

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f442-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18F2X2 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Norro	Pin N	Pin Number		Buffer	Description
Pin Name	DIP	SOIC	Туре	Туре	Description
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI RC0 T1OSO T1CKI	11	11	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2 RC1 T1OSI CCP2	12	12	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1 RC2 CCP1	13	13	I/O I/O	ST ST	Digital I/O. Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL RC3 SCK SCL	14	14	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode
RC4/SDI/SDA RC4 SDI SDA	15	15	I/O I I/O	ST ST ST	Digital I/O. SPI Data In. I ² C Data I/O.
RC5/SDO RC5 SDO	16	16	I/O O	ST —	Digital I/O. SPI Data Out.
RC6/TX/CK RC6 TX CK	17	17	I/O O I/O	ST — ST	Digital I/O. USART Asynchronous Transmit. USART Synchronous Clock (see related RX/DT).
RC7/RX/DT RC7 RX DT	18	18	I/O I I/O	ST ST ST	Digital I/O. USART Asynchronous Receive. USART Synchronous Data (see related TX/CK).
Vss	8, 19	8, 19	Р	_	Ground reference for logic and I/O pins.
Vdd	20	20	Р	_	Positive supply for logic and I/O pins.
Legend: TTL = TTL o	compati	ble inpu	ıt		CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

I = Input P = Power

O = Output OD = Open Drain (no P diode to VDD)

3.1 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (i.e., exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

3.2 **Power-up Timer (PWRT)**

The Power-up Timer provides a fixed nominal time-out (parameter 33) only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter D033 for details.

3.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other Oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out (OST).

3.5 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter 35, the brown-out situation will reset the chip. A RESET may not occur if VDD falls below parameter D005 for less than parameter 35. The chip will remain in Brown-out Reset until VDD rises above BVDD. If the Power-up Timer is enabled, it will be invoked after VDD rises above BVDD; it then will keep the chip in RESET for an additional time delay (parameter 33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18FXXX device operating in parallel.

Table 3-2 shows the RESET conditions for some Special Function Registers, while Table 3-3 shows the RESET conditions for all the registers.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:	
OSCCON	—	—	—	—	_	_	—	SCS	0	21	
LVDCON			IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	191	
WDTCON			_			_	_	SWDTE	0	203	
RCON	IPEN	—	_	RI	TO	PD	POR	BOR	01 11qq	53, 28, 84	
TMR1H	Timer1 Reg	Timer1 Register High Byte xxxx xxx									
TMR1L	Timer1 Reg	Timer1 Register Low Byte xxxx xxxx									
T1CON	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	107	
TMR2	Timer2 Reg	ister		•				•	0000 0000	111	
PR2	Timer2 Peri	od Register							1111 1111	112	
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	111	
SSPBUF	SSP Receiv	e Buffer/Tran	smit Registe	r					xxxx xxxx	125	
SSPADD	SSP Addres	ss Register in	I ² C Slave m	ode. SSP Bau	ud Rate Reloa	ad Register in	I ² C Master	mode.	0000 0000	134	
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	126	
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	127	
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	137	
ADRESH	A/D Result	Register High	Byte						xxxx xxxx	187,188	
ADRESL	A/D Result	Register Low	Byte						xxxx xxxx	187,188	
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	181	
ADCON1	ADFM	ADCS2		_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	182	
CCPR1H	Capture/Co	mpare/PWM	Register1 Hig	jh Byte					xxxx xxxx	121, 123	
CCPR1L	Capture/Co	mpare/PWM	Register1 Lov	w Byte					xxxx xxxx	121, 123	
CCP1CON	_	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	117	
CCPR2H	Capture/Co	mpare/PWM	Register2 Hig	gh Byte					xxxx xxxx	121, 123	
CCPR2L	Capture/Co	mpare/PWM	Register2 Lov	w Byte					xxxx xxxx	121, 123	
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	117	
TMR3H	Timer3 Reg	ister High Byt	e						xxxx xxxx	113	
TMR3L	Timer3 Reg	ister Low Byte	e	r	r			r	xxxx xxxx	113	
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	113	
SPBRG	USART1 Ba	aud Rate Gen	erator						0000 0000	168	
RCREG	USART1 Re	eceive Registe	ər						0000 0000	175, 178, 180	
TXREG	USART1 Tr	ansmit Regist	er						0000 0000	173, 176, 179	
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	166	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	167	
EEADR	Data EEPR	OM Address	Register						0000 0000	65, 69	
EEDATA	Data EEPR	OM Data Reg	ister						0000 0000	69	
EECON2	Data EEPR	OM Control R	egister 2 (no	t a physical re	egister)					65, 69	
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	66	

