

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f442-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3:	PIC18F4X2 PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-----------------------------------	-------------

Dia Norra	Pin Number			Pin Buffer		Description
Pin Name	DIP	PLCC	TQFP	Туре	Туре	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32			
RC0				I/O	ST	Digital I/O.
T10S0				0		Timer1 oscillator output.
	10	10	05	1	51	Timer 1/ Timer's external clock input.
BC1	10	18	35	1/0	ST	Digital I/O
TIOSI				1	CMOS	Timer1 oscillator input.
CCP2				I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1	17	19	36			
RC2				I/O	ST	Digital I/O.
CCP1				I/O	ST	Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	1/0	от	
RU3 SCK				1/0	SI	Digital I/O. Synchronous serial clock input/output for
001				1/0	01	SPI mode.
SCL				I/O	ST	Synchronous serial clock input/output for
						l ² C mode.
RC4/SDI/SDA	23	25	42		0T	
RC4				I/O	SI	Digital I/O.
SDA				1/0	ST	I ² C Data I/O
BC5/SDO	24	26	43	., O	01	
RC5	21	20	10	I/O	ST	Digital I/O.
SDO				0	—	SPI Data Out.
RC6/TX/CK	25	27	44			
RC6				I/O	ST	Digital I/O.
				0	— ст	USART Asynchronous Transmit.
	06	20	4	1/0	31	USANT Synchronous Clock (see related HA/DT).
BC7	20	29	1	1/0	ST	Digital I/O
RX				"	ST	USART Asynchronous Receive.
DT				I/O	ST	USART Synchronous Data (see related TX/CK).
Logond: TTL - TTL	omnoti		+			CMOS - CMOS compatible input or output

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

O = Output

OD = Open Drain (no P diode to VDD)

CMOS = CMOS compatible input or output

P = Power

I = Input

TABLE 2-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Ranges Tested:								
Mode	Freq	C1	C2					
LP	32.0 kHz	33 pF	33 pF					
	200 kHz	15 pF	15 pF					
XT	200 kHz	22-68 pF	22-68 pF					
	1.0 MHz	15 pF	15 pF					
	4.0 MHz	15 pF	15 pF					
HS	4.0 MHz	15 pF	15 pF					
	8.0 MHz	15-33 pF	15-33 pF					
	20.0 MHz	15-33 pF	15-33 pF					
	25.0 MHz	15-33 pF	15-33 pF					
These value	es are for de	esign guidance o	only.					

These values are for design guidance only See notes following this table.

Crystals Used							
32.0 kHz	Epson C-001R32.768K-A	± 20 PPM					
200 kHz	STD XTL 200.000KHz	± 20 PPM					
1.0 MHz	ECS ECS-10-13-1	± 50 PPM					
4.0 MHz	ECS ECS-40-20-1	± 50 PPM					
8.0 MHz	Epson CA-301 8.000M-C	± 30 PPM					
20.0 MHz	Epson CA-301 20.000M-C	± 30 PPM					

- Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - 2: Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components., or verify oscillator performance.

An external clock source may also be connected to the OSC1 pin in the HS, XT and LP modes, as shown in Figure 2-2.

FIGURE 2-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

Open -

OSC2

2.3 RC Oscillator

For timing-insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 2-3 shows how the R/C combination is connected.

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic.

Note:	If the oscillator frequency divided by 4 sig-
	nal is not required in the application, it is
	recommended to use RCIO mode to save
	current.

The RCIO Oscillator mode functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 4-2).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.7 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB ='0'). Figure 4-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4). The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-5 shows how the instruction "GOTO 00006h' is encoded in the program memory. Program branch instructions which encode a relative address offset operate in the same manner. The offset value stored in a branch instruction represents the number of single word instructions that the PC will be offset by. Section 20.0 provides further details of the instruction set.

FIGURE 4-5: INSTRUCTIONS IN PROGRAM MEMORY

	_		LSB = 1	LSB = 0	Word Address \downarrow
	Program N	lemory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	Clh	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

5.2.2 TABLAT - TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch is used to hold 8-bit data during data transfers between program memory and data RAM.

5.2.3 TBLPTR - TABLE POINTER REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The table pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 5-1. These operations on the TBLPTR only affect the low order 21 bits.

5.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes, and erases of the FLASH program memory.

When a TBLRD is executed, all 22 bits of the Table Pointer determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the three LSbs of the Table Pointer (TBLPTR<2:0>) determine which of the eight program memory holding registers is written to. When the timed write to program memory (long write) begins, the 19 MSbs of the Table Pointer, TBLPTR (TBLPTR<21:3>), will determine which program memory block of 8 bytes is written to. For more detail, see Section 5.5 ("Writing to FLASH Program Memory").

When an erase of program memory is executed, the 16 MSbs of the Table Pointer (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 5-3 describes the relevant boundaries of TBLPTR based on FLASH program memory operations.

TABLE 5-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 5-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

TABLE 9-7:PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0.
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2.
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3.
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4.
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5.
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6.
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7.

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port mode.

TABLE 9-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD D	ata Outpi		xxxx xxxx	uuuu uuuu					
TRISD	PORTD Data Direction Register								1111 1111	1111 1111
TRISE	IBF	OBF	IBOV	PSPMODE – PORTE Data Direction bits					0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

REGISTER 15-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SMP	CKE	D/A	Р	S	R/W	UA	BF			
	bit 7	1			1	1		bit 0			
bit 7	SMP: Slev	v Rate Contr	ol bit <u>de:</u>	New dourd Cro			4 MUL-)				
	1 = Slew 0 = Slew	rate control o rate control e	enabled for H	ligh Speed r	node (400 k	00 kHz and Hz)	I MHZ)				
bit 6	CKE: SMBus Select bit In Master or Slave mode: 1 = Enable SMBus specific inputs 0 = Disable SMBus specific inputs										
bit 5	D/A: Data/Address bit In Master mode: Reserved										
	<u>In Slave m</u> 1 = Indicat 0 = Indicat	i <u>ode:</u> es that the lates the l	ast byte recei ast byte recei	ived or trans	smitted was a smitted was a	data address					
bit 4	P: STOP b 1 = Indicat 0 = STOP	oit es that a ST bit was not c	OP bit has be detected last	een detecte	d last						
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.					
bit 3	S: START 1 = Indicat 0 = START	bit es that a sta F bit was not	rt bit has bee detected las	en detected t	last						
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.					
bit 2	R/W: Read	d/Write bit In	formation (I ²	C mode only	/)						
	<u>In Slave m</u> 1 = Read 0 = Write	ode:									
	Note:	Note: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or not ACK bit.									
	<u>In Master i</u> 1 = Transr	<u>In Master mode:</u> 1 = Transmit is in progress									
	0 = Transr	0 = Transmit is not in progress									
	Note:	Note: ORing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.									
bit 1	UA: Updat 1 = Indicat 0 = Addres	UA: Update Address (10-bit Slave mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated									
bit 0	BF: Buffer	Full Status b	oit								
	In Transmi 1 = Receiv 0 = Receiv	In Transmit mode: 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty									
	<u>In Receive</u> 1 = Data tr 0 = Data tr	In Receive mode: 1 = Data transmit in progress (does not include the \overline{ACK} and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the \overline{ACK} and STOP bits), SSPBUF is empty									
	Legend:										
	R = Reada	ble bit	W = Writab	le bit	U = Unimpl	emented bit	, read as '0'				
	- n = Value	e at POR	'1' = Bit is s	et	'0' = Bit is o	leared	x = Bit is ur	known			

15.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

15.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 15-20: REPEAT START CONDITION WAVEFORM

FIGURE 16-5: ASYNCHRONOUS RECEPTION

TABLE 16-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	x00- 0000
RCREG	USART Receive Register									0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	Generato	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

17.0 COMPATIBLE 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has five inputs for the PIC18F2X2 devices and eight for the PIC18F4X2 devices. This module has the ADCON0 and ADCON1 register definitions that are compatible with the mid-range A/D module.

The A/D allows conversion of an analog input signal to a corresponding 10-bit digital number.

REGISTER 17-1: ADCON0 REGISTER

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 17-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 17-2, configures the functions of the port pins.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

- 000 = channel 0, (AN0)
- 001 = channel 1, (AN1)
- 010 =channel 2, (AN2)
- 011 =channel 3, (AN3)
- 100 =channel 4, (AN4)
- 101 = channel 5, (AN5)
- 110 = channel 6, (AN6)
- 110 = Channel 0, (ANO)
- 111 = channel 7, (AN7)
- **Note:** The PIC18F2X2 devices do not implement the full 8 A/D channels; the unimplemented selections are reserved. Do not select any unimplemented channel.

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically cleared by hardware when the A/D conversion is complete)
 0 = A/D conversion not in progress
- bit 1 Unimplemented: Read as '0'

bit 0 ADON: A/D On bit

1 = A/D converter module is powered up

0 = A/D converter module is shut-off and consumes no operating current

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. The seven possible options for TAD are:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal A/D module RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TaD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 17-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

17.3 Configuring Analog Port Pins

The ADCON1, TRISA and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs, must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins) may cause the input buffer to consume current that is out of the device's specification.

AD Clock S	Source (TAD)	Maximum Device Frequency			
Operation ADCS2:ADCS0		PIC18FXX2	PIC18LFXX2		
2 Tosc	000	1.25 MHz	666 kHz		
4 Tosc	100	2.50 MHz	1.33 MHz		
8 Tosc	001	5.00 MHz	2.67 MHz		
16 Tosc	101	10.00 MHz	5.33 MHz		
32 Tosc	010	20.00 MHz	10.67 MHz		
64 Tosc	110	40.00 MHz	21.33 MHz		
RC	011	_	_		

TABLE 17-1: TAD vs. DEVICE OPERATING FREQUENCIES

18.2 Operation

Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register), which selects the desired LVD Trip Point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 18-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 18-4: LOW VOLTAGE DETECT WAVEFORMS

19.4 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 FLASH devices differs significantly from other PICmicro devices.

The user program memory is divided into five blocks. One of these is a boot block of 512 bytes. The remainder of the memory is divided into four blocks on binary boundaries. Each of the five blocks has three code protection bits associated with them. They are:

- Code Protect bit (CPn)
- Write Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 19-3 shows the program memory organization for 16- and 32-Kbyte devices, and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 19-3.

FIGURE 19-3: CODE PROTECTED PROGRAM MEMORY FOR PIC18F2XX/4XX

MEMORY	SIZE/DEVICE		Plack Onde Bretestier
16 Kbytes (PIC18FX42)	32 Kbytes (PIC18FX52)	Address Range	Controlled By:
Boot Block	Boot Block	000000h 0001FFh	CPB, WRTB, EBTRB
Block 0	Block 0	000200h 001FFFh	CP0, WRT0, EBTR0
Block 1	Block 1	002000h 003FFFh	CP1, WRT1, EBTR1
Unimplemented Read 0's	Block 2	004000h 005FFFh	CP2, WRT2, EBTR2
Unimplemented Read 0's	Block 3	006000h 007FFFh	CP3, WRT3, EBTR3
Unimplemented Read 0's	Unimplemented Read 0's	008000h	(Unimplemented Memory Space)
		1FFFFFh	

TABLE 19-3: SUMMARY OF CODE PROTECTION REGISTERS

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	—	—	_		CP3	CP2	CP1	CP0
300009h	CONFIG5H	CPD	CPB	_	_	_	—	—	_
30000Ah	CONFIG6L	—	—	_	_	WRT3	WRT2	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—	—	—	—	—
30000Ch	CONFIG7L	—	—	_	_	EBTR3	EBTR2	EBTR1	EBTR0
30000Dh	CONFIG7H	—	EBTRB					-	

Legend: Shaded cells are unimplemented.

PIC18FXX2

RRNCF	Rotate Ri	ght f (no ca	rry)	SET	F	Set f					
Syntax:	[label]	RRNCF f[,d [,a]	Synt	ax:	[label] SI	ETF f[,a]				
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$			rands:	0 ≤ f ≤ 255 a ∈ [0,1]	5				
	a ∈ [0,1]			Ope	ration:	$FFh\tof$					
Operation:	$(f < n >) \rightarrow (f < n) \rightarrow (f < $	dest <n-1>, dest<7></n-1>		Stat	Status Affected:						
Status Affected	(I<02) //			Enc	oding:	0110	100a ff	ff ffff			
Encoding:	0100	00da ff	ff ffff	Des	cription:	The conte	nts of the sp	ecified regis-			
Description:	The conterrotated on the result	nts of register 'f' are e bit to the right. If 'd' is 0, is placed in W. If 'd' is 1, is placed back in register		The contents of register 'f' are rotated one bit to the right. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed back in register		I		ter are set to FFh. If 'a' is 0, the Access Bank will be selected, ove riding the BSR value. If 'a' is 1, the the bank will be selected as per th BSR value (default).			
	'f' (default Bank will). It ´a´ is 0, ti be selected	ne Access overriding	Wor	ds:	1					
	the BSR v	alue. If 'a' is	1, then the	Cyc	es:	1					
	bank will b	be selected a	is per the	QC	Q Cycle Activity: Q1						
	DON Value		. (Q3	Q4			
		 registe 			Decode	register 'f'	Data	register 'f'			
Words:	1					·					
Cycles:	1			<u>Exa</u>	<u>mple</u> :	SETF	REG,1				
Q Cycle Activity:					Before Instru	uction	- A				
Q1	Q2	Q3	Q4	ı	After Instruct	= Ux tion	5A				
Decode	Read register 'f'	Process Data	Write to destination		REG	= 0x	FF				
Example 1:	RRNCF	REG, 1, 0									
Before Instru	iction										
REG	= 1101 (0111									
After Instruct REG	= 1110 1	1011									
Example 2:	RRNCF	REG, 0, 0									
Before Instru	iction										
W REG	= ? = 1101 (0111									
After Instruct	tion										
₩ REG	= 1110 1 = 1101 (1011 0111									

