

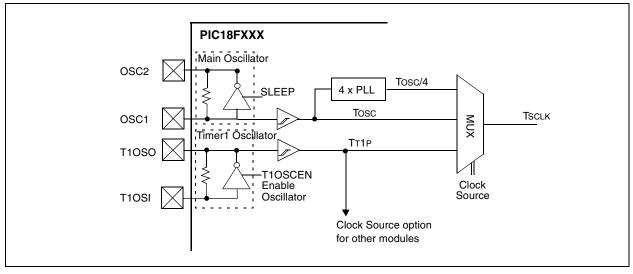
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

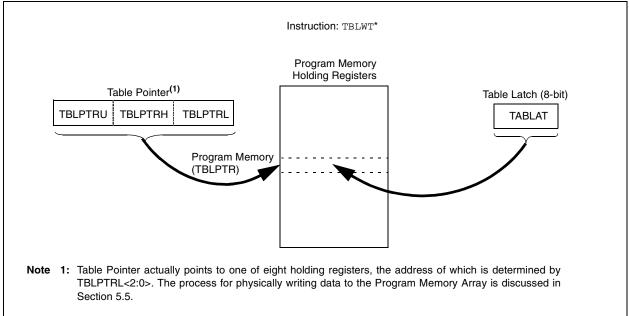

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f452-e-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 Oscillator Switching Feature

The PIC18FXX2 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low frequency clock source. For the PIC18FXX2 devices, this alternate clock source is the Timer1 oscillator. If a low frequency crystal (32 kHz, for example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has been enabled, the device can switch to a Low Power Execution mode. Figure 2-7 shows a block diagram of the system clock sources. The clock switching feature is enabled <u>by programming the Oscillator Switching</u> Enable (OSCSEN) bit in Configuration Register1H to a '0'. Clock switching is disabled in an erased device. See Section 11.0 for further details of the Timer1 oscillator. See Section 19.0 for Configuration Register details.


FIGURE 2-7: DEVICE CLOCK SOURCES

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
OSCCON	—	—	—	—	—	—	—	SCS	0	21
LVDCON	_	—	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	191
WDTCON	_	—	—	—	_	—	—	SWDTE	0	203
RCON	IPEN	_	_	RI	TO	PD	POR	BOR	01 11qq	53, 28, 84
TMR1H	Timer1 Reg	ister High Byt	e	•		•	•		xxxx xxxx	107
TMR1L	Timer1 Reg	ister Low Byte	Э						xxxx xxxx	107
T1CON	RD16		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	107
TMR2	Timer2 Reg	ister							0000 0000	111
PR2	Timer2 Peri	od Register							1111 1111	112
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	111
SSPBUF	SSP Receiv	e Buffer/Tran	smit Register	ſ		•	•		xxxx xxxx	125
SSPADD	SSP Addres	ss Register in	I ² C Slave me	ode. SSP Bau	ud Rate Reloa	ad Register ir	I ² C Master	mode.	0000 0000	134
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	126
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	127
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	137
ADRESH	A/D Result	A/D Result Register High Byte								187,188
ADRESL	A/D Result	Register Low	Byte						xxxx xxxx	187,188
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON	0000 00-0	181
ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	182
CCPR1H	Capture/Co	mpare/PWM	Register1 Hig	h Byte		•	•		xxxx xxxx	121, 123
CCPR1L	Capture/Co	mpare/PWM	Register1 Lov	w Byte					xxxx xxxx	121, 123
CCP1CON			DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	117
CCPR2H	Capture/Co	mpare/PWM	Register2 Hig	gh Byte		•	•		xxxx xxxx	121, 123
CCPR2L	Capture/Co	mpare/PWM	Register2 Lov	w Byte					xxxx xxxx	121, 123
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	117
TMR3H	Timer3 Reg	ister High Byt	e						xxxx xxxx	113
TMR3L	Timer3 Reg	ister Low Byte	e						xxxx xxxx	113
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	113
SPBRG	USART1 Ba	aud Rate Gen	erator	•		•	•		0000 0000	168
RCREG	USART1 Re	eceive Regist	ər						0000 0000	175, 178, 180
TXREG	USART1 Tra	ansmit Regist	er						0000 0000	173, 176, 179
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	166
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	167
EEADR	Data EEPR	OM Address	Register		•			•	0000 0000	65, 69
EEDATA	Data EEPR	OM Data Reg	ister						0000 0000	69
EECON2	Data EEPR	OM Control R	legister 2 (no	t a physical re	egister)					65, 69
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	66

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator modes. 2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers and bits are reserved on the PIC18F2X2 devices; always maintain these clear.

5.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

5.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit EEPGD determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

Control bit CFGS determines if the access will be to the configuration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on configuration registers, regardless of EEPGD (see "Special Features of the CPU", Section 19.0). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, will allow a program memory erase operation. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), due to RESET values of zero.

