

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f442-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Ranges Tested:								
Mode	Freq	C1	C2					
LP	32.0 kHz	33 pF	33 pF					
	200 kHz	15 pF	15 pF					
ХТ	200 kHz	22-68 pF	22-68 pF					
	1.0 MHz	15 pF	15 pF					
	4.0 MHz	15 pF	15 pF					
HS	4.0 MHz	15 pF	15 pF					
	8.0 MHz	15-33 pF	15-33 pF					
	20.0 MHz	15-33 pF	15-33 pF					
	25.0 MHz	15-33 pF	15-33 pF					
These values are for design guidance only.								

See notes following this table.

Crystals Used					
32.0 kHz	Epson C-001R32.768K-A	± 20 PPM			
200 kHz	STD XTL 200.000KHz	± 20 PPM			
1.0 MHz	ECS ECS-10-13-1	± 50 PPM			
4.0 MHz	ECS ECS-40-20-1	± 50 PPM			
8.0 MHz	Epson CA-301 8.000M-C	± 30 PPM			
20.0 MHz	Epson CA-301 20.000M-C	± 30 PPM			

- Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - 2: Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components., or verify oscillator performance.

An external clock source may also be connected to the OSC1 pin in the HS, XT and LP modes, as shown in Figure 2-2.

FIGURE 2-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

Open -

OSC2

2.3 RC Oscillator

For timing-insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 2-3 shows how the R/C combination is connected.

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic.

Note:	If the oscillator frequency divided by 4 sig-
	nal is not required in the application, it is
	recommended to use RCIO mode to save
	current.

The RCIO Oscillator mode functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

2.6 Oscillator Switching Feature

The PIC18FXX2 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low frequency clock source. For the PIC18FXX2 devices, this alternate clock source is the Timer1 oscillator. If a low frequency crystal (32 kHz, for example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has been enabled, the device can switch to a Low Power Execution mode. Figure 2-7 shows a block diagram of the system clock sources. The clock switching feature is enabled <u>by programming the Oscillator Switching</u> Enable (OSCSEN) bit in Configuration Register1H to a '0'. Clock switching is disabled in an erased device. See Section 11.0 for further details of the Timer1 oscillator. See Section 19.0 for Configuration Register details.

FIGURE 2-7: DEVICE CLOCK SOURCES

TABLE 3-1:	TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up	(2)		Wake-up from
Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc + 2ms	1024 Tosc + 2 ms	72 ms ⁽²⁾ + 1024 Tosc + 2 ms	1024 Tosc + 2 ms
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms ⁽²⁾ + 1024 Tosc	1024 Tosc
EC	72 ms	—	72 ms ⁽²⁾	—
External RC	72 ms	—	72 ms ⁽²⁾	—

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal power-up timer delay, if implemented.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note 1: Refer to Section 4.14 (page 53) for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	0u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x00008h or 0x000018h).

PIC18FXX2

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt		
ADRESH	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADRESL	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս
ADCON0	242	442	252	452	0000 00-0	0000 00-0	uuuu uu-u
ADCON1	242	442	252	452	00 0000	00 0000	uu uuuu
CCPR1H	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս
CCPR1L	242	442	252	452	xxxx xxxx	սսսս սսսս	սսսս սսսս
CCP1CON	242	442	252	452	00 0000	00 0000	uu uuuu
CCPR2H	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu
CCPR2L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	242	442	252	452	00 0000	00 0000	uu uuuu
TMR3H	242	442	252	452	xxxx xxxx	սսսս սսսս	սսսս սսսս
TMR3L	242	442	252	452	xxxx xxxx	սսսս սսսս	սսսս սսսս
T3CON	242	442	252	452	0000 0000	սսսս սսսս	uuuu uuuu
SPBRG	242	442	252	452	0000 0000	0000 0000	սսսս սսսս
RCREG	242	442	252	452	0000 0000	0000 0000	սսսս սսսս
TXREG	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
TXSTA	242	442	252	452	0000 -010	0000 -010	uuuu -uuu
RCSTA	242	442	252	452	x000 0000x	0000 000x	սսսս սսսս
EEADR	242	442	252	452	0000 0000	0000 0000	นนนน นนนน
EEDATA	242	442	252	452	0000 0000	0000 0000	นนนน นนนน
EECON1	242	442	252	452	xx-0 x000	uu-0 u000	uu-0 u000
EECON2	242	442	252	452			

TABLE 3-3.	INITIAL IZATION CONDITIONS FOR ALL REGISTERS	
TADLE 3-3.	INITIALIZATION CONDITIONS FOR ALL REGISTERS	CONTINUED

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

4.0 MEMORY ORGANIZATION

There are three memory blocks in Enhanced MCU devices. These memory blocks are:

- Program Memory
- Data RAM
- Data EEPROM

Data and program memory use separate busses, which allows for concurrent access of these blocks.

