
Microchip Technology - PIC18F442-E/L Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 34

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 4.2V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type External

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 44-LCC (J-Lead)

Supplier Device Package 44-PLCC (16.59x16.59)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f442-e-l

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f442-e-l-4414740
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18FXX2
If the main oscillator is configured for HS-PLL mode, an
oscillator start-up time (TOST) plus an additional PLL
time-out (TPLL) will occur. The PLL time-out is typically
2 ms and allows the PLL to lock to the main oscillator
frequency. A timing diagram indicating the transition
from the Timer1 oscillator to the main oscillator for
HS-PLL mode is shown in Figure 2-10.

FIGURE 2-10: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)

If the main oscillator is configured in the RC, RCIO, EC
or ECIO modes, there is no oscillator start-up time-out.
Operation will resume after eight cycles of the main
oscillator have been counted. A timing diagram, indi-
cating the transition from the Timer1 oscillator to the
main oscillator for RC, RCIO, EC and ECIO modes, is
shown in Figure 2-11.

FIGURE 2-11: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)

Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2

OSC1

Internal System

SCS
(OSCCON<0>)

Program Counter PC PC + 2

Note 1: TOST = 1024 TOSC (drawing not to scale).

T1OSI

Clock

TOST

Q3

PC + 4

TPLL

TOSC

TT1P

TSCS

Q4

OSC2

PLL Clock
Input 1 2 3 4 5 6 7 8

Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3

OSC1

Internal System

SCS
(OSCCON<0>)

Program Counter PC PC + 2

Note 1: RC Oscillator mode assumed.

PC + 4

T1OSI

Clock

OSC2

Q4
TT1P

TOSC

TSCS

1 2 3 4 5 6 7 8
© 2006 Microchip Technology Inc. DS39564C-page 23

PIC18FXX2
4.3 Fast Register Stack

A “fast interrupt return” option is available for interrupts.
A Fast Register Stack is provided for the STATUS,
WREG and BSR registers and are only one in depth.
The stack is not readable or writable and is loaded with
the current value of the corresponding register when
the processor vectors for an interrupt. The values in the
registers are then loaded back into the working regis-
ters, if the FAST RETURN instruction is used to return
from the interrupt.

A low or high priority interrupt source will push values
into the stack registers. If both low and high priority
interrupts are enabled, the stack registers cannot be
used reliably for low priority interrupts. If a high priority
interrupt occurs while servicing a low priority interrupt,
the stack register values stored by the low priority inter-
rupt will be overwritten.

If high priority interrupts are not disabled during low pri-
ority interrupts, users must save the key registers in
software during a low priority interrupt.

If no interrupts are used, the fast register stack can be
used to restore the STATUS, WREG and BSR registers
at the end of a subroutine call. To use the fast register
stack for a subroutine call, a FAST CALL instruction
must be executed.

Example 4-1 shows a source code example that uses
the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK
CODE EXAMPLE

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21-bits
wide. The low byte is called the PCL register. This reg-
ister is readable and writable. The high byte is called
the PCH register. This register contains the PC<15:8>
bits and is not directly readable or writable. Updates to
the PCH register may be performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits and is not directly
readable or writable. Updates to the PCU register may
be performed through the PCLATU register.

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the LSB of PCL is fixed to a value of ’0’.
The PC increments by 2 to address sequential
instructions in the program memory.

The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be trans-
ferred to the program counter by an operation that
writes PCL. Similarly, the upper two bytes of the pro-
gram counter will be transferred to PCLATH and
PCLATU by an operation that reads PCL. This is useful
for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction
Cycle

The clock input (from OSC1) is internally divided by
four to generate four non-overlapping quadrature
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-
gram counter (PC) is incremented every Q1, the
instruction is fetched from the program memory and
latched into the instruction register in Q4. The instruc-
tion is decoded and executed during the following Q1
through Q4. The clocks and instruction execution flow
are shown in Figure 4-4.