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator modes. 2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers and bits are reserved on the PIC18F2X2 devices; always maintain these clear.

8.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable Registers (PIE1, PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 8-6: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE			
	bit 7 bit										
bit 7	PSPIE ⁽¹⁾ : Parallel Slave Port Read/Write Interrupt Enable bit										
	 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt 										
bit 6	ADIE: A/D	Converter li	nterrupt Ena	able bit							
	1 = Enables 0 = Disable	s the A/D in s the A/D ir	terrupt nterrupt								
bit 5	RCIE: USA	RT Receive	e Interrupt E	nable bit							
	1 = Enables 0 = Disable	s the USAR s the USAF	T receive in	nterrupt nterrupt							
bit 4	TXIE: USAI	RT Transmi	t Interrupt E	nable bit							
	1 = Enables 0 = Disable	s the USAR s the USAF	T transmit i T transmit	nterrupt interrupt							
bit 3	SSPIE: Mas	ster Synchr	onous Seria	al Port Interr	upt Enable bit						
	1 = Enables 0 = Disable	s the MSSP s the MSSP	' interrupt P interrupt								
bit 2	CCP1IE: C	CP1 Interru	pt Enable b	it							
	1 = Enables 0 = Disable	s the CCP1 s the CCP1	interrupt interrupt								
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	errupt Enable	e bit						
	 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 										
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit										
	1 = Enables	1 = Enables the TMR1 overflow interrupt									
	0 = Disable	s the IMR1	l overflow in	nterrupt							

Note 1: This bit is reserved on PIC18F2X2 devices; always maintain this bit clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.5 PORTE, TRISE and LATE Registers

This section is only applicable to the PIC18F4X2 devices.

PORTE is a 3-bit wide, bi-directional port. The corresponding Data Direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register reads and writes the latched output value for PORTE.

PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7) which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

Register 9-1 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs.

EXAMPLE 9-5: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by ; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	0x07	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0x05	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<0> as inputs
		; RE<1> as outputs
		; RE<2> as inputs
1		

FIGURE 9-9:

PORTE BLOCK DIAGRAM IN I/O PORT MODE

10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0L register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, x....etc.) will clear the prescaler count.

Note:	Writing to TMR0L when the prescaler is
	assigned to Timer0 will clear the prescaler
	count, but will not change the prescaler
	assignment.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, (i.e., it can be changed "on-the-fly" during program execution).

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IE bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

10.4 16-Bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (refer to Figure 10-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16-bits of Timer0 without having to verify that the read of the high and low byte were valid due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16-bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS		
TMR0L	Timer0 Modu	mer0 Module Low Byte Register xxxx xxxx uuuu uuuu										
TMR0H	Timer0 Modu	ule High Byte	0000 0000	0000 0000								
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 0000	0000 000u		
T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111		
TRISA	_	PORTA Data	ORTA Data Direction Register -111 1111 -111 1111									

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

15.4 I²C Mode

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the Standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock (SCL) RC3/SCK/SCL
- Serial data (SDA) RC4/SDI/SDA

The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

FIGURE 15-7: MSSP BLOCK DIAGRAM (I²C MODE)

15.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSP Control Register1 (SSPCON1)
- MSSP Control Register2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

SSPCON, SSPCON2 and SSPSTAT are the control and status registers in I^2C mode operation. The SSPCON and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read only. The upper two bits of the SSPSTAT are read/ write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD register holds the slave device address when the SSP is configured in I^2C Slave mode. When the SSP is configured in Master mode, the lower seven bits of SSPADD act as the baud rate generator reload value.