Additional detailed information for FLASH program memory and Data EEPROM is provided in Section 5.0 and Section 6.0, respectively.

4.1 **Program Memory Organization**

A 21-bit program counter is capable of addressing the 2-Mbyte program memory space. Accessing a location between the physically implemented memory and the 2-Mbyte address will cause a read of all '0's (a NOP instruction).

The PIC18F252 and PIC18F452 each have 32 Kbytes of FLASH memory, while the PIC18F242 and PIC18F442 have 16 Kbytes of FLASH. This means that PIC18FX52 devices can store up to 16K of single word instructions, and PIC18FX42 devices can store up to 8K of single word instructions.

The RESET vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

Figure 4-1 shows the Program Memory Map for PIC18F242/442 devices and Figure 4-2 shows the Program Memory Map for PIC18F252/452 devices.

9.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register reads and writes the latched output value for PORTB.

EXAMPLE 9-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by
CLRF	LATB	; data latches ; Alternate method
		; to clear output ; data latches
MOVLW	0xCF	; Value used to ; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs ; RB<5:4> as outputs ; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Note: On a Power-on Reset, these pins are configured as digital inputs.

Four of the PORTB pins, RB7:RB4, have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF instruction). This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB3 can be configured by the configuration bit CCP2MX as the alternate peripheral pin for the CCP2 module (CCP2MX='0').

FIGURE 9-4:	BLOCK DIAGRAM OF
	RB7:RB4 PINS

Note 1: While in Low Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O pin, and should be held low during normal operation to protect against inadvertent ICSP mode entry.

> 2: When using Low Voltage ICSP programming (LVP), the pull-up on RB5 becomes disabled. If TRISB bit 5 is cleared, thereby setting RB5 as an output, LATB bit 5 must also be cleared for proper operation.

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

REGISTER 15-2: SSPCON1: MSSP CONTROL REGISTER1 (SPI MODE)

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- $0 = No \ collision$
- bit 6 SSPOV: Receive Overflow Indicator bit

SPI Slave mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).
- 0 = No overflow
 - **Note:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit

- 1 = Enables serial port and configures SCK, SDO, SDI, and \overline{SS} as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins
- **Note:** When enabled, these pins must be properly configured as input or output.

bit 4 CKP: Clock Polarity Select bit

- 1 = IDLE state for clock is a high level
- 0 = IDLE state for clock is a low level
- bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
 - 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - $0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled$
 - 0011 = SPI Master mode, clock = TMR2 output/2
 - 0010 = SPI Master mode, clock = FOSC/64
 - 0001 = SPI Master mode, clock = Fosc/16
 - 0000 = SPI Master mode, clock = Fosc/4
 - Note: Bit combinations not specifically listed here are either reserved, or implemented in I^2C mode only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.4 I²C Mode

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the Standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock (SCL) RC3/SCK/SCL
- Serial data (SDA) RC4/SDI/SDA

The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

FIGURE 15-7: MSSP BLOCK DIAGRAM (I²C MODE)

15.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSP Control Register1 (SSPCON1)
- MSSP Control Register2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

SSPCON, SSPCON2 and SSPSTAT are the control and status registers in I^2C mode operation. The SSPCON and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read only. The upper two bits of the SSPSTAT are read/ write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD register holds the slave device address when the SSP is configured in I^2C Slave mode. When the SSP is configured in Master mode, the lower seven bits of SSPADD act as the baud rate generator reload value.

