

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f442-e-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

If the main oscillator is configured for HS-PLL mode, an oscillator start-up time (TOST) plus an additional PLL time-out (TPLL) will occur. The PLL time-out is typically 2 ms and allows the PLL to lock to the main oscillator frequency. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS-PLL mode is shown in Figure 2-10.

FIGURE 2-10: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)

If the main oscillator is configured in the RC, RCIO, EC or ECIO modes, there is no oscillator start-up time-out. Operation will resume after eight cycles of the main oscillator have been counted. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for RC, RCIO, EC and ECIO modes, is shown in Figure 2-11.

FIGURE 2-11: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
• SUB1	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-4.

FIGURE 4-4:

CLOCK/INSTRUCTION CYCLE

5.0 FLASH PROGRAM MEMORY

The FLASH Program Memory is readable, writable, and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

5.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16-bits wide, while the data RAM space is 8-bits wide. Table Reads and Table Writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table Read operations retrieve data from program memory and places it into the data RAM space. Figure 5-1 shows the operation of a Table Read with program memory and data RAM.

Table Write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in Section 5.5, "Writing to FLASH Program Memory". Figure 5-2 shows the operation of a Table Write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a Table Write is being used to write executable code into program memory, program instructions will need to be word aligned.

Table Pointer⁽¹⁾ Instruction: TBLRD* Table Pointer⁽¹⁾ Program Memory TBLPTRU TBLPTRH TBLPTRU Program Memory TBLPTRU TABLAT Yergram Memory TABLAT TBLPTRU TBLPTRU TBLPTRU TBLPTRU Table Pointer points to a byte in program memory.

FIGURE 5-1: TABLE READ OPERATION

6.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>), clear the CFGS control bit

EXAMPLE 6-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDR	;
MOVWF	EEADR	; Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access program FLASH or Data EEPROM memory
BSF	EECON1, RD	; EEPROM Read
MOVF	EEDATA, W	; $W = EEDATA$

6.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. Then the sequence in Example 6-2 must be followed to initiate the write cycle.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code exe-

be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.
After a write sequence has been initiated, EECON1, EEADB and EDATA cannot be modified. The WB bit

cution (i.e., runaway programs). The WREN bit should

(EECON1<6>), and then set control bit RD (EECON1<0>). The data is available for the very next

instruction cycle; therefore, the EEDATA register can

be read by the next instruction. EEDATA will hold this

value until another read operation, or until it is written to

by the user (during a write operation).

EEADR and EDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Write Complete Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

		DATA_EE_DATA EEDATA EECON1, EEPGD EECON1, CFGS	; Data Memory Address to read
Required Sequence		55h EECON2	; Disable interrupts ; ; Write 55h ; ; Write Abb
	BSF BSF	EECON1, WR	; Set WR bit to begin write ; Enable interrupts ; user code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

EXAMPLE 6-2: DATA EEPROM WRITE

NOTES:

FIGURE 10-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0L register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, x....etc.) will clear the prescaler count.

Note:	Writing to TMR0L when the prescaler is
	assigned to Timer0 will clear the prescaler
	count, but will not change the prescaler
	assignment.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, (i.e., it can be changed "on-the-fly" during program execution).

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IE bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

10.4 16-Bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (refer to Figure 10-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16-bits of Timer0 without having to verify that the read of the high and low byte were valid due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16-bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
TMR0L	Timer0 Modu	Timer0 Module Low Byte Register								uuuu uuuu
TMR0H	Timer0 Modu	ule High Byte I	Register						0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	_	PORTA Data Direction Register								-111 1111

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | СКР | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

REGISTER 15-2: SSPCON1: MSSP CONTROL REGISTER1 (SPI MODE)

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- $0 = No \ collision$
- bit 6 SSPOV: Receive Overflow Indicator bit

SPI Slave mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).
- 0 = No overflow
 - **Note:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit

- 1 = Enables serial port and configures SCK, SDO, SDI, and \overline{SS} as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins
- **Note:** When enabled, these pins must be properly configured as input or output.

bit 4 CKP: Clock Polarity Select bit

- 1 = IDLE state for clock is a high level
- 0 = IDLE state for clock is a low level
- bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
 - 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - $0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled$
 - 0011 = SPI Master mode, clock = TMR2 output/2
 - 0010 = SPI Master mode, clock = FOSC/64
 - 0001 = SPI Master mode, clock = Fosc/16
 - 0000 = SPI Master mode, clock = Fosc/4
 - Note: Bit combinations not specifically listed here are either reserved, or implemented in I^2C mode only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a START bit detect, 8-bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware. If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set, and the slave will begin receiving data after the Acknowledge (Figure 15-15).

