

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f442t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Pin Diagrams (Cont.'d)

PIC18FXX2

NOTES:

2.7 Effects of SLEEP Mode on the On-Chip Oscillator

When the device executes a SLEEP instruction, the on-chip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt.

TABLE 2-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin
RC	Floating, external resistor should pull high	At logic low
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6
ECIO	Floating	Configured as PORTA, bit 6
EC	Floating	At logic low
LP, XT, and HS	Feedback inverter disabled, at quiescent voltage level	Feedback inverter disabled, at quiescent voltage level

Note: See Table 3-1, in the "Reset" section, for time-outs due to SLEEP and MCLR Reset.

2.8 Power-up Delays

Power up delays are controlled by two timers, so that no external RESET circuitry is required for most applications. The delays ensure that the device is kept in RESET, until the device power supply and clock are stable. For additional information on RESET operation, see Section 3.0.

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of 72 ms (nominal) on power-up only (POR and BOR). The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable.

With the PLL enabled (HS/PLL Oscillator mode), the time-out sequence following a Power-on Reset is different from other Oscillator modes. The time-out sequence is as follows: First, the PWRT time-out is invoked after a POR time delay has expired. Then, the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional fixed 2 ms (nominal) time-out to allow the PLL ample time to lock to the incoming clock frequency.

Register	Applicable Devices			ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt			
IPR2	242	442	252	452	1 1111	1 1111	u uuuu			
PIR2	242	442	252	452	0 0000	0 0000	u uuuu (1)			
PIE2	242	442	252	452	0 0000	0 0000	u uuuu			
	242	442	252	452	1111 1111	1111 1111	սսսս սսսս			
	242	442	252	452	-111 1111	-111 1111	-uuu uuuu			
וחום	242	442	252	452	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾			
FIRI	242	442	252	452	-000 0000	-000 0000	-uuu uuuu (1)			
	242	442	252	452	0000 0000	0000 0000	uuuu uuuu			
FIEI	242	442	252	452	-000 0000	-000 0000	-uuu uuuu			
TRISE	242	442	252	452	0000 -111	0000 -111	uuuu -uuu			
TRISD	242	442	252	452	1111 1111	1111 1111	սսսս սսսս			
TRISC	242	442	252	452	1111 1111	1111 1111	սսսս սսսս			
TRISB	242	442	252	452	1111 1111	1111 1111	uuuu uuuu			
TRISA ^(5,6)	242	442	252	452	-111 1111 (5)	-111 1111 (5)	-uuu uuuu (5)			
LATE	242	442	252	452	xxx	uuu	uuu			
LATD	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATC	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATA ^(5,6)	242	442	252	452	-xxx xxxx(5)	-uuu uuuu (5)	-uuu uuuu (5)			
PORTE	242	442	252	452	000	000	uuu			
PORTD	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTC	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTA ^(5,6)	242	442	252	452	-x0x 0000 (5)	-u0u 0000 (5)	-uuu uuuu ⁽⁵⁾			

 TABLE 3-3:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for RESET value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.
- 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit stack pointer, with the stack pointer initialized to 00000b after all RESETS. There is no RAM associated with stack pointer 00000b. This is only a RESET value. During a CALL type instruction, causing a push onto the stack, the stack pointer is first incremented and the RAM location pointed to by the stack pointer is written with the contents of the PC. During a RETURN type instruction, causing a pop from the stack, the contents of the RAM location pointed to by the STKPTR are transferred to the PC and then the stack pointer is decremented.

The stack space is not part of either program or data space. The stack pointer is readable and writable, and the address on the top of the stack is readable and writable through SFR registers. Data can also be pushed to, or popped from, the stack using the top-of-stack SFRs. Status bits indicate if the stack pointer is at, or beyond the 31 levels provided.

4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL hold the contents of the stack location pointed to by the STKPTR register. This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user must disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the stack pointer value, the STKFUL (stack full) status bit, and the STKUNF (stack underflow) status bits. Register 4-1 shows the STKPTR register. The value of the stack pointer can be 0 through 31. The stack pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At RESET, the stack pointer value will be 0. The user may read and write the stack pointer value. This feature can be used by a Real Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) configuration bit. Refer to Section 20.0 for a description of the device configuration bits. If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit, and reset the device. The STKFUL bit will remain set and the stack pointer will be set to '0'.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the stack pointer will increment to 31. Any additional pushes will not overwrite the 31st push, and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at 0. The STKUNF bit will remain set until cleared in software or a POR occurs.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the RESET vector, where the stack conditions can be verified and appropriate actions can be taken.