Control bit WR initiates write operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

Note: Interrupt flag bit EEIF, in the PIR2 register, is set when the write is complete. It must be cleared in software.

REGISTER 5-1: EECON1 REGISTER (ADDRESS FA6h)

	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0		
	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD		
	bit 7							bit 0		
L:1 7					Assess Only at	L 14				
bit 7										
	1 = Access FLASH Program memory 0 = Access Data EEPROM memory									
bit 6	CFGS: FLASH Program/Data EE or Configuration Select bit									
		Configurati								
	0 = Access	FLASH Pro	ogram or Da	ata EEPRON	/I memory					
bit 5	Unimplem	ented: Rea	d as '0'							
bit 4		ASH Row Er								
					d by TBLPTR c	on the next	WR comma	and		
	(cleared by completion of erase operation) 0 = Perform write only									
bit 3	WRERR: F	LASH Prog	ram/Data E	E Error Flag	ı bit					
		-		ly terminate						
					ng in normal op	eration)				
		ite operatior	-							
		nen a WRE⊦ cing of the €			and CFGS bits	are not cle	eared. This	allows		
	i u			011.						
bit 2	WREN: FL	ASH Progra	ım/Data EE	Write Enab	le bit					
		write cycles								
		write to the	EEPROM							
bit 1	WR: Write			,						
					or a program m leared by hard					
	· · ·			eared) in sof	•	ware once		ipiele. The		
		ycle to the E			,					
bit 0	RD: Read	Control bit								
		s an EEPRC								
	(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)									
	in software. RD bit cannot be set when EEPGD = 1.) 0 = Does not initiate an EEPROM read									
	0 – 2000 H	et annato u								
	Legend:									
	Logona									

W = Writable bit

'1' = Bit is set

R = Readable bit

- n = Value at POR

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

9.0 I/O PORTS

Depending on the device selected, there are either five ports or three ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The data latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving.

9.1 PORTA, TRISA and LATA Registers

PORTA is a 7-bit wide, bi-directional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

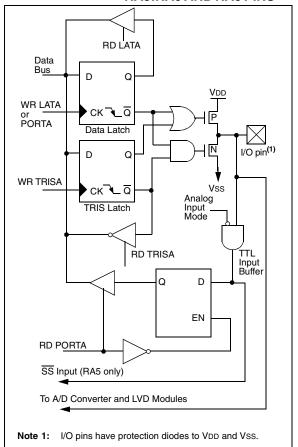
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register reads and writes the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, RA5 and RA3:RA0 are configured as analog inputs and read as '0'. RA6 and RA4 are configured as digital inputs.


The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 9-1: INITIALIZING PORTA

CLRF PORTA	; Initialize PORTA by ; clearing output
	; data latches
CLRF LATA	; Alternate method
	; to clear output
	; data latches
MOVLW 0x07	; Configure A/D
MOVWF ADCON1	; for digital inputs
MOVLW 0xCF	; Value used to
	; initialize data
	; direction
MOVWF TRISA	; Set RA<3:0> as inputs
	; RA<5:4> as outputs

BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

PIC18FXX2

REGISTER 9-1: TRISE REGISTER

	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0
	bit 7							bit 0
bit 7	•	Buffer Full S				0011		
		d nas been r Ind has been		d waiting to be	read by the	e CPU		
bit 6		out Buffer Fu		ŀ				
bit 0				previously writ	ten word			
	0 = The ou	utput buffer h	nas been re	ad				
bit 5				ct bit (in Micro				
		e occurred w be cleared ir		iously input wo	ord has not	been read		
	· ·	erflow occuri	,					
bit 4	PSPMOD	E: Parallel S	lave Port N	lode Select bit				
		el Slave Port						
		al purpose I/						
bit 3	-	nented: Rea						
bit 2		RE2 Directior	n Control bi	t				
	1 = Input 0 = Outpu	t						
bit 1	•	RE1 Direction	n Control bi	t				
	1 = Input							
	0 = Outpu	t						
bit 0		RE0 Directior	n Control bi	t				
	1 = Input 0 = Outpu	t						
	o – Outpu							
	Legend:							
	R = Reada	able bit	W = 1	Writable bit	U = Unim	plemented l	bit, read as '	0'
	- n = Value	e at POR	'1' =	Bit is set	'0' = Bit is	•	x = Bit is u	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS						
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u						
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000						
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000						
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000						
TRISC	PORTC D	ata Direction	Register						1111 1111	1111 1111						
TMR1L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR1 Reg	gister		xxxx xxxx	uuuu uuuu						
TMR1H	Holding Re	egister for th	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		xxxx xxxx	uuuu uuuu						
T1CON	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0-00 0000	u-uu uuuu						
CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					xxxx xxxx	uuuu uuuu						
CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					xxxx xxxx	uuuu uuuu						
CCP1CON		—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000						
CCPR2L	Capture/C	ompare/PWI	M Register2	(LSB)					xxxx xxxx	uuuu uuuu						
CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	uuuu uuuu						
CCP2CON		—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000						
PIR2		—	_	EEIE	BCLIF	LVDIF	TMR3IF	CCP2IF	0 0000	0 0000						
PIE2		—	_	EEIF	BCLIE	LVDIE	TMR3IE	CCP2IE	0 0000	0 0000						
IPR2		—	_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	1 1111	1 1111						
TMR3L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR3 Reg	gister		xxxx xxxx	uuuu uuuu						
TMR3H	Holding Re	egister for th	e Most Sign	ificant Byte	of the 16-bit	TMR3 Reg	ister		xxxx xxxx	uuuu uuuu						
T3CON	RD16	RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu							uuuu uuuu							
Legend: x	= unknow	n, u = uncha	nged, - = ur	nimplemente	d, read as 'C	'. Shaded o	cells are not	t used by C	apture and Tin							

TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2x2 devices; always maintain these bits clear.

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | СКР | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

REGISTER 15-2: SSPCON1: MSSP CONTROL REGISTER1 (SPI MODE)

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- $0 = No \ collision$
- bit 6 SSPOV: Receive Overflow Indicator bit

SPI Slave mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).
- 0 = No overflow
 - **Note:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit

- 1 = Enables serial port and configures SCK, SDO, SDI, and \overline{SS} as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins
- **Note:** When enabled, these pins must be properly configured as input or output.

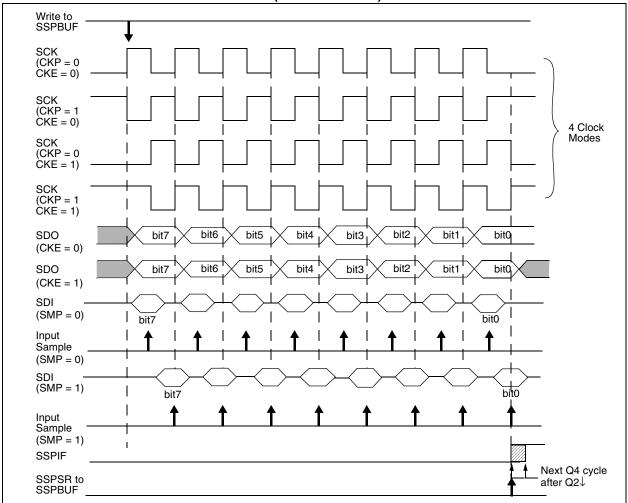
bit 4 CKP: Clock Polarity Select bit

- 1 = IDLE state for clock is a high level
- 0 = IDLE state for clock is a low level
- bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
 - 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - $0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled$
 - 0011 = SPI Master mode, clock = TMR2 output/2
 - 0010 = SPI Master mode, clock = FOSC/64
 - 0001 = SPI Master mode, clock = Fosc/16
 - 0000 = SPI Master mode, clock = Fosc/4
 - Note: Bit combinations not specifically listed here are either reserved, or implemented in I^2C mode only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 15-2) is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

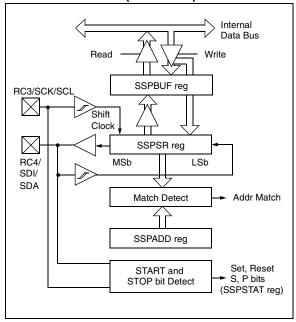
The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 15-3, Figure 15-5, and Figure 15-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 15-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

15.4 I²C Mode


The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the Standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock (SCL) RC3/SCK/SCL
- Serial data (SDA) RC4/SDI/SDA

The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

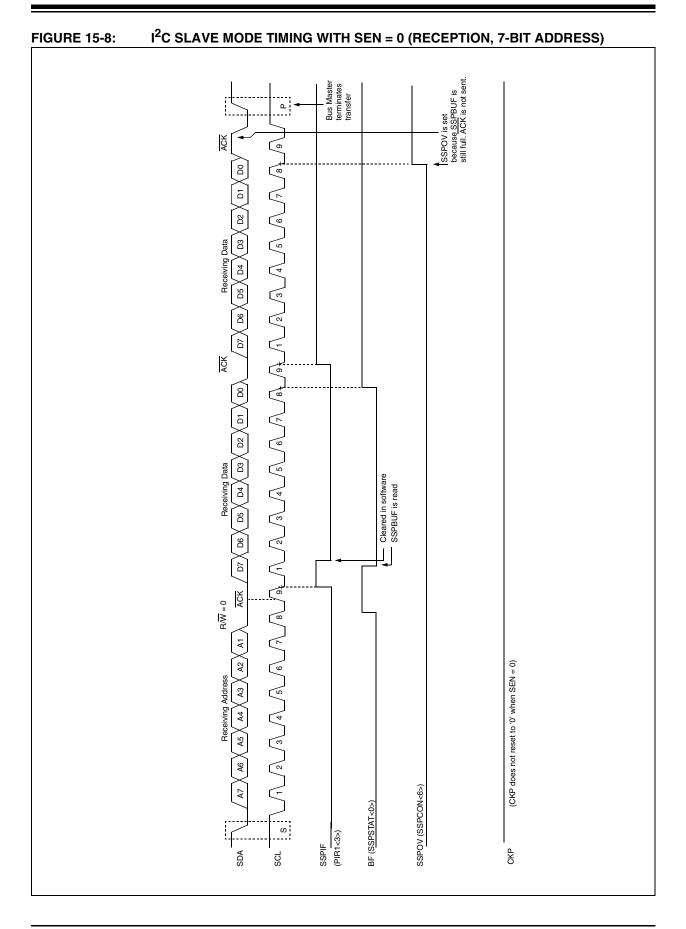
FIGURE 15-7: MSSP BLOCK DIAGRAM (I²C MODE)