In receive operations, SSPSR and SSPBUF together, create a double buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

15.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP Enable bit, SSPEN (SSPCON<5>).

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock = OSC/4 (SSPADD +1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled
- I²C Firmware controlled master operation, slave is IDLE

Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To guarantee proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

15.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I²C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on START and STOP bits

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this \overline{ACK} pulse:

- The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter 100 and parameter 101.

15.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The buffer full bit BF is set.
- 3. An ACK pulse is generated.
- MSSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc =	40 MHz	SPBRG	33	MHz	SPBRG	25	MHz	SPBRG	20	MHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)									
0.3	NA	-	-									
1.2	NA	-	-									
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	162	2.40	+0.16	129
9.6	9.62	+0.16	64	9.55	-0.54	53	9.53	-0.76	40	9.47	-1.36	32
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	7	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3
96	89.29	-6.99	6	103.13	+7.42	4	97.66	+1.73	3	104.17	+8.51	2
300	312.50	+4.17	1	257.81	-14.06	1	NA	-	-	312.50	+4.17	0
500	625	+25.00	0	NA	-	-	NA	-	-	NA	-	-
HIGH	625	-	0	515.63	-	0	390.63	-	0	312.50	-	0
LOW	2.44	-	255	2.01	-	255	1.53	-	255	1.22	-	255
BAUD	Fosc =	16 MHz	SPBRG	10	MHz	SPBRG	7.159	09 MHz	SPBRG	5.068	8 MHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)									
0.3	NA	-	-									
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	83.33	+8.51	2	78.13	+1.73	1	111.86	+45.65	0	79.20	+3.13	0
96	83.33	-13.19	2	78.13	-18.62	1	NA	-	-	NA	-	-
300	250	-16.67	0	156.25	-47.92	0	NA	-	-	NA	-	-
500	NA	-	-									
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255
BAUD	Fosc	= 4 MHz	SPBRG	3.5795	645 MHz	SPBRG	1	MHz	SPBRG	32.76	8 kHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)									
0.3	0.30	-0.16	207	0.30	+0.23	185	0.30	+0.16	51	0.26	-14.67	1
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	2.23	-6.99	6	NA	-	-
9.6	8.93	-6.99	6	9.32	-2.90	5	7.81	-18.62	1	NA	-	-
19.2	20.83	+8.51	2	18.64	-2.90	2	15.63	-18.62	0	NA	-	-
76.8	62.50	-18.62	0	55.93	-27.17	0	NA	-	-	NA	-	-
96	NA	-	-									
300	NA	-	-									
500	NA	-	-									
HIGH	62.50	-	0	55.93	-	0	15.63	-	0	0.51	-	0
LOW	0.24	-	255	0.22	-	255	0.06	-	255	0.002	-	255

18.2 Operation

Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register), which selects the desired LVD Trip Point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 18-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 18-4: LOW VOLTAGE DETECT WAVEFORMS

	U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1				
	_		_	—	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0				
	bit 7							bit 0				
bit 7-4 bit 3	Unimpleme CP3: Code 1 = Block 3	ented: Read Protection b (006000-00	as '0' _{it} (1) 7FFFh) not c	code protecte	d							
bit 2	0 = Block 3 CP2: Code	0 = Block 3 (006000-007FFFh) code protected CP2: Code Protection bit ⁽¹⁾										
bit 1	0 = Block 2 CP1: Code	(004000-00) Protection b	5FFFh) code it	e protected								
	1 = Block 1 0 = Block 1	 1 = Block 1 (002000-003FFFh) not code protected 0 = Block 1 (002000-003FFFh) code protected 										
bit 0	CP0: Code 1 = Block 0 0 = Block 0	Protection b (000200-00 (000200-00	it 1FFFh) not c 1FFFh) code	code protecte protected	d							

REGISTER 19-6: CONFIGURATION REGISTER 5 LOW (CONFIG5L: BYTE ADDRESS 300008h)

Note 1: Unimplemented in PIC18FX42 devices; maintain this bit set.