21.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

21.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

21.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

21.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

21.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

TABLE 22-2: MEMORY PROGRAMMING REQUIREMENTS

DC Characteristics				$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \\ -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +125^{\circ}\mbox{C for extended} \end{array}$					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
		Internal Program Memory Programming Specifications							
D110	Vpp	Voltage on MCLR/VPP pin	9.00	—	13.25	V			
D113	IDDP	Supply Current during Programming	—	_	10	mA			
		Data EEPROM Memory							
D120	ED	Cell Endurance	100K	1M	—	E/W	-40°C to +85°C		
D121	Vdrw	VDD for Read/Write	VMIN	—	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write Cycle Time	—	4	—	ms			
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M	10M	—	E/W	-40°C to +85°C		
		Program FLASH Memory							
D130	Ер	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C		
D131	Vpr	VDD for Read	VMIN	—	5.5	V	Vмın = Minimum operating voltage		
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP port		
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port		
D132B	VPEW	VDD for Self-timed Write	VMIN	—	5.5	V	VMIN = Minimum operating voltage		
D133	TIE	ICSP Block Erase Cycle Time	—	4	—	ms	$VDD \ge 4.5V$		
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	—	_	ms	V DD $\ge 4.5V$		
D133A	Tiw	Self-timed Write Cycle Time	—	2	—	ms			
D134	TRETD	Characteristic Retention	40	—		Year	Provided no other specifications are violated		

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Refer to Section 6.8 for a more detailed discussion on data EEPROM endurance.

TABLE 22-15:	I ² C BUS START/STOP	BITS REQUIREMENTS	(SLAVE MODE)
--------------	---------------------------------	--------------------------	--------------

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	—	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600			START condition
91	THD:STA	START condition	100 kHz mode	4000	_	ns	After this period, the first
		Hold time	400 kHz mode	600			clock pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700		ns	
		Setup time	400 kHz mode	600	_		
93	THD:STO	STOP condition	100 kHz mode	4000	_	ns	
		Hold time	400 kHz mode	600			

TABLE 22-21: A/D CONVERTER CHARACTERISTICS: PIC18FXX2 (INDUSTRIAL, EXTENDED) PIC18LFXX2 (INDUSTRIAL)

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—	_	10	bit	
A03	EIL	Integral linearity error	—	—	<±1	LSb	VREF = VDD = 5.0V
A04	Edl	Differential linearity error	—	—	<±1	LSb	VREF = VDD = 5.0V
A05	EG	Gain error	—	—	<±1	LSb	VREF = VDD = 5.0V
A06	EOFF	Offset error	—	—	<±1.5	LSb	VREF = VDD = 5.0V
A10	—	Monotonicity	g	uarantee	j(2)	_	$VSS \leq VAIN \leq VREF$
A20 A20A	VREF	Reference Voltage (VREFH – VREFL)	1.8V 3V			V V	VDD < 3.0V VDD ≥ 3.0V
A21	VREFH	Reference voltage High	AVss	_	AVDD + 0.3V	V	
A22	VREFL	Reference voltage Low	AVss - 0.3V	_	VREFH	V	
A25	VAIN	Analog input voltage	AVss - 0.3V	_	AVDD + 0.3V	V	VDD ≥ 2.5V (Note 3)
A30	ZAIN	Recommended impedance of analog voltage source	—	_	2.5	kΩ	(Note 4)
A50	IREF	VREF input current (Note 1)	—		5 150	μΑ μΑ	During VAIN acquisition During A/D conversion cycle

Note 1: Vss \leq VAIN \leq VREF

2: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

3: For VDD < 2.5V, VAIN should be limited to < .5 VDD.

4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition times.

FIGURE 22-22: A/D CONVERSION TIMING

23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

FIGURE 23-1: TYPICAL IDD vs. FOSC OVER VDD (HS MODE)

FIGURE 23-17: TYPICAL AND MAXIMUM \triangle ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C, TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)

FIGURE 23-18: TYPICAL AND MAXIMUM Alwdt vs. Vdd OVER TEMPERATURE (WDT ENABLED)

PORTE
Analog Port Pins
Associated Registers
LATE Register
PORTE Register97
PSP Mode Select (PSPMODE Bit)
BE0/BD/AN5 Pin
BE1/WB/AN6 Pin 99 100
BE2/CS/AN7 Pin 99 100
TBISE Begister 97
Postscaler WDT
Assignment (PSA Bit) 105
Bate Select (TOPS2:TOPS0 Bits) 105
Switching Botwoon Timor() and WDT 105
Bower down Mode, See SLEED
Power on Poost (POP)
Power-on Resei (POR)
Device up Timer (DMDT)
Power-up Timer (PWRT)
Prescaler, Capture
Prescaler, Timeru
Assignment (PSA Bit)105
Rate Select (T0PS2:T0PS0 Bits)105
Switching Between Timer0 and WDT105
Prescaler, Timer2 122
PRO MATE II Universal Device Programmer255
Product Identification System
Program Counter
PCL Register
PCLATH Register
PCLATU Register
Program Memory
Interrupt Vector
Map and Stack for PIC18F442/242
Map and Stack for PIC18F452/252
RESET Vector
Program Verification and Code Protection
Associated Registers
Programming, Device Instructions 211
PSP. See Parallel Slave Port.
Pulse Width Modulation See PWM (CCP Module)
PLISH 240
PW/M (CCP Module) 122
Associated Begisters
CCPD1H:CCPD1L Degisters
Duty Cycle 122
Duly Cycle
Example Frequencies/nesolutions
Period
Setup for PWW Operation
I MH2 TO PH2 MATCH 111, 122
Q

R

RAM. See Data Memory	
RC Oscillator	
RCALL	
RCSTA Register	
SPEN Bit	
Register File	

Registers		
ADCO	N0 (A/D Control 0)	181
ADCO	N1 (A/D Control 1)	182
CCP1	CON and CCP2CON	
	Capture/Compare/PWM Control)	117
CONF	IG1H (Configuration 1 High)	196
	G2H (Configuration 2 Low)	197
CONF	IG3H (Configuration 3 High)	198
CONF	IG4L (Configuration 4 Low)	198
CONF	IG5H (Configuration 5 High)	199
CONF	IG5L (Configuration 5 Low)	199
CONF	IG6H (Configuration 6 High)	200
CONF	IG6L (Configuration 6 Low)	200
CONF	IG7H (Configuration 7 High)	201
CONF	IG7L (Configuration 7 Low)	201
DEVID	01 (Device ID Register 1)	202
DEVID	02 (Device ID Register 2)	202
EECO	N1 (Data EEPROM Control 1)	57, 66
File Su	ummary	46–48
INTCO	ON (Interrupt Control)	
INTCO	DN2 (Interrupt Control 2)	
	DN3 (Interrupt Control 3)	
ודדו (נססו	Peripheral Interrupt Priority 2)	20
	ON (I VD Control)	101
0500	CON (CVD CONTO)	191 21
PIF1 (Peripheral Interrupt Enable 1)	
PIE2 (Peripheral Interrupt Enable 2)	
PIR1 (Peripheral Interrupt Request 1)	
PIR2 (Peripheral Interrupt Request 2)	
RCON	I (Register Control)	
RCON	I (RESET Control)	53
RCST	A (Receive Status and Control)	167
SSPC	ON1 (MSSP Control 1)	
l ²	² C Mode	136
S	SPI Mode	127
SSPC	ON2 (MSSP Control 2)	
ا		137
SSPS	IAI (MSSP Status)	105
1- C		135
C TATI		120
STAD	US TR (Stack Pointer)	20
	N (Timer() Control)	103
T1CO	N (Timer 1 Control)	107
T2CO	N (Timer 2 Control)	
T3CO	N (Timer3 Control)	113
TRISE		
TXST	A (Transmit Status and Control)	166
WDTC	CON (Watchdog Timer Control)	203
RESET		195, 241
Brown	-out Reset (BOR)	195
MCLR	Reset (During SLEEP)	25
MCLR	Reset (Normal Operation)	25
Oscilla	ator Start-up Timer (OST)	195
Power		25, 195
Power	-up IImer (PWRI)	195
Progra	Ammable Brown-out Reset (BUR)	
RESE Stack	r msuucuon Full Reset	25 25
Stack	I Inderflow Reset	20 ∿⊊
Watch	idog Timer (WDT) Reset	20 25
, alon		