TABLE 4-2: REGISTER FILE SUMMARY

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSU	—	—	_	Top-of-Stack	k upper Byte (TOS<20:16>)		0 0000	37
TOSH	Top-of-Stac	k High Byte (1	OS<15:8>)						0000 0000	37
TOSL	Top-of-Stac	k Low Byte (T	OS<7:0>)						0000 0000	37
STKPTR	STKFUL	STKUNF	_	Return Stac	k Pointer				00-0 0000	38
PCLATU	_	—	_	Holding Reg	ister for PC<	20:16>			0 0000	39
PCLATH	Holding Reg	gister for PC<	15:8>						0000 0000	39
PCL	PC Low Byt	te (PC<7:0>)							0000 0000	39
TBLPTRU	_	_	bit21 ⁽²⁾	Program Me	mory Table P	ointer Upper	Byte (TBLPT	R<20:16>)	00 0000	58
TBLPTRH	Program Me	emory Table F	ointer High I	Byte (TBLPTF	R<15:8>)			,	0000 0000	58
TBLPTRL	Program Me	emory Table F	ointer Low E	Syte (TBLPTF	(<7:0>)				0000 0000	58
TABLAT	Program Me	emory Table L	.atch		,				0000 0000	58
PRODH	Product Red	aister Hiah Bv	rte						XXXX XXXX	71
PRODL	Product Red	aister Low Bv	te						xxxx xxxx	71
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	75
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	76
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	77
INDF0	Uses conter	nts of FSR0 to	address data	memory - val	ue of FSR0 no	t changed (no	ot a physical i	reaister)	n/a	50
POSTINC0	Uses conter	nts of FSR0 to	address data	memory - val	ue of FSR0 po	ost-incremente	ed (not a phys	sical register)	n/a	50
POSTDECO	Uses conter	nts of FSB0 to	address data	memory - vali	ue of ESB0 po	st-decrement	ed (not a physical	sical register)	n/a	50
PRFINC0	Uses conter	nts of FSR0 to	address data	memory - val	ue of FSR0 pr	e-incremente	d (not a physi	ical register)	n/a	50
PLUSW0	Uses conter	nts of FSR0 to	address da	ta memory - \	alue of FSRC) (not a physic	cal register).		n/a	50
ESB0H	_	_	_	_	Indirect Data	Memory Add	tress Pointer	0 High Byte	0000	50
FSR0L	Indirect Dat	a Memorv Ad	dress Pointe	r 0 Low Byte					xxxx xxxx	50
WREG	Working Re	aister		, ,					xxxx xxxx	n/a
INDF1	Uses conter	nts of FSR1 to	address da	ta memory - v	alue of FSR1	not changed	l (not a physi	cal register)	n/a	50
POSTINC1	Uses conter	nts of FSR1 to	address data	memory - val	ue of FSR1 po	ost-incremente	ed (not a phys	sical register)	n/a	50
POSTDEC1	Uses conter	nts of FSR1 to	address data	memory - val	ue of FSR1 po	st-decremente	ed (not a phys	sical register)	n/a	50
PRFINC1	Uses conter	nts of FSR1 to	address data	memory - val	ue of FSR1 pr	e-incremente	d (not a physi	cal register)	n/a	50
PLUSW1	Uses conter	nts of FSR1 to	address da	ta memory - v	value of FSR1	(not a physic	cal register).	ioui regiotory	n/a	50
	Offset by va	lue in WREG				(not a phyon	sur regiotor).		1.7 C	
FSR1H	_	_	_		Indirect Data	Memory Add	dress Pointer	1 High Byte	0000	50
FSR1L	Indirect Dat	a Memory Ad	dress Pointe	r 1 Low Byte	•				xxxx xxxx	50
BSR	_	—	_	_	Bank Select	Register			0000	49
INDF2	Uses conter	nts of FSR2 to	address da	ta memory - v	alue of FSR2	not changed	l (not a physi	cal register)	n/a	50
POSTINC2	Uses conter	nts of FSR2 to	address data	memory - val	ue of FSR2 po	ost-incremente	ed (not a phys	sical register)	n/a	50
POSTDEC2	Uses conter	nts of FSR2 to	address data	memory - valu	ue of FSR2 po	st-decremente	ed (not a phys	sical register)	n/a	50
PREINC2	Uses conter	nts of FSR2 to	address data	memory - val	ue of FSR2 pr	e-incremente	d (not a physi	cal register)	n/a	50
PLUSW2	Uses conter Offset by va	nts of FSR2 to	address da	ta memory - v	value of FSR2	? (not a physic	cal register).		n/a	50
FSR2H	_	_	_	_	Indirect Data	Memory Add	dress Pointer	2 High Byte	0000	50
FSR2L	Indirect Dat	a Memorv Ad	dress Pointe	r 2 Low Bvte		. ,		<u> </u>	xxxx xxxx	50
STATUS		_	_	N	OV	Z	DC	С	x xxxx	52
TMR0H	Timer0 Reg	ister Hiah Bvt	e				-	-	0000 0000	105
TMR0L	Timer0 Reg	ister Low Byte	Э						XXXX XXXX	105
TOCON	TMB0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	TOPSO	1111 1111	103
		100011	1000	1.005	1.0/1	101.02	10101	101.00		

