

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f442t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3:	PIC18F4X2 PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-----------------------------------	-------------

Dia Norra	Pin Number			Pin Buffer		Description		
Pin Name	DIP	PLCC	TQFP	Туре	Туре	Description		
						PORTC is a bi-directional I/O port.		
RC0/T1OSO/T1CKI	15	16	32					
RC0				I/O	ST	Digital I/O.		
T10S0				0		Timer1 oscillator output.		
	10	10	05	I	51	Timer 1/ Timer's external clock input.		
BC1	10	18	35	1/0	ST	Digital I/O		
TIOSI				1	CMOS	Timer1 oscillator input.		
CCP2				I/O	ST	Capture2 input, Compare2 output, PWM2 output.		
RC2/CCP1	17	19	36					
RC2				I/O	ST	Digital I/O.		
CCP1				I/O	ST	Capture1 input/Compare1 output/PWM1 output.		
RC3/SCK/SCL	18	20	37	1/0	от			
RU3 SCK				1/0	SI	Digital I/O. Synchronous serial clock input/output for		
001				1/0	01	SPI mode.		
SCL				I/O	ST	Synchronous serial clock input/output for		
						l ² C mode.		
RC4/SDI/SDA	23	25	42		0T			
RC4				I/O	SI	Digital I/O.		
SDA				1/0	ST	I ² C Data I/O		
BC5/SDO	24	26	43	., O	01			
RC5	21	20	10	I/O	ST	Digital I/O.		
SDO				0	—	SPI Data Out.		
RC6/TX/CK	25	27	44					
RC6				I/O	ST	Digital I/O.		
				0	— ст	USART Asynchronous Transmit.		
	06	20	4	1/0	31	USANT Synchronous Clock (see related HA/DT).		
BC7	20	29	1	1/0	ST	Digital I/O		
RX				"	ST	USART Asynchronous Receive.		
DT				I/O	ST	USART Synchronous Data (see related TX/CK).		
Logond: TTL - TTL	omnoti		+			CMOS - CMOS compatible input or output		

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

O = Output

OD = Open Drain (no P diode to VDD)

CMOS = CMOS compatible input or output

P = Power

I = Input

If the main oscillator is configured for HS-PLL mode, an oscillator start-up time (TOST) plus an additional PLL time-out (TPLL) will occur. The PLL time-out is typically 2 ms and allows the PLL to lock to the main oscillator frequency. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS-PLL mode is shown in Figure 2-10.

FIGURE 2-10: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)

If the main oscillator is configured in the RC, RCIO, EC or ECIO modes, there is no oscillator start-up time-out. Operation will resume after eight cycles of the main oscillator have been counted. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for RC, RCIO, EC and ECIO modes, is shown in Figure 2-11.

FIGURE 2-11: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)

3.0 RESET

The PIC18FXXX differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) Watchdog Timer (WDT) Reset (during normal operation)
- e) Programmable Brown-out Reset (BOR)
- f) RESETInstruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP and by the RESETinstruction. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

The MCLR pin is not driven low by any internal RESETS, including the WDT.

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURNinstruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
€	
€	
SUB1 € € €	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-4.

FIGURE 4-4:

CLOCK/INSTRUCTION CYCLE

TABLE 11-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x (000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register									սսս սսսս
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx xxxx u	սսս սսսս
T1CON	RD16		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000 u	-uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- 0 = No collision
- bit 6 SSPOV: Receive Overflow Indicator bit

SPI Slave mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).
- 0 = No overflow
 - **Note:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit

- 1 = Enables serial port and configures SCK, SDO, SDI, and \overline{SS} as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins
- **Note:** When enabled, these pins must be properly configured as input or output.