In receive operations, SSPSR and SSPBUF together, create a double buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 15-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SMP	CKE	D/A	Р	S	R/W	UA	BF			
	bit 7	1			1	1		bit 0			
bit 7	SMP: Slev	v Rate Contr	ol bit <u>de:</u>	New dourd Cro			4 MUL-)				
	1 = Slew 0 = Slew	rate control o rate control e	enabled for H	ligh Speed r	node (400 k	00 kHz and Hz)	I MHZ)				
bit 6	CKE: SME In Master of 1 = Enable 0 = Disable	In Master or Slave mode: 1 = Enable SMBus specific inputs 0 = Disable SMBus specific inputs									
bit 5	D/A: Data/ In Master (Reserved	Address bit									
	<u>In Slave m</u> 1 = Indicat 0 = Indicat	<u>In Slave mode:</u> 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address									
bit 4	P: STOP b 1 = Indicat 0 = STOP	oit es that a ST bit was not c	OP bit has be detected last	een detecte	d last						
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.					
bit 3	S: START 1 = Indicat 0 = START	 START bit 1 = Indicates that a start bit has been detected last 0 = START bit was not detected last 									
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.					
bit 2	R/W: Read	\mathbf{R}/\mathbf{W} : Read/Write bit Information (I ² C mode only)									
	<u>In Slave m</u> 1 = Read 0 = Write	In Slave mode: 1 = Read 0 = Write									
	Note: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit. STOP bit, or not ACK bit.										
	<u>In Master i</u> 1 = Transr	<u>In Master mode:</u> 1 = Transmit is in progress									
	0 = Transr	nit is not in p	rogress								
	Note:	Note: ORing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.									
bit 1	UA: Updat 1 = Indicat 0 = Addres	e Address (tes that the uses does not r	10-bit Slave r iser needs to need to be up	node only) update the odated	address in t	he SSPADD	register				
bit 0	BF: Buffer	Full Status b	oit								
	In Transmi 1 = Receiv 0 = Receiv	In Transmit mode: 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty									
	<u>In Receive</u> 1 = Data tr 0 = Data tr	In Receive mode: 1 = Data transmit in progress (does not include the \overrightarrow{ACK} and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the \overrightarrow{ACK} and STOP bits), SSPBUF is empty									
	Legend:										
	R = Reada	ble bit	W = Writab	le bit	U = Unimpl	emented bit	, read as '0'				
	- n = Value	e at POR	'1' = Bit is s	et	'0' = Bit is o	leared	x = Bit is ur	known			

15.4.3.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON1<0>=1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit CKP (SSPCON<4>). See Section 15.4.4 ("Clock Stretching"), for more detail.

15.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low, regardless of SEN (see "Clock Stretching", Section 15.4.4, for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/ SCK/SCL should be enabled by setting bit CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 15-9).

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not \overline{ACK}), then the data transfer is complete. In this case, when the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another <u>occurrence</u> of the START bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPBUF register. Again, pin RC3/SCK/SCL must be enabled by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

PIC18FXX2

10-10.	Aaster aates er		
	ACK Bus h transf	SSPOV is set because <u>SS</u> PDF still full. ACK is not	
	Receive Data Byte		
t held low until of SSPADD has	Beceive Data Byte D7 D6 D5 D4 D3 D2 D1 D0 7 2 3 4 5 6 7 8	Cleared by hardware when SSPADD is updated with high byte of address	
Clock is update	e of Address	BUF are updated diress needs to be needs to be	
is held low until	Receive Second Byt A7 A6 A5 A4 A.	Dummy read of SSF Dummy read of SSF to clear BF flag with low by hardw with low by te of a Updated Updated	
Clock	$BDA = \frac{\text{Receive First Byte of Address}}{1 \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{3} \sqrt{48} \sqrt{38} \sqrt{4CK}}$ $SCL = \frac{1}{5} \sqrt{1} \sqrt{2} \sqrt{3} \sqrt{4} \sqrt{5} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{3} \sqrt{4} \sqrt{5} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{3} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{3} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{3} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{6} \sqrt{7} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{6} \sqrt{7} \sqrt{7} \sqrt{6} \sqrt{7} \sqrt{7} \sqrt{6} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{6} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} 7$	BF (SSPSTAT<0.) SSPOV (SSPCON<6.) and (SSPSTAT<1.) A (SSPSTAT<1.) A (SSPSTAT<1.) DA (SSPSTAT<1.) DA (SSPSTAT<1.) CAP does not reset to '0' when SEN = 0) CRP does not reset to '0' when SEN = 0)	