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator modes.
 Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers and bits are reserved on the PIC18F2X2 devices; always maintain these clear.

Name	Bit#	Buffer	Function
RB0/INT0	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input0. Internal software programmable weak pull-up.
RB1/INT1	bit1	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input1. Internal software programmable weak pull-up.
RB2/INT2	bit2	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input2. Internal software programmable weak pull-up.
RB3/CCP2 ⁽³⁾	bit3	TTL/ST ⁽⁴⁾	Input/output pin or Capture2 input/Compare2 output/PWM output when CCP2MX configuration bit is enabled. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5/PGM ⁽⁵⁾	bit5	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Low voltage ICSP enable pin.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 9-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: A device configuration bit selects which I/O pin the CCP2 pin is multiplexed on.

4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.

5: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB5 I/O function. LVP must be disabled to enable RB5 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Da	ata Output Re	egister						xxxx xxxx	uuuu uuuu
TRISB	PORTB	Data Directio	on Register						1111 1111	1111 1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	11-0 0-00

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

9.6 Parallel Slave Port

The Parallel Slave Port is implemented on the 40-pin devices only (PIC18F4X2).

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit, PSPMODE (TRISE<4>) is set. It is asynchronously readable and writable by the external world through RD control input pin, RE0/RD and WR control input pin, RE1/WR.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, <u>RE1/WR</u> to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low.

The PORTE I/O pins become control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs), and the ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

FIGURE 9-11: PARALLEL SLAVE PORT WRITE WAVEFORMS

FIGURE 15-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

16.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART T	ransmit F	Register						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate		0000 0000	0000 0000						

TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 17.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
 - Set PEIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (interrupts disabled)

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

17.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 17-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

FIGURE 17-2: ANALOG INPUT MODEL

18.1 **Control Register**

The Low Voltage Detect Control register controls the operation of the Low Voltage Detect circuitry.

U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
—	—	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5 **IRVST:** Internal Reference Voltage Stable Flag bit
 - 1 = Indicates that the Low Voltage Detect logic will generate the interrupt flag at the specified voltage range
 - 0 = Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the LVD interrupt should not be enabled
- bit 4 LVDEN: Low Voltage Detect Power Enable bit
 - 1 = Enables LVD, powers up LVD circuit
 - 0 = Disables LVD, powers down LVD circuit
- bit 3-0 LVDL3:LVDL0: Low Voltage Detection Limit bits 1111 = External analog input is used (input comes from the LVDIN pin)

 - 1110 = 4.5V 4.77V1101 = 4.2V - 4.45V 1100 = 4.0V - 4.24V 1011 = 3.8V - 4.03V1010 = 3.6V - 3.82V1001 = 3.5V - 3.71V1000 = 3.3V - 3.50V0111 = 3.0V - 3.18V 0110 = 2.8V - 2.97V 0101 = 2.7V - 2.86V 0100 = 2.5V - 2.65V0011 = 2.4V - 2.54V 0010 = 2.2V - 2.33V0001 = 2.0V - 2.12V0000 = Reserved
 - Note: LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage of the device are not tested.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC18FXX2