bit 4 CKP: Clock Polarity Select bit

- 1 = IDLE state for clock is a high level
- 0 = IDLE state for clock is a low level
- bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
 - 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - 0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled
 - 0011 = SPI Master mode, clock = TMR2 output/2
 - 0010 = SPI Master mode, clock = Fosc/64
 - 0001 = SPI Master mode, clock = Fosc/16
 - 0000 = SPI Master mode, clock = Fosc/4
 - **Note:** Bit combinations not specifically listed here are either reserved, or implemented in I²C mode only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 15-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
	SMP	CKE	D/A	Р	S	R/W	UA	BF		
	bit 7	I			I	I		bit 0		
bit 7	SMP: Slev In Master of 1 = Slew	v Rate Contr or Slave mod rate control o	ol bit <u>le:</u> lisabled for S	Standard Spo	eed mode (1	00 kHz and	1 MHz)			
	0 = Slew	rate control e	enabled for H	ligh Speed r	node (400 k	Hz)				
dit 6	In Master of 1 = Enable	or Slave mod SMBus spe	t <u>le:</u> cific inputs							
	0 = Disable	e SMBus spe	ecific inputs							
bit 5	D/A: Data/ In Master I Reserved	Address bit <u>mode:</u>								
	$\frac{\text{In Slave m}}{1 = \text{Indicat}}$ $0 = \text{Indicat}$	ode: es that the lates the late	ast byte recei ast byte recei	ived or trans	smitted was a smitted was a	data address				
bit 4	P: STOP b 1 = Indicat 0 = STOP	 P: STOP bit 1 = Indicates that a STOP bit has been detected last 0 = STOP bit was not detected last 								
	Note:	This bit is c	leared on RE	SET and wl	hen SSPEN	is cleared.				
bit 3	S: START 1 = Indicat 0 = START	bit es that a sta r bit was not	rt bit has bee detected las	en detected	last					
	Note:	This bit is c	leared on RE	SET and wl	hen SSPEN	is cleared.				
bit 2	R/W: Read	d/Write bit Int	formation (I ²	C mode only	/)					
	<u>In Slave m</u> 1 = Read 0 = Write	ode:								
	Note:	Note: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or not ACK bit.								
	<u>In Master i</u> 1 = Transn 0 - Transn	In Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress								
	Note:	ORing this I in IDLE mo	bit with SEN, de.	RSEN, PEI	N, RCEN, or	ACKEN will	indicate if th	ne MSSP is		
bit 1	UA: Updat 1 = Indicat 0 = Addres	e Address (tes that the uses does not r	I0-bit Slave r ser needs to need to be up	node only) update the odated	address in t	he SSPADD	register			
bit 0	BF: Buffer	Full Status b	oit							
	<u>In Transmi</u> 1 = Receiv 0 = Receiv	<u>In Transmit mode:</u> 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty								
	<u>In Receive</u> 1 = Data tr 0 = Data tr	In Receive mode: 1 = Data transmit in progress (does not include the \overline{ACK} and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty								
	Legend:									
	R = Reada	able bit	W = Writab	le bit	U = Unimpl	emented bit	, read as '0'			
	- n = Value	e at POR	'1' = Bit is s	et	'0' = Bit is o	leared	x = Bit is ur	Iknown		

15.4.4.5 Clock Synchronization and the CKP bit

If a user clears the CKP bit, the SCL output is forced to '0'. Setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. If the user attempts to drive SCL low, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set, and all other devices on the I^2C bus have de-asserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 15-12).

15.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the I^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2C operation. See Section 15.4.7 ("Baud Rate Generator"), for more detail. A typical transmit sequence would go as follows:

- 1. The user generates a START condition by setting the START enable bit, SEN (SSPCON2<0>).
- SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP Module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- 9. The MSSP Module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a STOP condition by setting the STOP enable bit PEN (SSPCON2<2>).
- 12. Interrupt is generated once the STOP condition is complete.

16.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEPinstruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x (000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000 (000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000 (000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000 (000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x 0	000 -00x
RCREG	USART Receive Register									000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000-010 0	000 -010
SPBRG	Baud Rate	Generat	or Registe	r					0000 0000 (0000 0000

TABLE 16-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

NEGF	Negate f							
Syntax:	[label] NEGF f [,a]							
Operands:	0 f 255 a [0,1]							
Operation:	$(\overline{f}) + 1 f$							
Status Affected:	N, OV, C, DC, Z							
Encoding:	0110 110a ffff ffff							
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2 Q3 Q4							
Decode	ReadProcessWriteregister 'f'Dataregister 'f'							
Example: NEGF REG, 1								
Before Instruction REG = 0011 1010 [0x3A]								
After Instructi REG	on = 1100 0110 [0xC6]							

NOF)	No Opera	No Operation						
Synt	ax:	[label]	NOP						
Ope	rands:	None	None						
Ope	ration:	No opera	tion						
Statu	us Affected:	None							
Enco	oding:	0000 1111	0000 0000 00 xxxx xxx xx			0000 xxxx			
Desc	cription:	No opera	No operation.						
Wor	ds:	1							
Cycl	es:	1							
QC	ycle Activity:								
Q1		Q2	Q3	Q3		Q4			
	Decode	No	No			No			
		operation	operat	ion	ор	eration			

Example:

None.

PIC18FXX2

SLE	EP	SUBFWB						
Synt	ax:	[label]	[label] SLEEP					
Ope	rands:	Operands:						
Ope	ration:	00h W 0 WD 1 <u>TO</u> , 0 PD	00h WDT, 0 WDT postscaler, 1 <u>TO</u> , 0 PD					
Statu	us Affected:	TO, PD			Encodina:			
Enco	oding:	0000	0000 000	Description:				
Description:		The powe cleared. (TO) is se its postso The proc mode wit	The power-down status bit (PD) is cleared. The time-out status bit (TO) is set. Watchdog Timer and its postscaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.					
Word	ds:	1						
Cycl	es:	1		Words:				
QC	ycle Activity:				Cycles:			
i	Q1	Q2	Q3	Q4	O Cuelo Acti			
	Decode	No operation	Process Data	Go to sleep	Q1 Decode			
Exar	<u>mple</u> :	SLEEP						
Before Instruction $\frac{\overline{IO}}{PD} = ?$ After Instruction $\frac{\overline{IO}}{PD} = 0$ † If WDT causes wake-up, this bit is cleared.					Example 1: Before Ir REG W C After Inst REG W C Z N			
					Example 2:			
					Before Ir REG W C After Insi			

Syntax:	[labe	<pre>/] SUBFWB</pre>	f [,d [,a]					
Operands:	0 f	0 f 255						
	0] b a [0),1] \ 1]						
Operation:		a $[0,1]$ (W) = (f) = (\overline{C}) dest						
Status Affected:		(W) - (f) - (C) dest						
Encoding:		1, 0, D0, Z						
Description:	Subtr		nd carry flag					
Description.	(borro	w) from W (2's	s complement					
	metho	od). If 'd' is 0, th	ne result is					
	storec	l in W. If 'd' is ⁻ Lin rogistor 'f' (1, the result is					
	0. the	Access Bank	will be selected.					
	overri	ding the BSR	value. If 'a' is 1,					
	then t	he bank will be	e selected as					
Marda	per m	e DSR value (uerauit).					
vvoras:	1							
	1							
	02	03	04					
Decode	Read	Process	Write to					
	register	'f' Data	destination					
Example 1:	SUBF	WB REG, 1, 0						
Before Instru	iction							
REG	= 3							
C V	= 2							
After Instruct	tion							
REG W	= FF							
Č	= 0							
Z N	= 0 = 1	; result is nega	tive					
<u>Example 2</u> :	SUBF	SUBFWB REG, 0, 0						
Before Instru	iction							
REG	= 2							
W C	= 5 = 1							
After Instruct	tion							
REG	= 2							
C	= 1							
Z N	= 0 = 0	; result is posit	ive					
Example 3:	SUBF	WB REG, 1, 0						
Before Instru	iction							
REG	= 1							
W	= 2 = 0							
After Instruct	tion							
REG	= 0							
W C	= 2 = 1							
Z	= 1 = 0	; result is zero						
	-							

Subtract f from W with borrow

TABLE 22-21: A/D CONVERTER CHARACTERISTICS: PIC18FXX2 (INDUSTRIAL, EXTENDED) PIC18LFXX2 (INDUSTRIAL)

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—	_	10	bit	
A03	EIL	Integral linearity error	—	—	<±1	LSb	VREF = VDD = 5.0V
A04	Edl	Differential linearity error	—	—	<±1	LSb	VREF = VDD = 5.0V
A05	EG	Gain error	—	—	<±1	LSb	VREF = VDD = 5.0V
A06	EOFF	Offset error	—	—	<±1.5	LSb	VREF = VDD = 5.0V
A10	_	Monotonicity	g	uarantee	j(2)	_	Vss Vain Vref
A20 A20A	VREF	Reference Voltage (VREFH – VREFL)	1.8V 3V		_	V V	Vdd < 3.0V Vdd 3.0V
A21	VREFH	Reference voltage High	AVss	_	AVDD + 0.3V	V	
A22	VREFL	Reference voltage Low	AVss – 0.3V	_	VREFH	V	
A25	VAIN	Analog input voltage	AVss - 0.3V	—	AVDD + 0.3V	V	VDD 2.5V (Note 3)
A30	ZAIN	Recommended impedance of analog voltage source	_	_	2.5	k	(Note 4)
A50	IREF	VREF input current (Note 1)	—		5 150	μΑ μΑ	During VAIN acquisition During A/D conversion cycle

Note 1: Vss VAIN VREF

2: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

3: For VDD < 2.5V, VAIN should be limited to < .5 VDD.

4: Maximum allowed impedance for analog voltage source is 10 k . This requires higher acquisition times.

FIGURE 22-22: A/D CONVERSION TIMING

FIGURE 23-5: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

FIGURE 23-21: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

Package Marking Information (Cont'd)

44-Lead TQFP

44-Lead PLCC

Example

Example

24.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil Body (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS			
Dimension I	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins n		28			28			
Pitch	р		.100			2.54		
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26	
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top		5	10	15	5	10	15	
Mold Draft Angle Bottom		5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins		44			44				
Pitch	р		.050			1.27			
Pins per Side	n1		11			11			
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57		
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06		
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89		
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86		
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27		
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25		
Overall Width	Е	.685	.690	.695	17.40	17.53	17.65		
Overall Length	D	.685	.690	.695	17.40	17.53	17.65		
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66		
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66		
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00		
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00		
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33		
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81		
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53		
Mold Draft Angle Top		0	5	10	0	5	10		
Mold Draft Angle Bottom		0	5	10	0	5	10		

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-048