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 19-7: CONFIGURATION REGISTER 5 HIGH (CONFIG5H: BYTE ADDRESS 300009h)

	R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0	
	CPD	CPB	—	—	—	_	—	—	
	bit 7							bit 0	
bit 7	CPD: Data	EEPROM	Code Protec	tion bit					
	1 = Data E	EPROM no	t code prote	cted					
	0 = Data E	EPROM co	de protecteo	k					
bit 6	CPB: Boot	Block Code	Protection	bit					
	1 = Boot B	lock (00000	0-0001FFh)	not code pr	otected				
	0 = Boot B	lock (00000	0-0001FFh)	code protec	cted				
bit 5-0	Unimplem	ented: Rea	d as '0'						
	Legend:								
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as	'0'	
	- n = Value when device is unprogrammed $u = Unchanged from programmed state$								

BTF	SC	Bit Test File, Skip if Clear		BTF	SS	Bit Test File, Skip if Set				
Synt	ax:	[label] B1	FSC f,b[,a]		Syn	tax:	[label] BTFSS f,b[,a]			
Ope	rands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$			Ope	Operands: $0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$				
Ope	ration:	skip if (f <b< td=""><td>>) = 0</td><td></td><td>Ope</td><td>ration:</td><td>skip if (f<b< td=""><td>>) = 1</td><td></td></b<></td></b<>	>) = 0		Ope	ration:	skip if (f <b< td=""><td>>) = 1</td><td></td></b<>	>) = 1		
Statu	us Affected:	None			Stat	us Affected:	None			
Enco	oding:	1011	bbba ff	ff ffff	Enc	oding:	1010	bbba ffi	ff fff	
Description:		If bit 'b' in register 'f' is 0, then the next instruction is skipped. If bit 'b' is 0, then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).		Des	cription:	If bit 'b' in r next instru If bit 'b' is 1 fetched du tion execut NOP is exe a two-cycle Access Ba riding the E the bank w BSR value	register 'f' is 1, ction is skippe I, then the new ring the current tion, is discard cuted instead e instruction. I nk will be sele 3SR value. If 'ill be selected (default).	, then the ed. At instruct the instruct ded and a , making t f 'a' is 0, the ected, ove a' = 1, the I as per the		
Wor	ds:	1			Wor	ds:	1			
Cycl	es:	1(2) Note: 3 c by	ycles if skip a a 2-word inst	and followed ruction.	Сус	les:	1(2) Note: 3 o by	cycles if skip a a 2-word inst	and follow ruction.	
QC	cycle Activity:				QC	Cycle Activity:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process Data	No operation		Decode	Read register 'f'	Process Data	No operatio	
lf sk		109.000		oportation	lf s	kip:	. egietei i		oporadio	
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operatio	
lf sk	kip and follow	ed by 2-word	l instruction:		lf sl	If skip and followed by 2-word instruction:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	No operation	No operation	No operation	No operation		No	No	No operation	No operatio	
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operatio	
<u>Exar</u>	<u>nple</u> :	HERE B' FALSE : TRUE :	IFSC FLAG	, 1, 0	<u>Exa</u>	<u>mple</u> :	HERE B FALSE : TRUE :	TFSS FLAG	, 1, 0	
	Before Instru	ction				Before Instru	iction			
	PC	= add	Iress (HERE)			PC	= add	dress (HERE)		
	After Instruct If FLAG< PC If FLAG< PC	ion 1> = 0; = add 1> = 1; = add	Iress (TRUE) Iress (False)			After Instruct If FLAG< PC If FLAG< PC	tion 1> = 0; = ado 1> = 1; = ado	dress (FALSE) dress (TRUE)		