BCF	Bit Clear	f					
Syntax:	[<i>label</i>] E	BCF f,	b[,a]				
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Operation:	$0 \rightarrow f < b >$						
Status Affected:	None						
Encoding:	1001	bbba	ffff	ffff			
Description:	Bit 'b' in re is 0, the A selected, If 'a' = 1, t selected a (default).	Bit 'b' in register 't' is cleared. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q	}	Q4			
Decode	Read register 'f'	Proce Data	ss a re	Write gister 'f'			
Example:	BCF 1	FLAG_RE	G, 7,	D			
Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47							

BN		Branch if	Negativ	/e				
Synt	ax:	[<i>label</i>] B	N n					
Ope	rands:	-128 ≤ n ≤	127					
Ope	ration:	if negative (PC) + 2 +	if negative bit is '1' (PC) + 2 + 2n \rightarrow PC					
Statu	us Affected:	None						
Enco	oding:	1110	0110	nnnn	nnnn			
Desi		The 2's co added to t have incre- instruction PC+2+2n. a two-cycl	will brand ompleme he PC. emented i, the ne This in e instrue	struction.	ber '2n' is he PC will h the next ess will be on is then			
Wor	ds:	1						
Cycl	es:	1(2)	1(2)					
Q C If Ju	ycle Activity	:						
	Q1	Q2	Q3	;	Q4			
	Decode	Read literal 'n'	Proce Data	ss W a	/rite to PC			
	No operation	No operation	No operat	ion d	No operation			
lf N	o Jump:							
	Q1	Q2	Q3	1	Q4			
	Decode	Read literal 'n'	Proce Data	ss a c	No operation			
<u>Exa</u>	<u>mple</u> :	HERE	BN	Jump				
	Before Instr	uction						
	PC	= ad	dress (H	ERE)				

PC	=	address	(HERE)
After Instruction			
If Negative PC If Negative PC	= = =	1; address 0; address	(Jump) (HERE+2)

PIC18FXX2

TE	BLWT	Table Wri	te		
Sy	ntax:	[label]	TBLWT (*; *+; *-;	+*)
Op	perands:	None			
Oţ	peration:	if TBLWT* (TABLAT) TBLPTR - if TBLWT* (TABLAT) (TBLPTR) if TBLWT* (TABLAT) if TBLWT+ (TBLPTR) (TABLAT)	\rightarrow Holding No Chang +, → Holding +1 → TB -, - Holding -1 → TBL +, +1 → TB → Holding	g Register ge; g Register LPTR; g Register .PTR; LPTR; g Register	; ; ;
Sta	atus Affecte	d: None			
Er	acoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*
		holding re written to. used to pr gram Men for informa memory. The TBLP to each by TBLPTR h range. The which byte location to TBLP TBLP	gisters the The 8 hol ogram the nory (P.M.) ation on w TR (a 21- rte in the p has a 2 ME e LSb of the c LSb of the c LSb of the paccess. TR[0] = 0: TR[0] = 1: T instruct BLPTR as	a TABLAT ding regis contents . See Sec riting to F bit pointer orogram me Byte addre te TBLPTI ogram me Least Sig Byte of P Memory V Most SigP Memory V ion can m follows:	data is ters are of Pro- ction 5.0 LASH) points nemory. ess R selects mory ynificant rogram Word nificant rogram Word nodify the
		 no chan post-inc 	ige		
		 post-ind post-de 	crement		
		 pre-incr 	ement		
W	ords:	1			
Су	cles:	2			
Q	Cycle Activ	vity:			
	Q1	Q2	Q3	C)4
	Decode	No operation	No operation	N opera	o ation
	No operation	No operation	No operation	N opera	o ation

TBLWT Table Write (Continued)

Example1:	TBLWT	*+;	
Before Instructi	on		
TABLAT TBLPTR HOLDING F	REGISTER	= =	0x55 0x00A356
(0x00A356)		=	0xFF
After Instruction	ns (table v	vrite co	ompletion)
TABLAT TBLPTR HOLDING F	REGISTER	= =	0x55 0x00A357
(0x00A356)		=	0x55
Example 2:	TBLWT	+*;	
Before Instructi	on		
TABLAT TBLPTR HOLDING F	REGISTER	= =	0x34 0x01389A
(0x01389A)		=	0xFF
(0x01389B)	IEGISTER	=	0xFF
After Instruction	ו (table w	rite cor	mpletion)
TABLAT TBLPTR HOLDING F	REGISTER	= =	0x34 0x01389B
(0x01389A) HOLDING F	REGISTER	=	0xFF
(0x01389B)	Laioren	=	0x34

(Read

TABLAT)

(Write to Holding

Register or Memory)

21.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

21.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

21.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

22.1 DC Characteristics: PIC18FXX2 (Industrial, Extended) PIC18LFXX2 (Industrial) (Continued)

PIC18L	FXX2 ustrial)		Standa Operat	ard Ope ting tem	erating	g Cond ire	itions (unless otherwise stated) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial
PIC18F	XX2 ustrial, Ex	tended)	Standa Operat	ard Ope ting tem	erating peratu	g Cond ire	itions (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	Idd	Supply Current ^(2,4)					
D010		PIC18LFXX2		.5 .5 1.2 .3 .3 1.5 .3 .3	1 1.25 2 1 1 3 1 1	mA mA mA mA mA mA	XT osc configuration VDD = $2.0V$, + 25° C, Fosc = 4 MHz VDD = $2.0V$, - 40° C to + 85° C, Fosc = 4 MHz VDD = $4.2V$, - 40° C to + 85° C, Fosc = 4 MHz RC osc configuration VDD = $2.0V$, + 25° C, Fosc = 4 MHz VDD = $2.0V$, - 40° C to + 85° C, Fosc = 4 MHz VDD = $4.2V$, - 40° C to + 85° C, Fosc = 4 MHz RCIO osc configuration VDD = $2.0V$, + 25° C, Fosc = 4 MHz VDD = $2.0V$, - 40° C to + 85° C, Fosc = 4 MHz VDD = $2.0V$, - 40° C to + 85° C, Fosc = 4 MHz VDD = $2.0V$, - 40° C to + 85° C, Fosc = 4 MHz
D010		PIC18FXX2		1.2 1.2 1.2 1.5 1.5 1.6 .75 .75 .8	1.5 2 3 4 4 2 3 3	mA mA mA mA mA mA mA	XT osc configuration VDD = $4.2V$, $+25^{\circ}$ C, FOSC = 4 MHz VDD = $4.2V$, $+40^{\circ}$ C to $+85^{\circ}$ C, FOSC = 4 MHz VDD = $4.2V$, -40° C to $+125^{\circ}$ C, FOSC = 4 MHz RC osc configuration VDD = $4.2V$, $+25^{\circ}$ C, FOSC = 4 MHz VDD = $4.2V$, -40° C to $+85^{\circ}$ C, FOSC = 4 MHz VDD = $4.2V$, -40° C to $+125^{\circ}$ C, FOSC = 4 MHz VDD = $4.2V$, -40° C to $+125^{\circ}$ C, FOSC = 4 MHz RCIO osc configuration VDD = $4.2V$, $+25^{\circ}$ C, FOSC = 4 MHz NDD = $4.2V$, $+25^{\circ}$ C, FOSC = 4 MHz VDD = $4.2V$, -40° C to $+85^{\circ}$ C, FOSC = 4 MHz VDD = $4.2V$, -40° C to $+85^{\circ}$ C, FOSC = 4 MHz VDD = $4.2V$, -40° C to $+125^{\circ}$ C, FOSC = 4 MHz
D010A		PIC18LFXX2	_	14	30	μA	LP osc, FOSC = 32 kHz, WDT disabled VDD = 2.0V, -40°C to +85°C
D010A		PIC18FXX2		40 50	70 100	μΑ μΑ	LP osc, Fosc = 32 kHz, WDT disabled VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active Operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD
 - $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- 5: The LVD and BOR modules share a large portion of circuitry. The ∆IBOR and ∆ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

TABLE 22-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} to SCK or SCK input		Тсү	—	ns	
71	TscH	SCK input high time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
71A			Single Byte	40	_	ns	(Note 1)
72	TscL	SCK input low time (Slave mode)	Continuous	1.25 Tcy + 30		ns	
72A			Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK ec	lge	100	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the first clock	edge of Byte2	1.5 TCY + 40	-	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edg	le	100	—	ns	
75	TdoR	SDO data output rise time	PIC18FXXX	—	25	ns	
			PIC18LFXXX	—	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXX	—	25	ns	
			PIC18LFXXX	—	60	ns	VDD = 2V
77	TssH2doZ	SS↑ to SDO output hi-impedance	•	10	50	ns	
78	TscR	SCK output rise time (Master mode)	PIC18FXXX		25	ns	
			PIC18LFXXX		60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXX		25	ns	
			PIC18LFXXX		60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK edge	PIC18FXXX		50	ns	
	TscL2doV		PIC18LFXXX	_	150	ns	VDD = 2V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5 TCY + 40	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