15.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the buffer full flag bit, BF, and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 15-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

15.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

15.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

15.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge (ACK = 0), and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call) or when the slave has properly received its data.

15.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note: In the MSSP module, the RCEN bit must be set after the ACK sequence or the RCEN bit will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the baud rate generator is suspended from counting, holding SCL low. The MSSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>).

15.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

15.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

15.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

16.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,		Valu All C RES	ther
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	-00x	0000	-00x
TXREG	USART Transmit Register								0000	0000	0000	0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
SPBRG	Baud Rate Generator Register 0000 0000 0								0000	0000		

TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

18.2.1 REFERENCE VOLTAGE SET POINT

The Internal Reference Voltage of the LVD module may be used by other internal circuitry (the Programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires a time to become stable before a low voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter 36. The low voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 18-4.

18.2.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter #D022B.

18.3 Operation During SLEEP

When enabled, the LVD circuitry continues to operate during SLEEP. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from SLEEP. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

18.4 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the LVD module to be turned off.

	U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1	
	_	_	_	_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0	
	bit 7							bit 0	
bit 7-4 bit 3	Unimplemented: Read as '0' WRT3: Write Protection bit ⁽¹⁾ 1 = Block 3 (006000-007FFFh) not write protected 0 = Block 3 (006000-007FFFh) write protected								
bit 2	 WRT2: Write Protection bit⁽¹⁾ 1 = Block 2 (004000-005FFFh) not write protected 0 = Block 2 (004000-005FFFh) write protected 								
bit 1	1 = Block 1	WRT1: Write Protection bit 1 = Block 1 (002000-003FFFh) not write protected 0 = Block 1 (002000-003FFFh) write protected							
bit 0	WRT0: Write Protection bit 1 = Block 0 (000200h-001FFFh) not write protected 0 = Block 0 (000200h-001FFFh) write protected								

REGISTER 19-8: CONFIGURATION REGISTER 6 LOW (CONFIG6L: BYTE ADDRESS 30000Ah)

Note 1: Unimplemented in PIC18FX42 devices; maintain this bit set.

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when dev	vice is unprogrammed	u = Unchanged from programmed state

REGISTER 19-9: CONFIGURATION REGISTER 6 HIGH (CONFIG6H: BYTE ADDRESS 30000Bh)

	R/C-1	R/C-1	C-1	U-0	U-0	U-0	U-0	U-0		
	WRTD WRTB WRTC — — —							_		
	bit 7							bit 0		
bit 7	WRTD: Data EEPROM Write Protection bit									
	1 = Data EEPROM not write protected									
	0 = Data EEPROM write protected									
bit 6	WRTB: Boot Block Write Protection bit									
	1 = Boot B	lock (00000	0-0001FFh)	not write pr	otected					
	0 = Boot B	lock (00000	0-0001FFh)	write protect	ted					
bit 5	WRTC: Co	nfiguration I	Register Wr	ite Protectio	n bit					
	1 = Config	uration regis	ters (30000	0-3000FFh)	not write pr	otected				
	0 = Config	uration regis	ters (30000	0-3000FFh)	write protect	ted				
	Note:	This bit is re	ead only, an	d cannot be	changed in	User mode.				
bit 4-0	Unimplemented: Read as '0'									
	Legend:									

Legena:		
R = Readable bit	C =Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

REGISTER 19-12: DEVICE ID REGISTER 1 FOR PIC18FXX2 (DEVID1: BYTE ADDRESS 3FFFFEh)