FIGURE 15-10: I²C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)

15.4.7 BAUD RATE GENERATOR

In I²C Master mode, the baud rate generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 15-17). When a write occurs to SSPBUF, the baud rate generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by \overline{ACK}), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 15-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 15-17: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 15-3: I²C CLOCK RATE W/BRG

Fcy	Fcy*2	BRG Value	FSCL ⁽²⁾ (2 Rollovers of BRG)
10 MHz	20 MHz	19h	400 kHz ⁽¹⁾
10 MHz	20 MHz	20h	312.5 kHz
10 MHz	20 MHz	3Fh	100 kHz
4 MHz	8 MHz	0Ah	400 kHz ⁽¹⁾
4 MHz	8 MHz	0Dh	308 kHz
4 MHz	8 MHz	28h	100 kHz
1 MHz	2 MHz	03h	333 kHz ⁽¹⁾
1 MHz	2 MHz	0Ah	100kHz
1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

2: Actual frequency will depend on bus conditions. Theoretically, bus conditions will add rise time and extend low time of clock period, producing the effective frequency.

15.4.17.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 15-26).
- b) SCL is sampled low before SDA is asserted low (Figure 15-27).

During a START condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the START condition is aborted,
- the BCLIF flag is set, and
- the MSSP module is reset to its IDLE state (Figure 15-26).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 15-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0, and during this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision, because the two masters must be allowed to arbitrate the first address following the START condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated START or STOP conditions.

FIGURE 15-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

PIC18FXX2

BRA	N N	Unconditi	onal Brancl	n	BSF	=	Bit Set f			
Syn	ax:	[label] B	RA n		Syn	tax:	[<i>label</i>] B	SF f,b[,a]		
Ope	rands:	-1024 ≤ n	≤ 1023		Оре	erands:	$0 \le f \le 255$	$0 \le f \le 255$		
Ope	ration:	(PC) + 2 +	$2n \rightarrow PC$				$0 \le b \le 7$			
Stat	us Affected:	None			One	$a \in [0, 1]$				
Enc	Encoding: 1101 Onnn nnnn nnnn		Stat	us Affected	None					
Description:		Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is a two-cycle instruction.			Enc	oding:	1000	bbba ffi	ff ffff	
					Des	Description: Bit 'b' in register 'f' is se Access Bank will be se riding the BSR value. If the bank will be selecte			et. If 'a' is 0 elected, over- f 'a' = 1, then ed as per the	
Wor	ds:	1					BSR value).		
Cyc	es:	2			Wor	rds:	1			
QC	Cycle Activity:	1			Cyc	les:	1			
	Q1	Q2	Q3	Q4	QQ	Cycle Activity:	:			
	Decode	Read literal	Process	Write to PC		Q1	Q2	Q3	Q4	
	No	No	Data No	No		Decode	Read register 'f'	Process Data	Write register 'f'	
	operation	operation	operation	operation	<u>Exa</u>	<u>mple</u> :	BSF F	LAG_REG, 7	, 1	
Example: HERE BRA Jump			Before Instru FLAG_R	uction EG = 0x0	DA					
	PC After Instruct	= add	dress (HERE))		After Instruc FLAG_R	tion EG = 0x8	3A		
	PU	= ad	uless (Jump))						

CLF	RF	Clear f			CLF	WDT	Clear Wat	chdog Time	er		
Syn	tax:	[<i>label</i>] Cl	_RF f[,a]		Synt	ax:	[label] C	[label] CLRWDT			
Оре	erands:	0 ≤ f ≤ 255 a ∈ [0,1]	5		Ope Ope	Operands: None Operation: $000h \rightarrow WDT$					
Оре	eration:	$\begin{array}{c} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$					$\begin{array}{l} 000h \rightarrow W \\ 1 \rightarrow \overline{\text{TO}}, \end{array}$	/DT postscal	er,		
Stat	us Affected:	Z					$1 \rightarrow PD$				
Enc	oding:	0110	101a ff:	ff ffff	Stat	us Affected:	TO, PD				
Description: Clears the contents of the specified register. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value		Enc	oding:	0000	0000 00	00 0100					
		register. If will be sele value. If 'a be selecte	register. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value			Description: CLRWDT instruction re Watchdog Timer. It al postscaler of the WD TO and PD are set.		Istruction res Timer. It als of the WDT. are set.	sets the o resets the . Status bits		
		(default).			Wor	ds:	1				
Woi	ds:	1			Cyc	es:	1				
Сус	les:	1			QC	ycle Activity	:				
Q	Cycle Activity:					Q1	Q2	Q3	Q4		
	Q1 Decode	Q2 Read register 'f'	Q3 Process Data	Q4 Write register 'f'		Decode	No operation	Process Data	No operation		
					Exa	mple:	CLRWDT				
<u>Exa</u>	<u>mple</u> :	CLRF	FLAG_REG,	1		Before Instru	uction				
	Before Instruction FLAG_REG = 0x5A			WDT Co After Instruc	unter = tion	?					
	After Instruct FLAG_R	ion EG = 0xi	00			WDT Co <u>WD</u> T Po <u>TO</u> PD	unter = stscaler = = =	0x00 0 1 1			