Param. No.	Symbol	Charac	teristic	Min	Мах	Units	Conditions		
100	Тнідн	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			400 kHz mode	2(Tosc)(BRG + 1)		ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms			
101	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)		ms			
			400 kHz mode	2(Tosc)(BRG + 1)		ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	-	ms			
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from		
		rise time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	300	ns			
103	TF	SDA and SCL	100 kHz mode	—	1000	ns	$VDD \ge 4.2V$		
		fall time	400 kHz mode	20 + 0.1 Св	300	ns	$VDD \ge 4.2V$		
90	TSU:STA	TSU:STA	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	Only relevant for
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated START		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition		
91	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	After this period, the first		
		hold time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms			
106	THD:DAT	Data input	100 kHz mode	0		ns			
		hold time	400 kHz mode	0	0.9	ms			
107	TSU:DAT	Data input	100 kHz mode	250	_	ns	(Note 2)		
		setup time	400 kHz mode	100	_	ns			
92	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms			
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms			
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns			
		clock	400 kHz mode	—	1000	ns			
			1 MHz mode ⁽¹⁾	—	—	ns			
110	TBUF	Bus free time	100 kHz mode	4.7		ms	Time the bus must be free		
			400 kHz mode	1.3	—	ms	before a new transmission can start		
D102	Св	Bus capacitive loa	ading	—	400	pF			

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

PIC18FXX2

Ρ

•		
Packaging		305
Details		307
Marking Information		305
Parallel Slave Port		000
		100
		100
Parallel Slave Port (PSP)	95,	100
		101
	. 99,	100
	. 99,	100
RE2/CS/AN7 Pin	99,	100
Select (PSPMODE Bit)	95,	100
PIC18F2X2 Pin Functions		
MCLR/VPP		10
OSC1/CLKI		10
OSC2/CLKO/RA6		10
RA0/AN0		10
RA1/AN1		10
RA2/AN2/VREF		10
RA3/AN3/VREF+		10
RA4/T0CKI		10
RA5/AN4/SS/LVDIN		10
RB0/INT0		11
RB1/INT1		11
RB2/INT2		11
RB3/CCP2		
BB4		11
BB5/PGM		11
BB6/PGC		
RB7/PGD		
		 10
		∠۱ 10
		ے ا ۱۵
	•••••	12
		12
RC4/SDI/SDA	•••••	12
RC5/SDO	•••••	12
RC6/TX/CK	•••••	12
RC7/RX/D1	•••••	12
VDD		12
Vss		12
PIC18F4X2 Pin Functions		
MCLR/VPP		13
OSC1/CLKI		13
OSC2/CLKO		13
RA0/AN0		13
RA1/AN1		13
RA2/AN2/VREF		13
RA3/AN3/VREF+		13
RA4/T0CKI		13
RA5/AN4/SS/LVDIN		13
RB0/INT		14
RB1		14
RB2		14
BB3		14
BB4		14
BB5/PGM		14
BB6/PGC		+، 1/
BB7/PGD	•••••	+۱۰. ۱۸
	•••••	14 ۲۰
	•••••	כו זר
	•••••	15
	•••••	15
HU3/SUK/SUL	•••••	15
RC4/SDI/SDA	•••••	15
RC5/SDO	•••••	15
RC6/TX/CK		15