	R	R	R	R	R	R	R	R		
	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0		
	bit 7 bit 0									
bit 7-5	DEV2:DEV0: Device ID bits 000 = PIC18F252 001 = PIC18F452 100 = PIC18F242 101 = PIC18F442									
bit 4-0	REV4:REV0: Revision ID bits These bits are used to indicate the device revision.									
	Legend:									
	R = Reada	ble bit	P =Progra	ammable bit	U = Unin	nplemented	bit, read as	'0'		
	- n = Value when device is unprogrammed u = Unchanged from programmed state									
DECISTED 10-13-		DECISTE					0566 3551	EED)		
REGISTER 19-13:	DEVICEIL					TICAUU	12333551	-6611)		

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 **DEV10:DEV3:** Device ID bits These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

Legend:		
R = Readable bit	P =Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devi	ce is unprogrammed	u = Unchanged from programmed state

AND	WF	AND W w	ith f		BC		Branch if	Carry		
Synt	ax:	[label] A	NDWF f[,d [,a]	Synt	ax:	[<i>label</i>] B	[<i>label</i>] BC n		
Ope	rands:	$0 \le f \le 25$	5		Ope	rands:	-128 ≤ n ≤	127		
		d ∈ [0,1] a ∈ [0,1]			Ope	ration:	if carry bit (PC) + 2	is '1' $2 + 2n \rightarrow PC$		
Ope	ration:	(W) .AND	. (f) \rightarrow dest		Stat	us Affected:	None			
Statu	us Affected:	N,Z			Enc	oding:	1110	0010 nn	nn nnnn	
Enco	oding:	0001	01da ffi	ff ffff		cription:	If the Carr	y bit is '1', th	ien the	
Desc	cription:	register 'f'. stored in \ stored bac 'a' is 0, the selected.	nts of W are . If 'd' is 0, the W. If 'd' is 1, t k in register ' e Access Bar If 'a' is 1, the den (default)	e result is he result is f' (default). If hk will be BSR will not			The 2's co added to t have incre instruction PC+2+2n.	he PC. Since		
Word	ds:	1			Wor	ds:	1			
Cycl	es:	1			Cyc	es:	1(2)			
QC	ycle Activity	:				ycle Activity	/:			
i	Q1	Q2	Q3	Q4	lf Ji	ump:			.	
	Decode	Read register 'f'	Process Data	Write to destination		Q1	Q2 Read literal	Q3 Process	Q4 Write to PC	
		register i	Dala	destination		Decode	'n'	Data	Write to PC	
Exar	<u>mple</u> :	ANDWF	REG, 0, 0			No	No	No	No	
	Before Instru	uction			IF NI	operation	operation	operation	operation	
	W	= 0x17				o Jump: Q1	Q2	Q3	Q4	
	REG After Instruc	= 0xC2				Decode	Read literal	Process	No	
	W	= 0x02				Dooddo	'n'	Data	operation	
	REG	= 0x02 = 0xC2			Exa	mple:	HERE	BC 5		
						Before Instr	ruction			
						PC	= ad	dress (HERE)	

Before Instruction	n		
PC	=	address	(HERE)
After Instruction			
If Carry	=	1;	
PC	=	address	(HERE+12)
If Carry	=	0;	
PC	=	address	(HERE+2)