FIGURE 4-4: CLOCK/INSTRUCTION CYCLE

CALL SUB1, FAST ;STATUS, WREG, BSR
;SAVED IN FAST REGISTER
;STACK

•
•

SUB1 •
•
•

RETURN FAST ;RESTORE VALUES SAVED
;IN FAST REGISTER STACK

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

Q1

Q2

Q3

Q4

PC

OSC2/CLKO
(RC mode)

PC PC+2 PC+4

Fetch INST (PC)
Execute INST (PC-2)

Fetch INST (PC+2)
Execute INST (PC)

Fetch INST (PC+4)
Execute INST (PC+2)

Internal
Phase
Clock
© 2006 Microchip Technology Inc. DS39564C-page 39

PIC18FXX2
5.0 FLASH PROGRAM MEMORY

The FLASH Program Memory is readable, writable,
and erasable during normal operation over the entire
VDD range.

A read from program memory is executed on one byte
at a time. A write to program memory is executed on
blocks of 8 bytes at a time. Program memory is erased
in blocks of 64 bytes at a time. A bulk erase operation
may not be issued from user code.

Writing or erasing program memory will cease instruc-
tion fetches until the operation is complete. The pro-
gram memory cannot be accessed during the write or
erase, therefore, code cannot execute. An internal pro-
gramming timer terminates program memory writes
and erases.

A value written to program memory does not need to be
a valid instruction. Executing a program memory
location that forms an invalid instruction results in a
NOP.

5.1 Table Reads and Table Writes

In order to read and write program memory, there are
two operations that allow the processor to move bytes
between the program memory space and the data
RAM:

• Table Read (TBLRD)

• Table Write (TBLWT)

The program memory space is 16-bits wide, while the
data RAM space is 8-bits wide. Table Reads and Table
Writes move data between these two memory spaces
through an 8-bit register (TABLAT).

Table Read operations retrieve data from program
memory and places it into the data RAM space.
Figure 5-1 shows the operation of a Table Read with
program memory and data RAM.

Table Write operations store data from the data mem-
ory space into holding registers in program memory.
The procedure to write the contents of the holding reg-
isters into program memory is detailed in Section 5.5,
'”Writing to FLASH Program Memory”. Figure 5-2
shows the operation of a Table Write with program
memory and data RAM.

Table operations work with byte entities. A table block
containing data, rather than program instructions, is not
required to be word aligned. Therefore, a table block
can start and end at any byte address. If a Table Write
is being used to write executable code into program
memory, program instructions will need to be word
aligned.

FIGURE 5-1: TABLE READ OPERATION

Table Pointer(1)

Table Latch (8-bit)
Program Memory

TBLPTRH TBLPTRL
TABLAT

TBLPTRU

Instruction: TBLRD*

Note 1: Table Pointer points to a byte in program memory.

Program Memory
(TBLPTR)
© 2006 Microchip Technology Inc. DS39564C-page 55

PIC18FXX2
6.3 Reading the Data EEPROM
Memory

To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD con-
trol bit (EECON1<7>), clear the CFGS control bit

(EECON1<6>), and then set control bit RD
(EECON1<0>). The data is available for the very next
instruction cycle; therefore, the EEDATA register can
be read by the next instruction. EEDATA will hold this
value until another read operation, or until it is written to
by the user (during a write operation).

EXAMPLE 6-1: DATA EEPROM READ

6.4 Writing to the Data EEPROM
Memory

To write an EEPROM data location, the address must
first be written to the EEADR register and the data writ-
ten to the EEDATA register. Then the sequence in
Example 6-2 must be followed to initiate the write cycle.

The write will not initiate if the above sequence is not
exactly followed (write 55h to EECON2, write AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code exe-

cution (i.e., runaway programs). The WREN bit should
be kept clear at all times, except when updating the
EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1,
EEADR and EDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. The WREN bit must be set on a previous instruc-
tion. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the EEPROM Write Complete
Interrupt Flag bit (EEIF) is set. The user may either
enable this interrupt, or poll this bit. EEIF must be
cleared by software.

EXAMPLE 6-2: DATA EEPROM WRITE

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access program FLASH or Data EEPROM memory
BSF EECON1, RD ; EEPROM Read
MOVF EEDATA, W ; W = EEDATA

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
MOVLW DATA_EE_DATA ;
MOVWF EEDATA ; Data Memory Value to write
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access program FLASH or Data EEPROM memory
BSF EECON1, WREN ; Enable writes

BCF INTCON, GIE ; Disable interrupts
Required MOVLW 55h ;
Sequence MOVWF EECON2 ; Write 55h

MOVLW AAh ;
MOVWF EECON2 ; Write AAh
BSF EECON1, WR ; Set WR bit to begin write
BSF INTCON, GIE ; Enable interrupts

. ; user code execution

.

.
BCF EECON1, WREN ; Disable writes on write complete (EEIF set)
© 2006 Microchip Technology Inc. DS39564C-page 67

PIC18FXX2
NOTES:
DS39564C-page 86 © 2006 Microchip Technology Inc.

PIC18FXX2
FIGURE 10-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

FIGURE 10-2: TIMER0 BLOCK DIAGRAM IN 16-BIT MODE

Note: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.

RA4/T0CKI pin

T0SE

0

1

1

0

T0CS

FOSC/4

Programmable
Prescaler

Sync with
Internal
Clocks

TMR0L

(2 TCY delay)

Data Bus

8

PSA

T0PS2, T0PS1, T0PS0
Set Interrupt

Flag bit TMR0IF
on Overflow

3

Note: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.

T0CKI pin

T0SE

0

1

1

0

T0CS

FOSC/4

Programmable
Prescaler

Sync with
Internal
Clocks TMR0L

(2 TCY delay)

Data Bus<7:0>

8

PSA
T0PS2, T0PS1, T0PS0

Set Interrupt
Flag bit TMR0IF

on Overflow

3

TMR0

TMR0H

 High Byte

8
8

8

Read TMR0L

Write TMR0L
DS39564C-page 104 © 2006 Microchip Technology Inc.

PIC18FXX2
10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In
Timer mode, the Timer0 module will increment every
instruction cycle (without prescaler). If the TMR0L reg-
ister is written, the increment is inhibited for the follow-
ing two instruction cycles. The user can work around
this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the T0CS bit. In
Counter mode, Timer0 will increment, either on every
rising or falling edge of pin RA4/T0CKI. The increment-
ing edge is determined by the Timer0 Source Edge
Select bit (T0SE). Clearing the T0SE bit selects the ris-
ing edge. Restrictions on the external clock input are
discussed below.

When an external clock input is used for Timer0, it must
meet certain requirements. The requirements ensure
the external clock can be synchronized with the internal
phase clock (TOSC). Also, there is a delay in the actual
incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0
module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the
prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0
module. When the prescaler is assigned to the Timer0
module, prescale values of 1:2, 1:4,..., 1:256 are
selectable.

When assigned to the Timer0 module, all instructions
writing to the TMR0L register (e.g., CLRF TMR0,
MOVWF TMR0, BSF TMR0, x....etc.) will clear the
prescaler count.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software con-
trol, (i.e., it can be changed “on-the-fly” during program
execution).

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 reg-
ister overflows from FFh to 00h in 8-bit mode, or FFFFh
to 0000h in 16-bit mode. This overflow sets the TMR0IF
bit. The interrupt can be masked by clearing the
TMR0IE bit. The TMR0IE bit must be cleared in soft-
ware by the Timer0 module Interrupt Service Routine
before re-enabling this interrupt. The TMR0 interrupt
cannot awaken the processor from SLEEP, since the
timer is shut-off during SLEEP.

10.4 16-Bit Mode Timer Reads and
Writes

TMR0H is not the high byte of the timer/counter in
16-bit mode, but is actually a buffered version of the
high byte of Timer0 (refer to Figure 10-2). The high byte
of the Timer0 counter/timer is not directly readable nor
writable. TMR0H is updated with the contents of the
high byte of Timer0 during a read of TMR0L. This pro-
vides the ability to read all 16-bits of Timer0 without
having to verify that the read of the high and low byte
were valid due to a rollover between successive reads
of the high and low byte.

A write to the high byte of Timer0 must also take place
through the TMR0H buffer register. Timer0 high byte is
updated with the contents of TMR0H when a write
occurs to TMR0L. This allows all 16-bits of Timer0 to be
updated at once.

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Note: Writing to TMR0L when the prescaler is
assigned to Timer0 will clear the prescaler
count, but will not change the prescaler
assignment.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR, BOR

Value on
All Other
RESETS

TMR0L Timer0 Module Low Byte Register xxxx xxxx uuuu uuuu

TMR0H Timer0 Module High Byte Register 0000 0000 0000 0000

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

T0CON TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0 1111 1111 1111 1111

TRISA — PORTA Data Direction Register -111 1111 -111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.
© 2006 Microchip Technology Inc. DS39564C-page 105

PIC18FXX2
REGISTER 15-2: SSPCON1: MSSP CONTROL REGISTER1 (SPI MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

bit 7 bit 0

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)
1 = The SSPBUF register is written while it is still transmitting the previous word

(must be cleared in software)
0 = No collision

bit 6 SSPOV: Receive Overflow Indicator bit
SPI Slave mode:
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case

of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode.The user
must read the SSPBUF, even if only transmitting data, to avoid setting overflow
(must be cleared in software).

0 = No overflow

Note: In Master mode, the overflow bit is not set since each new reception (and
transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit

1 = Enables serial port and configures SCK, SDO, SDI, and SS as serial port pins
0 = Disables serial port and configures these pins as I/O port pins

Note: When enabled, these pins must be properly configured as input or output.

bit 4 CKP: Clock Polarity Select bit
1 = IDLE state for clock is a high level
0 = IDLE state for clock is a low level

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin
0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled
0011 = SPI Master mode, clock = TMR2 output/2
0010 = SPI Master mode, clock = FOSC/64
0001 = SPI Master mode, clock = FOSC/16
0000 = SPI Master mode, clock = FOSC/4

Note: Bit combinations not specifically listed here are either reserved, or implemented in
I2C mode only.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
© 2006 Microchip Technology Inc. DS39564C-page 127

PIC18FXX2
15.4.5 GENERAL CALL ADDRESS
SUPPORT

The addressing procedure for the I2C bus is such that
the first byte after the START condition usually deter-
mines which device will be the slave addressed by the
master. The exception is the general call address,
which can address all devices. When this address is
used, all devices should, in theory, respond with an
Acknowledge.

The general call address is one of eight addresses
reserved for specific purposes by the I2C protocol. It
consists of all 0’s with R/W = 0.

The general call address is recognized when the Gen-
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>
set). Following a START bit detect, 8-bits are shifted
into the SSPSR and the address is compared against
the SSPADD. It is also compared to the general call
address and fixed in hardware.

If the general call address matches, the SSPSR is
transferred to the SSPBUF, the BF flag bit is set (eighth
bit), and on the falling edge of the ninth bit (ACK bit),
the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the inter-
rupt can be checked by reading the contents of the
SSPBUF. The value can be used to determine if the
address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated
for the second half of the address to match, and the UA
bit is set (SSPSTAT<1>). If the general call address is
sampled when the GCEN bit is set, while the slave is
configured in 10-bit Address mode, then the second
half of the address is not necessary, the UA bit will not
be set, and the slave will begin receiving data after the
Acknowledge (Figure 15-15).

FIGURE 15-15: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE
(7 OR 10-BIT ADDRESS MODE)

SDA

SCL

S

SSPIF

BF (SSPSTAT<0>)

SSPOV (SSPCON1<6>)

Cleared in software

SSPBUF is read

R/W = 0
ACKGeneral Call Address

Address is compared to General Call Address

GCEN (SSPCON2<7>)

Receiving data ACK

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

D7 D6 D5 D4 D3 D2 D1 D0

after ACK, set interrupt

'0'

'1'
DS39564C-page 148 © 2006 Microchip Technology Inc.

PIC18FXX2
15.4.10 I2C MASTER MODE
TRANSMISSION

Transmission of a data byte, a 7-bit address, or the
other half of a 10-bit address is accomplished by simply
writing a value to the SSPBUF register. This action will
set the buffer full flag bit, BF, and allow the baud rate
generator to begin counting and start the next transmis-
sion. Each bit of address/data will be shifted out onto
the SDA pin after the falling edge of SCL is asserted
(see data hold time specification parameter 106). SCL
is held low for one baud rate generator rollover count
(TBRG). Data should be valid before SCL is released
high (see data setup time specification parameter 107).
When the SCL pin is released high, it is held that way
for TBRG. The data on the SDA pin must remain stable
for that duration and some hold time after the next fall-
ing edge of SCL. After the eighth bit is shifted out (the
falling edge of the eighth clock), the BF flag is cleared
and the master releases SDA. This allows the slave
device being addressed to respond with an ACK bit
during the ninth bit time if an address match occurred
or if data was received properly. The status of ACK is
written into the ACKDT bit on the falling edge of the
ninth clock. If the master receives an Acknowledge, the
Acknowledge status bit, ACKSTAT, is cleared. If not,
the bit is set. After the ninth clock, the SSPIF bit is set
and the master clock (baud rate generator) is sus-
pended until the next data byte is loaded into the
SSPBUF, leaving SCL low and SDA unchanged
(Figure 15-21).

After the write to the SSPBUF, each bit of address will
be shifted out on the falling edge of SCL until all seven
address bits and the R/W bit are completed. On the fall-
ing edge of the eighth clock, the master will de-assert
the SDA pin, allowing the slave to respond with an
Acknowledge. On the falling edge of the ninth clock, the
master will sample the SDA pin to see if the address
was recognized by a slave. The status of the ACK bit is
loaded into the ACKSTAT status bit (SSPCON2<6>).
Following the falling edge of the ninth clock transmis-
sion of the address, the SSPIF is set, the BF flag is
cleared and the baud rate generator is turned off until
another write to the SSPBUF takes place, holding SCL
low and allowing SDA to float.

15.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set
when the CPU writes to SSPBUF and is cleared when
all 8 bits are shifted out.

15.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is
already in progress (i.e., SSPSR is still shifting out a
data byte), the WCOL is set and the contents of the
buffer are unchanged (the write doesn’t occur).

WCOL must be cleared in software.

15.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is
cleared when the slave has sent an Acknowledge (ACK
= 0), and is set when the slave does not Acknowledge
(ACK = 1). A slave sends an Acknowledge when it has
recognized its address (including a general call) or
when the slave has properly received its data.

15.4.11 I2C MASTER MODE RECEPTION

Master mode reception is enabled by programming the
receive enable bit, RCEN (SSPCON2<3>).

The baud rate generator begins counting, and on each
rollover, the state of the SCL pin changes (high to low/
low to high) and data is shifted into the SSPSR. After
the falling edge of the eighth clock, the receive enable
flag is automatically cleared, the contents of the
SSPSR are loaded into the SSPBUF, the BF flag bit is
set, the SSPIF flag bit is set and the baud rate genera-
tor is suspended from counting, holding SCL low. The
MSSP is now in IDLE state, awaiting the next com-
mand. When the buffer is read by the CPU, the BF flag
bit is automatically cleared. The user can then send an
Acknowledge bit at the end of reception, by setting the
Acknowledge sequence enable bit, ACKEN
(SSPCON2<4>).

15.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address
or data byte is loaded into SSPBUF from SSPSR. It is
cleared when the SSPBUF register is read.

15.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits
are received into the SSPSR and the BF flag bit is
already set from a previous reception.

15.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is
already in progress (i.e., SSPSR is still shifting in a data
byte), the WCOL bit is set and the contents of the buffer
are unchanged (the write doesn’t occur).

Note: In the MSSP module, the RCEN bit must
be set after the ACK sequence or the
RCEN bit will be disregarded.
© 2006 Microchip Technology Inc. DS39564C-page 155

PIC18FXX2
16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode
in the fact that the shift clock is supplied externally at
the RC6/TX/CK pin (instead of being supplied internally
in Master mode). This allows the device to transfer or
receive data while in SLEEP mode. Slave mode is
entered by clearing bit CSRC (TXSTA<7>).

16.4.1 USART SYNCHRONOUS SLAVE
TRANSMIT

The operation of the Synchronous Master and Slave
modes are identical, except in the case of the SLEEP
mode.

If two words are written to the TXREG and then the
SLEEP instruction is executed, the following will occur:

a) The first word will immediately transfer to the
TSR register and transmit.

b) The second word will remain in TXREG register.

c) Flag bit TXIF will not be set.
d) When the first word has been shifted out of TSR,

the TXREG register will transfer the second
word to the TSR and flag bit TXIF will now be
set.

e) If enable bit TXIE is set, the interrupt will wake
the chip from SLEEP. If the global interrupt is
enabled, the program will branch to the interrupt
vector.

To set up a Synchronous Slave Transmission:

1. Enable the synchronous slave serial port by set-
ting bits SYNC and SPEN and clearing bit
CSRC.

2. Clear bits CREN and SREN.
3. If interrupts are desired, set enable bit TXIE.
4. If 9-bit transmission is desired, set bit TX9.

5. Enable the transmission by setting enable bit
TXEN.

6. If 9-bit transmission is selected, the ninth bit
should be loaded in bit TX9D.

7. Start transmission by loading data to the TXREG
register.

8. If using interrupts, ensure that the GIE and PEIE
bits in the INTCON register (INTCON<7:6>) are
set.

TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR, BOR

Value on
All Other
RESETS

INTCON GIE/
GIEH

PEIE/
GIEL

TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000

PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000

IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 -00x 0000 -00x

TXREG USART Transmit Register 0000 0000 0000 0000

TXSTA CSRC TX9 TXEN SYNC — BRGH TRMT TX9D 0000 -010 0000 -010

SPBRG Baud Rate Generator Register 0000 0000 0000 0000

Legend: x = unknown, - = unimplemented, read as '0'.
Shaded cells are not used for Synchronous Slave Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits
clear.
© 2006 Microchip Technology Inc. DS39564C-page 179

PIC18FXX2
18.2.1 REFERENCE VOLTAGE SET POINT

The Internal Reference Voltage of the LVD module may
be used by other internal circuitry (the Programmable
Brown-out Reset). If these circuits are disabled (lower
current consumption), the reference voltage circuit
requires a time to become stable before a low voltage
condition can be reliably detected. This time is invariant
of system clock speed. This start-up time is specified in
electrical specification parameter 36. The low voltage
interrupt flag will not be enabled until a stable reference
voltage is reached. Refer to the waveform in Figure 18-4.

18.2.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and
voltage divider are enabled and will consume static cur-
rent. The voltage divider can be tapped from multiple
places in the resistor array. Total current consumption,
when enabled, is specified in electrical specification
parameter #D022B.

18.3 Operation During SLEEP

When enabled, the LVD circuitry continues to operate
during SLEEP. If the device voltage crosses the trip
point, the LVDIF bit will be set and the device will wake-
up from SLEEP. Device execution will continue from
the interrupt vector address if interrupts have been
globally enabled.

18.4 Effects of a RESET

A device RESET forces all registers to their RESET
state. This forces the LVD module to be turned off.
© 2006 Microchip Technology Inc. DS39564C-page 193

PIC18FXX2
REGISTER 19-8: CONFIGURATION REGISTER 6 LOW (CONFIG6L: BYTE ADDRESS 30000Ah)

REGISTER 19-9: CONFIGURATION REGISTER 6 HIGH (CONFIG6H: BYTE ADDRESS 30000Bh)

U-0 U-0 U-0 U-0 R/C-1 R/C-1 R/C-1 R/C-1

— — — — WRT3(1) WRT2(1) WRT1 WRT0

bit 7 bit 0

bit 7-4 Unimplemented: Read as ‘0’

bit 3 WRT3: Write Protection bit(1)

1 = Block 3 (006000-007FFFh) not write protected
0 = Block 3 (006000-007FFFh) write protected

bit 2 WRT2: Write Protection bit(1)

1 = Block 2 (004000-005FFFh) not write protected
0 = Block 2 (004000-005FFFh) write protected

bit 1 WRT1: Write Protection bit

1 = Block 1 (002000-003FFFh) not write protected
0 = Block 1 (002000-003FFFh) write protected

bit 0 WRT0: Write Protection bit
1 = Block 0 (000200h-001FFFh) not write protected
0 = Block 0 (000200h-001FFFh) write protected

Note 1: Unimplemented in PIC18FX42 devices; maintain this bit set.

Legend:

R = Readable bit C = Clearable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state

R/C-1 R/C-1 C-1 U-0 U-0 U-0 U-0 U-0

WRTD WRTB WRTC — — — — —

bit 7 bit 0

bit 7 WRTD: Data EEPROM Write Protection bit
1 = Data EEPROM not write protected
0 = Data EEPROM write protected

bit 6 WRTB: Boot Block Write Protection bit
1 = Boot Block (000000-0001FFh) not write protected
0 = Boot Block (000000-0001FFh) write protected

bit 5 WRTC: Configuration Register Write Protection bit

1 = Configuration registers (300000-3000FFh) not write protected
0 = Configuration registers (300000-3000FFh) write protected

Note: This bit is read only, and cannot be changed in User mode.

bit 4-0 Unimplemented: Read as ‘0’

Legend:

R = Readable bit C =Clearable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state
DS39564C-page 200 © 2006 Microchip Technology Inc.