NEG	βF	Negate f							
Synt	ax:	[label]	NEGF	f [,a]					
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]	$0 \le f \le 255$ $a \in [0,1]$						
Ope	ration:	$(\overline{f}) + 1 \rightarrow$	• f						
Statu	us Affected:	N, OV, C,	N, OV, C, DC, Z						
Enco	oding:	0110	110a	ffff	ffff				
Des	cription:	Location ' complement the data n 0, the Acc selected, If 'a' = 1, t selected a	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.						
Wor	ds:	1	1						
Cycl	es:	1							
QC	Cycle Activity:								
	Q1	Q2	Q	3	Q4				
	Decode	Read register 'f'	Proce Data	ess a re	Write gister 'f'				
<u>Exar</u>									
	Before Instru REG	ction = 0011 1	1010 [0 >	(3A]					
	After Instruct REG	ion = 1100 (0110 [0	xC6]					

NOF)	No Opera	No Operation						
Synt	ax:	[label]	NOP						
Ope	rands:	None							
Ope	ration:	No opera	tion						
Status Affected: None									
Encoding:		0000	0000	000	0	0000			
		1111	xxxx	XXX	x	xxxx			
Desc	cription:	No opera	tion.						
Wor	ds:	1	1						
Cycl	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q	3	Q4				
	Decode	No	No			No			
		operation	operat	ion	ор	eration			

Example:

None.

Param. No.	Symbol	Characteristic	;	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKO↓		—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLKO↑	—	75	200	ns	(Note 1)	
12	TckR	CLKO rise time	—	35	100	ns	(Note 1)	
13	TckF	CLKO fall time		—	35	100	ns	(Note 1)
14	TckL2ioV	CLKO↓ to Port out valid		—	_	0.5 Tcy + 20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKO \uparrow		0.25 TCY + 25		_	ns	(Note 1)
16	TckH2iol	Port in hold after CLKO ↑	0		—	ns	(Note 1)	
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port ou	—	50	150	ns		
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC18FXXX	100	_	_	ns	
18A		input invalid (I/O in hold time)	PIC18 LF XXX	200	_		ns	
19	TioV2osH	Port input valid to OSC1↑ (I/C) in setup time)	0		—	ns	
20	TioR	Port output rise time	PIC18FXXX	—	10	25	ns	
20A			PIC18 LF XXX	—	_	60	ns	VDD = 2V
21	TioF	Port output fall time	PIC18 F XXX	—	10	25	ns	
21A			PIC18 LF XXX	—	_	60	ns	VDD = 2V
22††	TINP	INT pin high or low time	Тсү	_	—	ns		
23††	TRBP	RB7:RB4 change INT high o	or low time	Тсү	_	_	ns	
24††	TRCP	RC7:RC4 change INT high c	or low time	20			ns	