tion is skipped. then the next instruction ring the current instrucion, is discarded and a cuted instead, making this instruction. If 'a' is 0, the nk will be selected, over-SR value. If 'a' = 1, then ill be selected as per the (default). cycles if skip and followed a 2-word instruction. Q3 Q4 Process Data No operation Q3 Q4 No No operation operation instruction: Q3 Q4 No No operation operation No No operation operation FSS FLAG, 1, 0

ffff

RCA	LL	Relative C	Call				
Synt	ax:	[<i>label</i>] R	CALL n				
Ope	rands:	-1024 ≤ n	≤ 1023				
Ope	ration:	(PC) + 2 - (PC) + 2 +	→ TOS, - 2n → P	2			
Statu	us Affected:	None					
Enco	oding:	1101	1nnn	nnnn	nnnn		
Description:Subroutine call with a jump up to 1K from the current location. First, return address (PC+2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the 							
Cycl	es:	2	2				
QC	ycle Activity	:					
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n' Push PC to stack	Process Data	s Wri	te to PC		
	No	No	No	n	No		
	operation	operation	operatio	n op	eration		

<u>Example</u> :	HERE	RCALL	Jump
------------------	------	-------	------

Before Instruction

PC = Address (HERE)

After Instruction

PC = Address (Jump) TOS = Address (HERE+2)

RES	ET	Reset						
Synt	ax:	[label]	RESET					
Ope	rands:	None						
Operation:		Reset all are affect	Reset all registers and flags that are affected by a MCLR Reset.					
Statu	us Affected:	All						
Encoding:		0000	0000 1	1111 111				
Description:		This instr execute a	u <u>ction p</u> rovi MCLR Res	des a set in s	way to software.			
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Start	No		No			
		reset	operation	ор	eration			

Example: RESET

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

RET	FIE	Return fro	Return from Interrupt				
Synt	Syntax: [label] RETFIE [s]						
Ope	rands:	$s \in [0,1]$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$						ed.	
Statu	us Affected:	GIE/GIEH	, PEIE/C	AIEL.			
Enco	oding:	0000	0000	000	1 000s	3	
Des	cription:	Return fro popped ar loaded into enabled by or low prio enable bit. the shador STATUSS into their c W, STATU update of (default).	Return from Interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs				
Wor	ds:	1					
Cycl	es:	2					
QC	cycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	No operation	No operati	on	pop PC fror stack Set GIEH o GIEL	m or	
	No	No	No		No		
	operation	operation	operati	on	operation		
<u>Exar</u>	<u>mple</u> :	RETFIE 1	L				
	After Interrup	ot	_ т	09			
	10		- !	00			

r interrupt		
PC	=	TOS
W	=	WS
BSR	=	BSRS
STATUS	=	STATUSS
GIE/GIEH, PEIE/GIEL	=	1

RET	LW	Return L	iteral to	w				
Synt	ax:	[label]	RETLW	k				
Ope	rands:	$0 \le k \le 25$	55					
Ope	ration:	$\begin{array}{l} k \rightarrow W, \\ (TOS) \rightarrow \\ PCLATU, \end{array}$	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged					
Statu	us Affected:	None						
Enco	oding:	0000	1100	kkk	k kkkł	ĸ		
Description:		W is load 'k'. The pr from the t address). (PCLATH	W is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.					
Wor	ds:	1	1					
Cycl	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'	Proce Data	SS A	pop PC from stack, Write to W	m ie		
	No operation	No operation	No operat	ion	No operation	1		
Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value								

: TABLE

B.	LE			
	ADDWF	PCL	;	W = offset
	RETLW	k0	;	Begin table
	RETLW	k1	;	
	:			
	:			
	RETLW	kn	;	End of table

Before Instruction

W	=	0x07
VV	=	UXU7

After Instruction

W = value of kn

21.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

21.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

21.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

21.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

FIGURE 22-2: PIC18LFXX2 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

FIGURE 22-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 22-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30	—	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	edge	100	_	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clo	ock edge of Byte2	1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK e	100	_	ns		
75	TdoR	SDO data output rise time	PIC18FXXX	—	25	ns	
			PIC18 LF XXX		60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXX	_	25	ns	
			PIC18 LF XXX		60	ns	VDD = 2V
78	TscR	SCK output rise time (Master mode)	PIC18FXXX		25	ns	
			PIC18 LF XXX		60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXX	—	25	ns	
			PIC18 LF XXX		60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK	PIC18FXXX	_	50	ns	
	TscL2doV	edge	PIC18 LF XXX	—	150	ns	VDD = 2V
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge)	Тсү	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