PIC18FXX2
REGISTER 19-12: DEVICE ID REGISTER 1 FOR PIC18FXX2 (DEVID1: BYTE ADDRESS 3FFFFEh)

REGISTER 19-13: DEVICE ID REGISTER 2 FOR PIC18FXX2 (DEVID2: BYTE ADDRESS 3FFFFFh)

R R R R R R R R

DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0

bit 7 bit 0

bit 7-5 DEV2:DEV0: Device ID bits
000 = PIC18F252
001 = PIC18F452
100 = PIC18F242
101 = PIC18F442

bit 4-0 REV4:REV0: Revision ID bits
These bits are used to indicate the device revision.

Legend:

R = Readable bit P =Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state

R R R R R R R R

DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3

bit 7 bit 0

bit 7-0 DEV10:DEV3: Device ID bits
These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the
part number.

Legend:

R = Readable bit P =Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state
DS39564C-page 202 © 2006 Microchip Technology Inc.

PIC18FXX2

ANDWF AND W with f

Syntax: [label] ANDWF f [,d [,a]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) .AND. (f) → dest

Status Affected: N,Z

Encoding: 0001 01da ffff ffff

Description: The contents of W are AND’ed with
register 'f'. If 'd' is 0, the result is
stored in W. If 'd' is 1, the result is
stored back in register 'f' (default). If
‘a’ is 0, the Access Bank will be
selected. If ‘a’ is 1, the BSR will not
be overridden (default).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
Write to

destination

Example: ANDWF REG, 0, 0

Before Instruction
W = 0x17
REG = 0xC2

After Instruction

W = 0x02
REG = 0xC2

BC Branch if Carry

Syntax: [label] BC n

Operands: -128 ≤ n ≤ 127

Operation: if carry bit is ’1’
 (PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0010 nnnn nnnn

Description: If the Carry bit is ’1’, then the
program will branch.
The 2’s complement number ’2n’ is
added to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC+2+2n. This instruction is then
a two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

'n'
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
'n'

Process
Data

No
operation

Example: HERE BC 5

Before Instruction
PC = address (HERE)

After Instruction
If Carry = 1;

PC = address (HERE+12)
If Carry = 0;

PC = address (HERE+2)
© 2006 Microchip Technology Inc. DS39564C-page 219

PIC18FXX2

BTFSC Bit Test File, Skip if Clear

Syntax: [label] BTFSC f,b[,a]

Operands: 0 ≤ f ≤ 255
0 ≤ b ≤ 7
a ∈ [0,1]

Operation: skip if (f) = 0

Status Affected: None

Encoding: 1011 bbba ffff ffff

Description: If bit 'b' in register ’f' is 0, then the
next instruction is skipped.
If bit 'b' is 0, then the next instruction
fetched during the current instruction
execution is discarded, and a NOP is
executed instead, making this a two-
cycle instruction. If ‘a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If ‘a’ = 1, then
the bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process Data No

operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

If skip and followed by 2-word instruction:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

No
operation

No
operation

No
operation

No
operation

Example: HERE
FALSE
TRUE

BTFSC
:
:

FLAG, 1, 0

Before Instruction
PC = address (HERE)

After Instruction
If FLAG<1> = 0;

PC = address (TRUE)
If FLAG<1> = 1;

PC = address (FALSE)

BTFSS Bit Test File, Skip if Set

Syntax: [label] BTFSS f,b[,a]

Operands: 0 ≤ f ≤ 255
0 ≤ b ≤ 7
a ∈ [0,1]

Operation: skip if (f) = 1

Status Affected: None

Encoding: 1010 bbba ffff ffff

Description: If bit 'b' in register 'f' is 1, then the
next instruction is skipped.
If bit 'b' is 1, then the next instruction
fetched during the current instruc-
tion execution, is discarded and a
NOP is executed instead, making this
a two-cycle instruction. If ‘a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If ‘a’ = 1, then
the bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process Data No

operation

If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

No
operation

No
operation

No
operation

No
operation

Example: HERE
FALSE
TRUE

BTFSS
:
:

FLAG, 1, 0

Before Instruction
PC = address (HERE)

After Instruction
If FLAG<1> = 0;

PC = address (FALSE)
If FLAG<1> = 1;

PC = address (TRUE)
DS39564C-page 224 © 2006 Microchip Technology Inc.

PIC18FXX2
22.3 AC (Timing) Characteristics

22.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created
following one of the following formats:

1. TppS2ppS 3. TCC:ST (I2C specifications only)
2. TppS 4. Ts (I2C specifications only)

T
F Frequency T Time

Lowercase letters (pp) and their meanings:

pp
cc CCP1 osc OSC1
ck CLKO rd RD

cs CS rw RD or WR
di SDI sc SCK
do SDO ss SS

dt Data in t0 T0CKI
io I/O port t1 T1CKI
mc MCLR wr WR

Uppercase letters and their meanings:
S

F Fall P Period

H High R Rise
I Invalid (Hi-impedance) V Valid
L Low Z Hi-impedance

I2C only
AA output access High High
BUF Bus free Low Low

TCC:ST (I2C specifications only)
CC

HD Hold SU Setup

ST
DAT DATA input hold STO STOP condition
STA START condition
© 2006 Microchip Technology Inc. DS39564C-page 269

PIC18FXX2
TABLE 22-5: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2 TO 5.5V)

FIGURE 22-6: CLKO AND I/O TIMING

Param
No.

Sym Characteristic Min Typ† Max Units Conditions

— FOSC Oscillator Frequency Range 4 — 10 MHz HS mode only

— FSYS On-chip VCO System Frequency 16 — 40 MHz HS mode only

— trc PLL Start-up Time (Lock Time) — — 2 ms

— ΔCLK CLKO Stability (Jitter) -2 — +2 %

 † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.

Note: Refer to Figure 22-4 for load conditions.

OSC1

CLKO

I/O Pin
(input)

I/O Pin
(output)

Q4 Q1 Q2 Q3

10

13
14

17

20, 21

19 18

15

11

12

16

Old Value New Value
DS39564C-page 272 © 2006 Microchip Technology Inc.

PIC18FXX2
TABLE 22-18: MASTER SSP I2C BUS DATA REQUIREMENTS

Param.
No.

Symbol Characteristic Min Max Units Conditions

100 THIGH Clock high time 100 kHz mode 2(TOSC)(BRG + 1) — ms

400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

101 TLOW Clock low time 100 kHz mode 2(TOSC)(BRG + 1) — ms

400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

102 TR SDA and SCL
rise time

100 kHz mode — 1000 ns CB is specified to be from
10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns

1 MHz mode(1) — 300 ns

103 TF SDA and SCL
fall time

100 kHz mode — 1000 ns VDD ≥ 4.2V

400 kHz mode 20 + 0.1 CB 300 ns VDD ≥ 4.2V

90 TSU:STA START condition
setup time

100 kHz mode 2(TOSC)(BRG + 1) — ms Only relevant for
Repeated START
condition

400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

91 THD:STA START condition
hold time

100 kHz mode 2(TOSC)(BRG + 1) — ms After this period, the first
clock pulse is generated400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

106 THD:DAT Data input
hold time

100 kHz mode 0 — ns

400 kHz mode 0 0.9 ms

107 TSU:DAT Data input
setup time

100 kHz mode 250 — ns (Note 2)

400 kHz mode 100 — ns

92 TSU:STO STOP condition
setup time

100 kHz mode 2(TOSC)(BRG + 1) — ms

400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

109 TAA Output valid from
clock

100 kHz mode — 3500 ns

400 kHz mode — 1000 ns

1 MHz mode(1) — — ns

110 TBUF Bus free time 100 kHz mode 4.7 — ms Time the bus must be free
before a new transmission
can start

400 kHz mode 1.3 — ms

D102 CB Bus capacitive loading — 400 pF

Note 1: Maximum pin capacitance = 10 pF for all I2C pins.
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but parameter #107 ≥ 250 ns

must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL
signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the
SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line
is released.
© 2006 Microchip Technology Inc. DS39564C-page 285

PIC18FXX2
NOTES:
DS39564C-page 304 © 2006 Microchip Technology Inc.