TABLE 22-6: CLKO AND I/O TIMING REQUIREMENTS

†† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

TABLE 22-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREME
--

Param No.	Symbol		Characteristic		Min	Max	Units	Conditions
40	Tt0H	T0CKI High Ρι	ulse Width	No Prescaler	0.5TCY + 20	—	ns	
				With Prescaler	10		ns	
41	Tt0L T0CKI Low Pulse Width		lse Width	No Prescaler	0.5TCY + 20		ns	
				With Prescaler	10		ns	
42	Tt0P	T0CKI Period		No Prescaler	TCY + 10	—	ns	
				With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N	—	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T1CKI High	Synchronous, no prescaler		0.5TCY + 20	—	ns	
		Time	Synchronous,	PIC18FXXX	10	—	ns	
			with prescaler	PIC18LFXXX	25	—	ns	
			Asynchronous	PIC18FXXX	30	—	ns	
				PIC18LFXXX	50	—	ns	
46	Tt1L	T1CKI Low Time	Synchronous, no prescaler		0.5TCY + 5	_	ns	
			Time Sy	Synchronous,	PIC18FXXX	10		ns
			with prescaler	PIC18LFXXX	25	—	ns	
			Asynchronous	PIC18FXXX	30	—	ns	
				PIC18LFXXX	50	—	ns	
47	Tt1P	T1CKI input period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60		ns	
	Ft1	T1CKI oscillato	or input frequency ra	ange	DC	50	kHz	
48	Tcke2tmrl	Delay from ext increment	ernal T1CKI clock e	edge to timer	2 Tosc	7 Tosc	_	

С

CALL 2	26
Capture (CCP Module)	19
Associated Benisters	21
CCP Pin Configuration	19
CCPB1H:CCPB1L Begisters	10
Software Interrupt	10
Timor1/Timor2 Mode Selection	19
	19
Capture/Compare/PWM (CCP)	17
Capture Mode. See Capture	4.0
	18
CCPR1H Register1	18
CCPR1L Register1	18
CCP2 1	18
CCPR2H Register1	18
CCPR2L Register1	18
Compare Mode. See Compare	
Interaction of Two CCP Modules1	18
PWM Mode. See PWM	
Timer Resources1	18
Clocking Scheme/Instruction Cycle	39
CLRF	27
CLRWDT2	27
Code Examples	
16 x 16 Signed Multiply Routine	72
16 x 16 Unsigned Multiply Routine	72
8 x 8 Signed Multiply Boutine	71
8 x 8 Unsigned Multiply Routine	71
Changing Between Canture Prescalers	10
Data EEDDOM Road	67
Data EERROM Refresh Routing	60
	60
	67
Erasing a FLASH Program Memory Row	60
Fast Register Stack	39
How to Clear RAM (Bank1) Using	
Indirect Addressing	50
Initializing PORTA	87
Initializing PORTB	90
Initializing PORTC	93
Initializing PORTD	95
Initializing PORTE	97
Loading the SSPBUF (SSPSR) Register1	28
Reading a FLASH Program Memory Word	59
Saving STATUS, WREG and BSR	
Registers in RAM	85
Writing to FLASH Program Memory	63
Code Protection1	95
COMF	28
Compare (CCP Module)1	20
Associated Begisters	21
CCP Pin Configuration	20
CCPB1 Begister 1	20
Software Interrunt	20
Special Event Trigger 100, 115, 100, 1	20 00
Timer1/Timer2 Mode Selection	00
Configuration Pite	∠U 0⊑
Configuration Dis	32
Context Saving During Interrupts	85
Conversion Considerations	14
CPFSEQ2	28
CPFSGT2	29
CPFSLT2	29

D

Data EEPROM Memory
Associated Registers 69
EEADR Register 65
EECON1 Register 65
EECON2 Register 65
Operation During Code Protect
Protection Against Spurious Write
Reading67
Using 68
Write Verify68
Writing 67
Data Memory 42
General Purpose Registers 42
Map for PIC18F242/44243
Map for PIC18F252/452 44
Special Function Registers 42
DAW
DC and AC Characteristics
Graphs and Tables 289
DC Characteristics261, 265
DCFSNZ
DECF
DECFSZ
Development Support 253
Device Differences
Device Overview7
Features7
Direct Addressing 51
Example49

Ε

Electrical Characteristics	. 259
Errata	5

F

Firmware Instructions	211
FLASH Program Memory	55
Associated Registers	63
Control Registers	56
Erase Sequence	60
Erasing	60
Operation During Code Protect	63
Reading	59
TABLAT Register	58
Table Pointer	58
Boundaries Based on Operation	58
Table Pointer Boundaries	58
Table Reads and Table Writes	55
Block Diagrams	
Reads from FLASH Program Memory	59
Writing to	61
Protection Against Spurious Writes	63
Unexpected Termination	63
Write Verify	63
G	

G

General Call Address Support	148
GOTO	232