RC//RA/D1
RD0/PSP016
RD1/PSP116
RD2/PSP2
RD3/PSP3
RD4/PSP4
RD5/PSP5
KD6/PSP6
RD7/F3F7
BE1/WB/AN6 16
BE2/CS/AN7 16
VDD
Vss
PIC18FXX2 Voltage-Frequency Graph
(Industrial)
PIC18LFXX2 Voltage-Frequency Graph
(Industrial) 260
PICDEM 1 Low Cost PICmicro
Demonstration Board 255
PICDEM 17 Demonstration Board 256
PICDEM 2 Low Cost PIC16CXX
Demonstration Board
PICDEM 3 Low Cost PIC16CXXX
Demonstration Board
Programmer 255
PIF Benisters 80_81
Pinout I/O Descriptions
PIC18F2X2
PIR Registers
PIR Registers
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240 PORTA 240
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240 PORTA Associated Registers 89
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240 PORTA Associated Registers 89 LATA Register 87
PIR Registers .78–79 PLL Lock Time-out .26 Pointer, FSR .50 POP .240 POR. See Power-on Reset .240 PORTA
PIR Registers .78–79 PLL Lock Time-out .26 Pointer, FSR .50 POP .240 POR. See Power-on Reset .240 PORTA
PIR Registers .78–79 PLL Lock Time-out .26 Pointer, FSR .50 POP .240 POR. See Power-on Reset
PIR Registers .78–79 PLL Lock Time-out .26 Pointer, FSR .50 POP .240 POR. See Power-on Reset
PIR Registers .78–79 PLL Lock Time-out .26 Pointer, FSR .50 POP .240 POR. See Power-on Reset
PIR Registers .78–79 PLL Lock Time-out .26 Pointer, FSR .50 POP .240 POR. See Power-on Reset
PIR Registers
PIR Registers .78–79 PLL Lock Time-out .26 Pointer, FSR .50 POP .240 POR. See Power-on Reset .240 PORTA
PIR Registers
PIR Registers
PIR Registers
PIR Registers
PIR Registers78–79PLL Lock Time-out26Pointer, FSR50POP240POR. See Power-on Reset26PORTA89LATA Register87PORTA Register87PORTA Register87PORTB89LATB Register90PORTB Register90PORTC Register93PORTC Register93PORTC Register93PORTC Register93PORTC Register93PORTC Register93RC3/SCK/SCL Pin139
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240 PORTA Associated Registers 89 LATA Register 87 PORTA Register 87 TRISA Register 87 PORTB Associated Registers 92 LATB Register 90 PORTB Register 90 PORTC Associated Registers 94 LATC Register 93 PORTC
PIR Registers78–79PLL Lock Time-out26Pointer, FSR50POP240POR. See Power-on Reset26PORTAAssociated RegistersAssociated Register87PORTA Register87PORTA Register87PORTBAssociated RegistersAssociated Register90PORTB Register90PORTB Register90PORTB Register90PORTB Register90PORTB Register90PORTB Register90PORTB Register90PORTB Register90PORTC Register93PORTC Register93PORTC Register93RC3/SCK/SCL Pin139RC7/RX/DT Pin168TRISC Register93, 165
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240 PORTA Associated Registers 89 LATA Register 87 PORTA Register 87 PORTA Register 87 PORTB 85 Associated Registers 92 LATB Register 90 PORTB 90 PORTB Register 90 PORTC Associated Registers 94 LATC Register 93 PORTC Register 93
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240 PORTA Associated Registers 89 LATA Register 87 PORTA Register 87 TRISA Register 87 PORTB Associated Registers 92 LATB Register 90 PORTB Register 90 PORTC Associated Registers 94 LATC Register 93 PORTC Register 93 PORTD 168 Associated Registers 96 PORTD
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240 PORTA Associated Registers 89 LATA Register 87 PORTA Register 87 PORTA Register 87 PORTA Register 87 PORTB Register 87 Associated Registers 92 LATB Register 90 PORTB Register 90 PORTB Register 90 PORTB Register 90 PORTB Register 90 PORTC Register 90 PORTC Associated Registers PORTC 4 ASSociated Register 93 PORTC Register 93 PORTC Register 93 PORTC Register 93 RC3/SCK/SCL Pin 139 RC7/RX/DT Pin 168 TRISC Register 93 PORTD Associated Registers 96 LATD Register 95 PORTD<
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 240 PORTA Associated Registers 89 LATA Register 87 PORTA Register 87 PORTA Register 87 PORTB Register 87 PORTB Register 90 PORTC Register 90 PORTC Associated Registers Associated Register 93 PORTC Register 93 PORTD Register 93 PORTD Register 95 PORTD Register <td< td=""></td<>
PIR Registers 78–79 PLL Lock Time-out 26 Pointer, FSR 50 POP 240 POR. See Power-on Reset 20 PORTA Associated Registers 89 LATA Register 87 PORTA Register 87 PORTA Register 87 PORTB 85 Associated Registers 92 LATB Register 90 PORTB Register 90 PORTC 4 Associated Registers 94 LATC Register 93 PORTC Register 93 PORTC Register 93 RC3/SCK/SCL Pin 139 RC7/RX/DT Pin 168 TRISC Register 93 PORTD Associated Registers PORTD 95 Parallel Slave Port (PSP) Function 95 PORTD Register 9