15.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSP Control Register1 (SSPCON1)
- MSSP Control Register2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

SSPCON, SSPCON2 and SSPSTAT are the control and status registers in I^2C mode operation. The SSPCON and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read only. The upper two bits of the SSPSTAT are read/ write.


SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD register holds the slave device address when the SSP is configured in I^2C Slave mode. When the SSP is configured in Master mode, the lower seven bits of SSPADD act as the baud rate generator reload value.

In receive operations, SSPSR and SSPBUF together, create a double buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

PIC18FXX2

15.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the buffer full flag bit, BF, and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 15-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

15.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

15.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

15.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge (ACK = 0), and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call) or when the slave has properly received its data.

15.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note: In the MSSP module, the RCEN bit must be set after the ACK sequence or the RCEN bit will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the baud rate generator is suspended from counting, holding SCL low. The MSSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>).

15.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

15.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

15.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc =	40 MHz	SPBRG	33	MHz	SPBRG	25	MHz	SPBRG	20 1	ИНz	SPBRG
RATE		%	value		%	value		%	value		%	value
(Kbps)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	162	2.40	+0.16	129
9.6	9.62	+0.16	64	9.55	-0.54	53	9.53	-0.76	40	9.47	-1.36	32
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	7	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3
96	89.29	-6.99	6	103.13	+7.42	4	97.66	+1.73	3	104.17	+8.51	2
300	312.50	+4.17	1	257.81	-14.06	1	NA	-	-	312.50	+4.17	0
500	625	+25.00	0	NA	-	-	NA	-	-	NA	-	-
HIGH	625	-	0	515.63	-	0	390.63	-	0	312.50	-	0
LOW	2.44	-	255	2.01	-	255	1.53	-	255	1.22	-	255
	_											
BAUD	FOSC =	16 MHz	SPBRG	101	MHz	SPBRG	7.1590	9 MHz	SPBRG	5.068	5 MHZ	SPBRG
RATE (Kbps)		%	value (decimal)		%	value (decimal)		%	value (decimal)		%	value (decimal)
(1000)	KBAUD	ERROR	(uconnai)	KBAUD	ERROR	(uconnul)	KBAUD	ERROR	(uconnul)	KBAUD	ERROR	(uconnui)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	83.33	+8.51	2	78.13	+1.73	1	111.86	+45.65	0	79.20	+3.13	0
96	83.33	-13.19	2	78.13	-18.62	1	NA	-	-	NA	-	-
300	250	-16.67	0	156.25	-47.92	0	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255
BAUD	Fosc :	= 4 MHz	SPBRG	3.5795	45 MHz	SPBRG	11	1 MHz SPBRG		32.768 kHz		SPBRG
RATE		%	value		%	value		%	value		%	value
(Kbps)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	0.30	-0.16	207	0.30	+0.23	185	0.30	+0.16	51	0.26	-14.67	1
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	2.23	-6.99	6	NA	-	-
9.6	8.93	-6.99	6	9.32	-2.90	5	7.81	-18.62	1	NA	-	-
19.2	20.83	+8.51	2	18.64	-2.90	2	15.63	-18.62	0	NA	-	-
76.8	62.50	-18.62	0	55.93	-27.17	0	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	62.50	-	0	55.93	-	0	15.63	-	0	0.51	-	0
LOW	0.24	-	255	0.22	-	255	0.06	-	255	0.002	-	255

17.0 COMPATIBLE 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has five inputs for the PIC18F2X2 devices and eight for the PIC18F4X2 devices. This module has the ADCON0 and ADCON1 register definitions that are compatible with the mid-range A/D module.

The A/D allows conversion of an analog input signal to a corresponding 10-bit digital number.

REGISTER 17-1: ADCON0 REGISTER

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 17-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 17-2, configures the functions of the port pins.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

- 000 = channel 0, (AN0)
- 001 = channel 1, (AN1)
- 010 =channel 2, (AN2)
- 011 =channel 3, (AN3)
- 100 =channel 4, (AN4)
- 101 = channel 5, (AN5)
- 110 = channel 6, (AN6)
- 110 = Channel 0, (ANO)
- 111 = channel 7, (AN7)
- **Note:** The PIC18F2X2 devices do not implement the full 8 A/D channels; the unimplemented selections are reserved. Do not select any unimplemented channel.

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically cleared by hardware when the A/D conversion is complete)
 0 = A/D conversion not in progress
- bit 1 Unimplemented: Read as '0'

bit 0 ADON: A/D On bit

1 = A/D converter module is powered up

0 = A/D converter module is shut-off and consumes no operating current

Γ	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
	- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NEGF	Negate f			
Syntax:	[<i>label</i>] NEGF f[,a]			
Operands:	$0 \le f \le 255$ $a \in [0,1]$			
Operation:	$(\overline{f}) + 1 \rightarrow f$			
Status Affected:	N, OV, C, DC, Z			
Encoding:	0110 110a ffff ffff			
Description:	Description: Location 'f' is negated using two's complement. The result is placed the data memory location 'f'. If 'a' 0, the Access Bank will be selected, overriding the BSR value If 'a' = 1, then the bank will be selected as per the BSR value.			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2 Q3 Q4			
Decode	ReadProcessWriteregister 'f'Dataregister 'f'			
Example:	NEGF REG, 1			
Before Instru REG	ction = 0011 1010 [0x3A]			
After Instruct REG	ion = 1100 0110 [0xC6]			

NOF)	No Opera	No Operation					
Synt	ax:	[label]	NOP					
Ope	rands:	None	None					
Operation:		No opera	tion					
Statu	us Affected:	None						
Encoding:		0000	0000	000	0	0000		
		1111	xxxx	XXX	x	xxxx		
Description:		No opera	tion.					
Wor	ds:	1						
Cycles:		1						
Q Cycle Activity:								
	Q1	Q2	Q3			Q4		
	Decode	No	No			No		
		operation	operation operation			eration		

Example:

None.

PIC18FXX2

URN	Return fr	Return from Subroutine				
ax:	[label]	RETURI	N [s]			
rands:	$s \in [0,1]$					
ration:	$\begin{array}{l} (\text{TOS}) \rightarrow \text{PC},\\ \text{if } s=1\\ (\text{WS}) \rightarrow \text{W},\\ (\text{STATUSS}) \rightarrow \text{STATUS},\\ (\text{BSRS}) \rightarrow \text{BSR},\\ \text{PCLATU, PCLATH are unchanged} \end{array}$					
us Affected:	None					
oding:	0000	0000	0001	001s		
cription:	is popped (TOS) is l counter. If shadow re and BSRS respondin and BSR.	and the oaded in 's'= 1, the egisters' S are loa og register If 's' = 0	top of the to the plane conte WS, STA ded into ers, W, S	ne stack rogram nts of the ATUSS their cor- STATUS late of		
ds:	1	1				
es:	2	2				
Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	No operation			PC from stack		
No	No	No		No		
operation	operation	operati	ion o	peration		
	tax: rands: ration: us Affected: oding: cription: ds: es: Cycle Activity: Q1 Decode No	tax: [label] rands: $s \in [0,1]$ ration: (TOS) → if $s = 1$ (WS) → V (STATUSE (BSRS) – PCLATU, us Affected: None oding: 0000 cription: Return from is popped (TOS) is less counter. If shadow re and BSRS responding and BSRS responding responding and BSRS responding res	tax:[label]RETURIrands: $s \in [0,1]$ ration:(TOS) \rightarrow PC, if $s = 1$ (WS) \rightarrow W, (STATUSS) \rightarrow ST. (BSRS) \rightarrow BSR, PCLATU, PCLATH us Affected:us Affected:Noneoding:0000cription:Return from subro is popped and the (TOS) is loaded in counter. If 's'= 1, the shadow registers 'a and BSRS are load responding register and BSRS. If 's' = 0 these registers ocds:1es:2Cycle Activity:Q1Q1Q2Q3DecodeNoNoNoNo	tax:[label]RETURN [s]rands: $s \in [0,1]$ ration:(TOS) \rightarrow PC, if $s = 1$ (WS) \rightarrow W, (STATUSS) \rightarrow STATUS, (BSRS) \rightarrow BSR, PCLATU, PCLATH are under us Affected:vas Affected:Noneoding:00000001cription:Return from subroutine. The is popped and the top of the (TOS) is loaded into the presended into the presended into responding registers WS, STA and BSRS are loaded into responding registers, W, Sand BSR. If 's' = 0, no upded these registers occurs (dedds:1es:2Cycle Activity:Q1Q2Q3DecodeNoProcesspop operationNoNoNoNo		

Example	: RETURN

After Interrupt PC = TOS

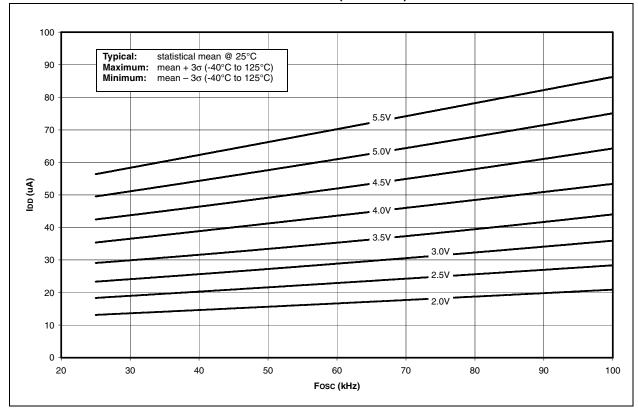
RLCF	Rotate Le	eft f throug	gh Carry	
Syntax:	[label]	RLCF f	[,d [,a]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	$(f < n >) \rightarrow (f < 7 >) \rightarrow (C) \rightarrow des$,	
Status Affected:	C, N, Z			
Encoding:	0011	01da i	Efff f	fff
	is placed is stored b (default). Bank will the BSR y	Flag. If 'd' in W. If 'd' i back in reg If 'a' is 0, th be selected value. If 'a' be selected	is 1, the r ister 'f' ne Access d, overridi = 1, then	esul s ing
		e (default). registe	er f 🚽	
Words:	BSR value	e (default).	er f 🚽	
Words: Cycles:	BSR value	e (default).	er f 🚽	
	BSR value C- 1 1	e (default).	er f 🚽 🔫	
Cycles:	BSR value C- 1 1	e (default).	er f -	
Cycles: Q Cycle Activity:	BSR value C- 1 1	e (default). registe		
Cycles: Q Cycle Activity: Q1	BSR value C- 1 1 Q2 Read	e (default). – registe Q3 Process	Q4 Write destina	

Before Instruction						
REG C	=	1110 0	0110			
After Instruction						
REG	=	1110	0110			
W	=	1100	1100			
С	=	1				

© 2006 Microchip Technology Inc.

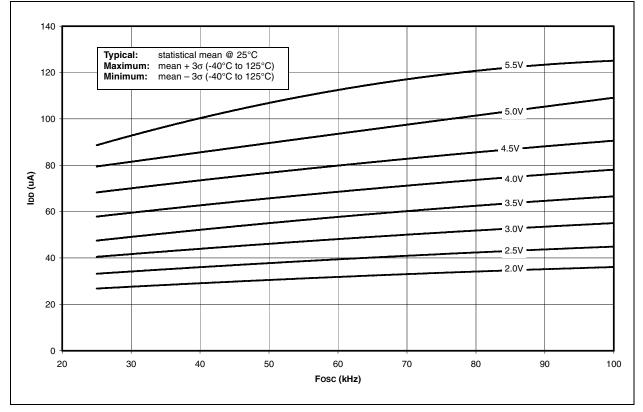
TABLE 22-22: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
130	Tad	A/D clock period	PIC18FXXX	1.6	20 ⁽⁴⁾	μs	Tosc based
			PIC18FXXX	2.0	6.0	μs	A/D RC mode
131	TCNV	Conversion time (not including acquisition time) (Note 1)		11	12	Tad	
132	TACQ	Acquisition time (Note 2)		5 10	_	μs μs	VREF = VDD = 5.0V VREF = VDD = 2.5V
135	Tswc	Switching Time from convert $ ightarrow$ sample		_	(Note 3)		


Note 1: ADRES register may be read on the following TCY cycle.

2: The time for the holding capacitor to acquire the "New" input voltage, when the new input value has not changed by more than 1 LSB from the last sampled voltage. The source impedance (*Rs*) on the input channels is 50Ω. See Section 17.0 for more information on acquisition time consideration.

3: On the next Q4 cycle of the device clock.


4: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

PIC18FXX2

FIGURE 23-7: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

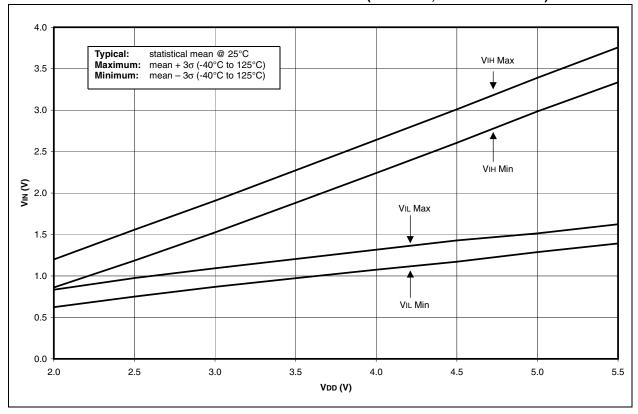
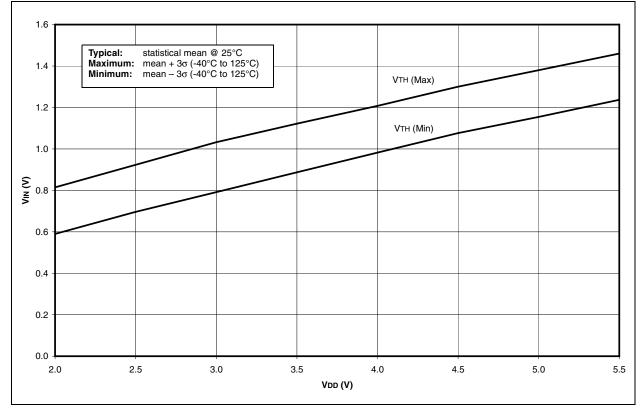



FIGURE 23-25: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)

© 2006 Microchip Technology Inc.

Example SPI Master Mode (CKE = 0)278
Example SPI Master Mode (CKE = 1)279
Example SPI Slave Mode (CKE = 0)
Example SPI Slave Mode (CKE = 1)281
External Clock (All Modes except PLL)
First START Bit Timing
I ² C Bus Data
I ² C Bus START/STOP Bits
I ² C Master Mode (Reception, 7-bit Address)157
I ² C Master Mode (Transmission,
7 or 10-bit Address)
I ² C Slave Mode Timing (10-bit Reception,
SEN = 0)
I ² C Slave Mode Timing (10-bit Transmission)
I ² C Slave Mode Timing (7-bit Reception,
SEN = 0)140 I ² C Slave Mode Timing (7-bit Reception,
SEN = 1)
I ² C Slave Mode Timing (7-bit Transmission)
Low Voltage Detect
Master SSP I ² C Bus Data
Master SSP I ² C Bus START/STOP Bits
Parallel Slave Port (PIC18F4X2)
Parallel Slave Port (Read)
Parallel Slave Port (Write)
PWM Output
Repeat START Condition
RESET, Watchdog Timer (WDT),
Oscillator Start-up Timer (OST) and
Power-up Timer (PWRT)273
Slave Synchronization
Slaver Mode General Call Address Sequence
(7 or 10-bit Address Mode) 148
(7 or 10-bit Address Mode)
Slow Rise Time (MCLR Tied to VDD)
Slow Rise Time (MCLR Tied to VDD)
Slow Rise Time (MCLR Tied to VDD)
Slow Rise Time (MCLR Tied to VDD)
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158
Slow Rise Time (MCLR Tied to VDD)
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled
Slow Rise Time (MCLR Tied to VDD)
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up 33
Slow Rise Time (MCLR Tied to VDD)
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Case 1 32 Case 2 32 Time-out Sequence on Power-up 32 Case 1 32 Case 2 32
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Not Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up 32 Case 1 32 Case 2 32 Time-out Sequence on Power-up 32
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up 32 Case 1 32 Case 2 32 Time-out Sequence on Power-up 32 Case 1 32 Time-out Sequence on Power-up 32 Case 1 32 Time-out Sequence on Power-up 32 State Sequence on Power-up 32 Time-out Sequence on
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up 32 Case 1 32 Case 2 32 Time-out Sequence on Power-up 32 Case 1 32 Case 2 32 Time-out Sequence on Power-up 32 Case 1 32 Time-out Sequence on Power-up 32 Timer0 and Timer1 External Clock 275 Timing for Transition Between Timer1 and 33
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Not Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up 32 Case 1 32 Time-out Sequence on Power-up 32 Case 1 32 Case 2 32 Time-out Sequence on Power-up 32 Time-out Sequence on Power-up 32 Timer0 and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS with PLL) 23
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Not Tied to VDD) Case 1 32 Case 2 32 Timerout Sequence on Power-up 32 Case 1 32 Time-out Sequence on Power-up 32 Case 1 32 Case 2 32 Timero and Timer1 External Clock 275 Timing for Transition Between Timer1 and 0SC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 34
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Not Tied to VDD) Case 1 32 Case 2 32 Timerout Sequence on Power-up 32 Case 1 32 Case 2 32 Timerout Sequence on Power-up 32 Case 1 32 Case 2 32 Timero and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (HS, XT, LP) 22
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Timerout Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Timero and Timer1 External Clock 275 Timing for Transition Between Timer1 and 0SC1 (HS with PLL) OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (HS, XT, LP) (HS, XT, LP) 22 Transition Between Timer1 and OSC1
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Timerout Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timerout Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Timero and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (HS, XT, LP) 22 Transition Between Timer1 and OSC1 (RC, EC) 23
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Timerout Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timerout Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Timero and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS, With PLL) Case 1 23 Transition Between Timer1 and OSC1 (HS, XT, LP) (RC, EC) 23 Transition from OSC1 to Timer1 Oscillator 22
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Timero and Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timero and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS with PLL) OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (HS, XT, LP) (RC, EC) 23 Transition from OSC1 to Timer1 Oscillator 22 USART Asynchronous Master Transmission 173
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timer0 and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS with PLL) OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (HS, XT, LP) (HS, XT, LP) 22 Transition Between Timer1 and OSC1 (RC, EC) (RC, EC) 23 Transition from OSC1 to Timer1 Oscillator 22 USART Asynchronous Master Transmission 173
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timer0 and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS with PLL) OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (HS, XT, LP) (HS, XT, LP) 22 Transition from OSC1 to Timer1 Oscillator 22 USART Asynchronous Master Transmission 173 USART Asynchronous Master Transmission 173
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timer0 and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS, XT, LP) OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (HS, XT, LP) (RC, EC) 23 Transition from OSC1 to Timer1 Oscillator 22 USART Asynchronous Master Transmission 173 USART Asynchronous Master Transmission 173 USART Asynchronous Reception 175
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timer0 and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS, XT, LP) OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (RC, EC) (RC, EC) 23 Transition from OSC1 to Timer1 Oscillator 22 USART Asynchronous Master Transmission 173 USART Asynchronous Reception 173 USART Asynchronous Reception 175
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Timero and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS, XT, LP) (HS, XT, LP) 23 Transition Between Timer1 and OSC1 (RC, EC) (RC, EC) 23 Transition from OSC1 to Timer1 Oscillator 22 USART Asynchronous Master Transmission 173 USART Asynchronous Master Transmission 173 USART Asynchronous Reception 175 USART Synchronous Reception 175 USART Synchronous
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timer0 and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS, XT, LP) (HS, XT, LP) 23 Transition Between Timer1 and OSC1 (RC, EC) (RC, EC) 23 Transition from OSC1 to Timer1 Oscillator 22 USART Asynchronous Master Transmission 173 USART Asynchronous Master Transmission 173 USART Asynchronous Reception 175 USART Synchronous Reception 175 USART Synchronous
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Not Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timero and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS with PLL) OSC1 (HS with PLL) 23 Transition Between Timer1 and OSC1 (HS, XT, LP) (RC, EC) 23 Transition Between Timer1 and OSC1 (RC, EC) (Back to Back) 173 USART Asynchronous Master Transmission 173 USART Asynchronous Reception 175 USART Synchronous Reception 175 USART Synchronous Reception<
Slow Rise Time (MCLR Tied to VDD) 33 SPI Mode (Master Mode) 130 SPI Mode (Slave Mode with CKE = 0) 132 SPI Mode (Slave Mode with CKE = 1) 132 Stop Condition Receive or Transmit Mode 158 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD) 33 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 1 32 Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Time-out Sequence on Power-up (MCLR Tied to VDD) Case 2 32 Timer0 and Timer1 External Clock 275 Timing for Transition Between Timer1 and OSC1 (HS, XT, LP) (HS, XT, LP) 23 Transition Between Timer1 and OSC1 (RC, EC) (RC, EC) 23 Transition from OSC1 to Timer1 Oscillator 22 USART Asynchronous Master Transmission 173 USART Asynchronous Master Transmission 173 USART Asynchronous Reception 175 USART Synchronous Reception 175 USART Synchronous