BTF	sc	Bit Test Fi	le, Skip if Cle	ear	BT	FSS	Bit Test F	ile, Skip if Se	ŧ
Synt	ax:	[label] B	FSC f,b[,a]		Syr	itax:	[label] B	TFSS f,b[,a]	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Оре	erands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]		
Ope	ration:	skip if (f <b< td=""><td>>) = 0</td><td></td><td>Ope</td><td>eration:</td><td>skip if (f<b< td=""><td>>) = 1</td><td></td></b<></td></b<>	>) = 0		Ope	eration:	skip if (f <b< td=""><td>>) = 1</td><td></td></b<>	>) = 1	
Statu	us Affected:	None			Sta	tus Affected:	None		
Enco	oding:	1011	bbba ff	ff ffff	Enc	oding:	1010	bbba ff	ff
Desc	cription:	next instruct If bit 'b' is C fetched du execution i cycle instruct Access Ba riding the E	egister 'f' is 0 ction is skippe), then the nex ring the current s discarded, a nstead, makin uction. If 'a' is nk will be sele 3SR value. If 'ill be selected (default).	ed. At instruction and a NOP is ag this a two- 0, the ected, over- a' = 1, then	De	scription:	next instru If bit 'b' is f fetched du tion execu NOP is exe a two-cycle Access Ba riding the I	register 'f' is 1 ction is skippe I, then the ner ring the curre tion, is discare cuted instead e instruction. I nk will be sele 3SR value. If <i>i</i> II be selected (default).	ed. xt i ded , m If 'a ect 'a'
Wor	ds:	1			Wo	rds:	1		
Cycl	es:		ycles if skip a a 2-word inst		Сус	cles:		cycles if skip a a 2-word ins	
QC	ycle Activity:				Q	Cycle Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	-
	Decode	Read register 'f'	Process Data	No operation		Decode	Read register 'f'	Process Data	(
lf sk	kip:				lf s	skip:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	(
lf sk	ip and follow	-			lf s	kip and follow	ed by 2-word	d instruction:	
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	-
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	
	No operation	No operation	No operation	No operation		No	No	No operation	
	<u>nple</u> : Before Instru PC	FALSE : TRUE : ction	IFSC FLAG	, 1, 0	<u>Exa</u>	umple: Before Instru PC	FALSE : TRUE :	TFSS FLAG dress (here)	,
	After Instruct If FLAG< PC If FLAG< PC	1> = 0; = add 1> = 1;	iress (true)			After Instruct If FLAG< PC If FLAG< PC	ion 1> = 0; = ado 1> = 1;	dress (FALSE) dress (TRUE))

		a ∈ [0,1]						
per	ation:	skip if (f <t< td=""><td>) = 1</td><td></td><td></td></t<>) = 1					
tatu	s Affected:	None						
nco	ding:	1010	bbba	ffff	ffff			
escription:If bit 'b' in register 'f' is 1, then the next instruction is skipped. If bit 'b' is 1, then the next instruction fetched during the current instruc- tion execution, is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default)./ords:1								
/orc	ls:	1						
ycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.								
Q Cycle Activity:								
r	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Process		No eration			
fsk	ip:							
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operati	ion op	No eration			
f sk	ip and follow	ed by 2-wor	d instruct	ion:				
_	Q1	Q2	Q3		Q4			
	No operation	No operation	No operati	on op	No eration			
	No operation	No operation	No operati	on op	No eration			
xan	<u>nple</u> :	HERE H FALSE : TRUE :	:	FLAG, 1,	. 0			
I	Before Instruction PC = address (HERE)							

22.3 AC (Timing) Characteristics

22.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I ² C s	pecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

Param No.	Sym	n Characteristic		Тур†	Max	Units	Conditions
_	Fosc	Oscillator Frequency Range	4	—	10	MHz	HS mode only
—	Fsys	On-chip VCO System Frequency	16	—	40	MHz	HS mode only
—	t _{rc}	PLL Start-up Time (Lock Time)	_	—	2	ms	
_	ΔCLK	CLKO Stability (Jitter)	-2	—	+2	%	

TABLE 22-5:PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2 TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 22-6: CLKO AND I/O TIMING

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
101	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	TR	SDA and SCL	100 kHz mode	_	1000	ns	CB is specified to be from
		rise time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103	TF	SDA and SCL	100 kHz mode	_	1000	ns	$VDD \ge 4.2V$
		fall time	400 kHz mode	20 + 0.1 Св	300	ns	$VDD \ge 4.2V$
90	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for Repeated START condition
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms	
91	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period, the first clock pulse is generated
		hold time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	THD:DAT	Data input	100 kHz mode	0	—	ns	
		hold time	400 kHz mode	0	0.9	ms	
107	TSU:DAT	Data input	100 kHz mode	250		ns	(Note 2)
		setup time	400 kHz mode	100	_	ns	
92	TSU:STO	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	
		clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾		_	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	ms	Time the bus must be free
			400 kHz mode	1.3	—	ms	before a new transmission can start
D102	Св	Bus capacitive loa	ading	—	400	pF	

TABLE 22-18:	MASTER SSP I ² C BUS DATA REQUIREMENTS
--------------	---

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

NOTES: