;					
	MOVF	ARG1H,	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES3	;	
	MOVFF	PRODL,	RES2	;	
;					
	MOVF	ARG1L,	W		
	MULWF	ARG2H		;	ARG1L * ARG2H ->
				;	PRODH: PRODL
	MOVF	PRODL,	W	;	
	ADDWF		F	;	Add cross
	MOVF	PRODH,	W	;	products
	ADDWFC		F	;	-
	CLRF	WREG		;	
	ADDWFC	RES3,	F	;	
;					
	MOVF	ARG1H,	W	;	
	MULWF	ARG2L		;	ARG1H * ARG2L ->
					PRODH: PRODL
	MOVF	PRODL,	W	;	
	ADDWF		F		Add cross
	MOVF	PRODH,	W		products
	ADDWFC		F	;	-
	CLRF	WREG		;	
	ADDWFC	RES3,	F	;	
;					
	BTFSS	ARG2H,	7	;	ARG2H:ARG2L neg?
	BRA	SIGN AR	G1	;	no, check ARG1
	MOVF	ARG1L,	W	;	
	SUBWF	RES2		;	
	MOVF	ARG1H,	W	;	
	SUBWFB				
;					
SIG	N ARG1				
	BTFSS	ARG1H,	7	;	ARG1H:ARG1L neg?
	BRA	CONT CC			no, done
	MOVF	ARG2L,	W	;	
	SUBWF	RES2		;	
	MOVF	ARG2H,	W	;	
	SUBWFB				
;					
	T CODE				
	-:				

REGISTER 15-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7				•			bit 0
oit 7	In Master of	Rate Contr	le:	Standard Cn.	and mode (100 kHz and	1 MU-)	
			nabled for H				I IVIFIZ)	
oit 6	CKE: SMB	sus Select bi	t	0	,			
		e SMBus spe e SMBus spe						
oit 5		Address bit						
		es that the la	ast byte recei ast byte recei					
oit 4		es that a ST	OP bit has be letected last	een detecte	d last			
	Note:	This bit is cl	eared on RE	SET and w	hen SSPEN	is cleared.		
oit 3		es that a sta	rt bit has bee detected las		last			
	Note:		eared on RE			is cleared.		
oit 2	R/W: Read In Slave m 1 = Read 0 = Write		ormation (I ² (C mode only	()			
	Note:					ne last addres bit, STOP b		
		<u>mode:</u> nit is in progr nit is not in p						
	Note:	ORing this I in IDLE mod		RSEN, PE	N, RCEN, o	r ACKEN wil	l indicate if t	he MSSP is
oit 1	1 = Indicate	es that the u	0-bit Slave r ser needs to need to be up	update the	address in t	he SSPADD	register	
oit 0	BF: Buffer	Full Status b	oit					
		e complete,	SSPBUF is f ete, SSPBUF					
		ansmit in pro				nd STOP bits STOP bits),		
	Legend:							
	R = Reada	ble bit	W = Writab	le bit	U = Unimp	lemented bit	, read as '0'	
	- n = Value	at POR	'1' = Bit is s	et	'0' = Bit is	cleared	x = Bit is ur	hknown

BAUD	Fosc = 40 MHz		Fosc = 40 MHz SPBRG		G 33 MHz SPBRG		25 MHz SPBRG		20	SPBRG		
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR		KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	9.60	-0.07	214	9.59	-0.15	162	9.62	+0.16	129
19.2	19.23	+0.16	129	19.28	+0.39	106	19.30	+0.47	80	19.23	+0.16	64
76.8	75.76	-1.36	32	76.39	-0.54	26	78.13	+1.73	19	78.13	+1.73	15
96	96.15	+0.16	25	98.21	+2.31	20	97.66	+1.73	15	96.15	+0.16	12
300	312.50	+4.17	7	294.64	-1.79	6	312.50	+4.17	4	312.50	+4.17	3
500	500	0	4	515.63	+3.13	3	520.83	+4.17	2	416.67	-16.67	2
HIGH	2500	-	0	2062.50	-	0	1562.50	-	0	1250	-	0
LOW	9.77	-	255	8,06	-	255	6.10	-	255	4.88	-	255

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc =	Fosc = 16 MHz		10 MHz		SPBRG	7.1590	9 MHz	SPBRG	5.068	8 MHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	2.41	+0.23	185	2.40	0	131
9.6	9.62	+0.16	103	9.62	+0.16	64	9.52	-0.83	46	9.60	0	32
19.2	19.23	+0.16	51	18.94	-1.36	32	19.45	+1.32	22	18.64	-2.94	16
76.8	76.92	+0.16	12	78.13	+1.73	7	74.57	-2.90	5	79.20	+3.13	3
96	100	+4.17	9	89.29	-6.99	6	89.49	-6.78	4	105.60	+10.00	2
300	333.33	+11.11	2	312.50	+4.17	1	447.44	+49.15	0	316.80	+5.60	0
500	500	0	1	625	+25.00	0	447.44	-10.51	0	NA	-	-
HIGH	1000	-	0	625	-	0	447.44	-	0	316.80	-	0
LOW	3.91	-	255	2.44	-	255	1.75	-	255	1.24	-	255

BAUD	Fosc =	4 MHz	SPBRG	^{3.579545 MHz} S		3.579545 MHz SPBRG		1 N	1Hz	SPBRG	32.76	8 kHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	
0.3	NA	-	-	NA	-	-	0.30	+0.16	207	0.29	-2.48	6	
1.2	1.20	+0.16	207	1.20	+0.23	185	1.20	+0.16	51	1.02	-14.67	1	
2.4	2.40	+0.16	103	2.41	+0.23	92	2.40	+0.16	25	2.05	-14.67	0	
9.6	9.62	+0.16	25	9.73	+1.32	22	8.93	-6.99	6	NA	-	-	
19.2	19.23	+0.16	12	18.64	-2.90	11	20.83	+8.51	2	NA	-	-	
76.8	NA	-	-	74.57	-2.90	2	62.50	-18.62	0	NA	-	-	
96	NA	-	-	111.86	+16.52	1	NA	-	-	NA	-	-	
300	NA	-	-	223.72	-25.43	0	NA	-	-	NA	-	-	
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	
HIGH	250	-	0	55.93	-	0	62.50	-	0	2.05	-	0	
LOW	0.98	-	255	0.22	-	255	0.24	-	255	0.008	-	255	