USART Synchronous Transmission	
(Through TXEN)	177
Wake-up from SLEEP via Interrupt	206
Timing Diagrams Requirements	
Master SSP I ² C Bus START/STOP Bits	284
Timing Requirements	
A/D Conversion	288
Capture/Compare/PWM (CCP1 and CCP2)	276
CLKO and I/O	
Example SPI Mode (Master Mode, CKE = 0)	278
Example SPI Mode (Master Mode, CKE = 1)	279
Example SPI Mode (Slave Mode, CKE = 0)	280
Example SPI Slave Mode (CKE = 1)	281
External Clock	
I ² C Bus Data (Slave Mode)	283
Master SSP I ² C Bus Data	
Parallel Slave Port (PIC18F4X2)	277
RESET, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and	
Brown-out Reset Requirements	
Timer0 and Timer1 External Clock	-
USART Synchronous Receive	
USART Synchronous Transmission	286
Timing Specifications	
PLL Clock	272
TRISE Register	
PSPMODE Bit9	
TSTFSZ	251
Two-Word Instructions	
Example Cases	41
TXSTA Register	
BRGH Bit	168

U

5	
Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
USART	165
Asynchronous Mode	
Associated Registers, Receive	175
Associated Registers, Transmit	173
Receiver	174
Transmitter	172
Baud Rate Generator (BRG)	168
Associated Registers	168
Baud Rate Error, Calculating	168
Baud Rate Formula	168
Baud Rates for Asynchronous Mode	
(BRGH = 0)	170
Baud Rates for Asynchronous Mode	
(BRGH = 1)	171
Baud Rates for Synchronous Mode	169
High Baud Rate Select (BRGH Bit)	168
Sampling	168
Serial Port Enable (SPEN Bit)	165
Synchronous Master Mode	
Associated Registers, Reception	178
Associated Registers, Transmit	176
Reception	178
Transmission	176
Synchronous Slave Mode	179
Associated Registers, Receive	180
Associated Registers, Transmit	179
Reception	180
Transmission	179