

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f452-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and water fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

28/40-pin High Performance, Enhanced FLASH Microcontrollers with 10-Bit A/D

High Performance RISC CPU:

- · C compiler optimized architecture/instruction set
 - Source code compatible with the PIC16 and PIC17 instruction sets
- Linear program memory addressing to 32 Kbytes
- · Linear data memory addressing to 1.5 Kbytes

Device		hip Program Memory	On-Chip RAM	Data EEPROM	
Device	FLASH (bytes)	# Single Word Instructions	(bytes)	(bytes)	
PIC18F242	16K	8192	768	256	
PIC18F252	32K	16384	1536	256	
PIC18F442	16K	8192	768	256	
PIC18F452	32K	16384	1536	256	

- Up to 10 MIPs operation:
 - DC 40 MHz osc./clock input
 - 4 MHz 10 MHz osc./clock input with PLL active
- 16-bit wide instructions, 8-bit wide data path
- Priority levels for interrupts
- 8 x 8 Single Cycle Hardware Multiplier

Peripheral Features:

- High current sink/source 25 mA/25 mA
- Three external interrupt pins
- Timer0 module: 8-bit/16-bit timer/counter with 8-bit programmable prescaler
- Timer1 module: 16-bit timer/counter
- Timer2 module: 8-bit timer/counter with 8-bit period register (time-base for PWM)
- Timer3 module: 16-bit timer/counter
- Secondary oscillator clock option Timer1/Timer3
- Two Capture/Compare/PWM (CCP) modules. CCP pins that can be configured as:
 - Capture input: capture is 16-bit, max. resolution 6.25 ns (Tcy/16)
 - Compare is 16-bit, max. resolution 100 ns (Tcy)
 - PWM output: PWM resolution is 1- to 10-bit, max. PWM freq. @: 8-bit resolution = 156 kHz 10-bit resolution = 39 kHz
- Master Synchronous Serial Port (MSSP) module, Two modes of operation:
 - 3-wire SPI™ (supports all 4 SPI modes)
 - I²C™ Master and Slave mode

Peripheral Features (Continued):

- · Addressable USART module:
 - Supports RS-485 and RS-232
- Parallel Slave Port (PSP) module

Analog Features:

- Compatible 10-bit Analog-to-Digital Converter module (A/D) with:
 - Fast sampling rate
 - Conversion available during SLEEP
 - Linearity ≤ 1 LSb
- Programmable Low Voltage Detection (PLVD)
 - Supports interrupt on-Low Voltage Detection
- Programmable Brown-out Reset (BOR)

Special Microcontroller Features:

- 100,000 erase/write cycle Enhanced FLASH program memory typical
- 1,000,000 erase/write cycle Data EEPROM memory
- FLASH/Data EEPROM Retention: > 40 years
- Self-reprogrammable under software control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own On-Chip RC Oscillator for reliable operation
- Programmable code protection
- · Power saving SLEEP mode
- Selectable oscillator options including:
 - 4X Phase Lock Loop (of primary oscillator)
 - Secondary Oscillator (32 kHz) clock input
- Single supply 5V In-Circuit Serial Programming™ (ICSP™) via two pins
- · In-Circuit Debug (ICD) via two pins

CMOS Technology:

- Low power, high speed FLASH/EEPROM technology
- Fully static design
- Wide operating voltage range (2.0V to 5.5V)
- Industrial and Extended temperature ranges
- Low power consumption:
 - < 1.6 mA typical @ 5V, 4 MHz
 - 25 μA typical @ 3V, 32 kHz
 - < 0.2 μA typical standby current

TABLE 1-3: PIC18F4X2 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pi	n Numb	er	Pin	Buffer	Description
Pili Name	DIP	PLCC	TQFP	Туре	Type	Description
						PORTD is a bi-directional I/O port, or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when PSP module is enabled.
RD0/PSP0	19	21	38	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.
RD1/PSP1	20	22	39	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.
RD2/PSP2	21	23	40	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.
RD3/PSP3	22	24	41	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.
RD4/PSP4	27	30	2	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.
RD5/PSP5	28	31	3	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.
RD6/PSP6	29	32	4	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.
RD7/PSP7	30	33	5	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.
RE0/RD/AN5 RE0 RD	8	9	25	I/O	ST TTL	PORTE is a bi-directional I/O port. Digital I/O. Read control for parallel slave port (see also WR and CS pins).
AN5 RE1/WR/AN6	9	10	26	I/O	Analog	Analog input 5.
RE1 WR			-		ST TTL Analog	Digital I/O. Write control for parallel slave port (see CS and RD pins). Analog input 6.
RE2/CS/AN7 RE2	10	11	27	I/O	ST	Digital I/O.
CS					TTL	Chip Select control for parallel slave port (see related RD and WR).
AN7					Analog	Analog input 7.
Vss		13, 34		Р	_	Ground reference for logic and I/O pins.
VDD	11, 32	12, 35	7, 28	Р	_	Positive supply for logic and I/O pins.