I

1	
I/O Ports87	7
I ² C (MSSP Module)	
	^
	9
Read/Write Bit Information (R/W Bit)	9
I ² C (<u>SSP Module</u>)	
ACK Pulse	8
I ² C Master Mode Reception	5
I ² C Mode	
Clock Stratabing 14	,
	4
	4
Registers	4
I ² C Module	
ACK Pulse 138, 139	9
Acknowledge Sequence Timing	8
Baud Bate Generator 15	1
Bue Cellinian	'
Bus Collision	_
Repeated START Condition	2
START Condition160	0
Clock Arbitration152	2
Effect of a RESET 159	9
General Call Address Support 14	e R
Mastar Mada	0
	9
Operation	υ
Repeated START Condition Timing	4
Master Mode START Condition 153	3
Master Mode Transmission 155	5
Multi-Master Communication, Bus Collision	
and Arbitration 150	q
Multi Mostor Modo	0
	9
Operation	8
Read/Write Bit Information (R/W Bit) 138, 139	9
Serial Clock (RC3/SCK/SCL) 139	9
Slave Mode	8
Addressing	8
Becention 130	ģ
Transmission 120	0
Claus Made Timing (10 bit Decention	9
Slave Mode Timing (10-bit Reception,	_
SEN = 0)142	2
Slave Mode Timing (10-bit Reception,	
SEN = 1)	7
Slave Mode Timing (10-bit Transmission)	3
Slave Mode Timing (7-bit Recention	-
	^
OLN = 0	0
Slave Mode Timing (7-bit Reception,	_
SEN = 1)	6
Slave Mode Timing (7-bit Transmission)	1
SLEEP Operation159	9
STOP Condition Timing	8
ICEPIC In-Circuit Emulator 254	Δ
	~
ID LOCALIONS	0
INCF	2
INCESZ	3
In-Circuit Debugger210	0
In-Circuit Serial Programming (ICSP) 195, 210	0
Indirect Addressing	1
INDE and ESB Begisters 50	ი
Indirect Addressing Operation	1
Indirect Addressing Operation	ו ר
	2
INFSNZ	3
Instruction Cycle	9
Instruction Flow/Pipelining40	0
Instruction Format213	3

Instruction Set		211
		017
	•••••	217
ADDWF		217
		218
		210
ANDLW		218
		219
		210
ВС		219
BCF		220
DN		000
BN		220
BNC		221
DNIN		001
DININ		221
BNOV		222
BN7		222
		~~~
BOA		225
BRA		223
DOF		~~~~
BSF		223
BTESC		224
DTECC		004
DIF33		224
BTG		225
B7		206
		220
CALL		226
CLBE		227
CLRWDT		227
COMF		228
		000
		228
CPFSGT		229
		220
		223
DAW		230
DCESNZ		231
		000
DECF		230
DECFSZ		231
COTO		222
		202
INCF		232
INCFSZ		233
INFONZ		000
		200
IORLW		234
IORWF		234
LEOD		00E
		200
MOVF		235
MOVFF		236
MOVLB		236
MOVLW		237
MOV/WE		227
		231
MULLW		238
MUUWE		238
		200
NEGF		239
NOP		239
POP		240
		240
PUSH		240
BCALL		241
DEOET		044
RESET		241
RETFIE		242
BETIW		212
		242
RETURN		243
RLCF		243
		044
		244
KHCF		244
BBNCE		245
		240
SEIF		245
SLEEP		246
SUBEWB		216
	•••••	240
SUBLW		247
SUBWE		247
CLIDWED		040
JUDWFD		248
SWAPF		248