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

O = Output

OD = Open Drain (no P diode to VDD)

CMOS = CMOS compatible input or output

I = Input

P = Power

TABLE 4-2: REGISTER FILE SUMMARY (CONTINUED)

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
IPR2	_	_						1 1111	83	
PIR2	_	_	_	0 0000	79					
PIE2	_	-	-	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	0 0000	81
IPR1	PSPIP ⁽³⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	82
PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	78
PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	80
TRISE(3)	IBF	OBF	IBOV	PSPMODE	_	Data Direction	on bits for PC	RTE	0000 -111	98
TRISD(3)	Data Directi	on Control Re	egister for PC	RTD					1111 1111	96
TRISC	Data Directi	on Control Re	egister for PC	RTC					1111 1111	93
TRISB	Data Directi	on Control Re	egister for PC	RTB					1111 1111	90
TRISA	_	TRISA6 ⁽¹⁾	Data Direction	on Control Re	gister for PO	RTA			-111 1111	87
LATE ⁽³⁾	_	_	_	_	_	Read PORT Write PORT		*	xxx	99
LATD ⁽³⁾	Read PORT	D Data Latch	, Write POR	ΓD Data Latch	1				xxxx xxxx	95
LATC	Read PORT	C Data Latch	, Write POR	ΓC Data Latch	1				xxxx xxxx	93
LATB	Read PORT	B Data Latch	, Write POR	TB Data Latch	1				xxxx xxxx	90
LATA	_	LATA6 ⁽¹⁾	Read PORT	A Data Latch,	Write PORT	A Data Latch	(1)		-xxx xxxx	87
PORTE ⁽³⁾	Read PORT	Read PORTE pins, Write PORTE Data Latch								
PORTD ⁽³⁾	Read PORT		xxxx xxxx	95						
PORTC	Read PORT		xxxx xxxx	93						
PORTB	Read PORT	B pins, Write	·	xxxx xxxx	90					
PORTA	_	RA6 ⁽¹⁾	Read PORT	A pins, Write	PORTA Data	Latch ⁽¹⁾			-x0x 0000	87

 $\label{eq:local_local_local} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \, \textbf{u} = \textbf{unchanged}, \, \textbf{-} = \textbf{unimplemented}, \, \textbf{q} = \textbf{value depends on condition}$

Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator modes.

^{2:} Bit 21 of the TBLPTRU allows access to the device configuration bits.

^{3:} These registers and bits are reserved on the PIC18F2X2 devices; always maintain these clear.

NOTES:

REGISTER 6-1: EECON1 REGISTER (ADDRESS FA6h)

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD
bit 7							bit 0

bit 7 **EEPGD:** FLASH Program or Data EEPROM Memory Select bit

1 = Access FLASH Program memory 0 = Access Data EEPROM memory

bit 6 CFGS: FLASH Program/Data EE or Configuration Select bit

1 = Access Configuration or Calibration registers

0 = Access FLASH Program or Data EEPROM memory

bit 5 **Unimplemented:** Read as '0'

bit 4 FREE: FLASH Row Erase Enable bit

1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation)

0 = Perform write only

bit 3 WRERR: FLASH Program/Data EE Error Flag bit

1 = A write operation is prematurely terminated (any $\overline{\text{MCLR}}$ or any WDT Reset during self-timed programming in normal operation)

0 = The write operation completed

Note: When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows tracing of the error condition.

bit 2 WREN: FLASH Program/Data EE Write Enable bit

1 = Allows write cycles

0 = Inhibits write to the EEPROM

bit 1 WR: Write Control bit

1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

1 = Initiates an EEPROM read

(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)

0 = Does not initiate an EEPROM read

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

n = Value at POR

'1' = Bit is set

'0' = Bit is cleared x = Bit is unknown

TABLE 9-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 9-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	-x0x 0000	-u0u 0000
LATA	_	LATA Dat	a Output F	Register					-xxx xxxx	-uuu uuuu
TRISA	_	PORTA D	ata Directi	on Register					-111 1111	-111 1111
ADCON1	ADFM	ADCS2	-		PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

 $\label{eq:locations} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{-} = \textbf{unimplemented locations read as '0'}. \ \textbf{Shaded cells are not used by PORTA}.$

9.6 Parallel Slave Port

The Parallel Slave Port is implemented on the 40-pin devices only (PIC18F4X2).

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit, PSPMODE (TRISE<4>) is set. It is asynchronously readable and writable by the external world through RD control input pin, RE0/RD and WR control input pin, RE1/WR.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the \overline{RD} input, $\overline{RE1/WR}$ to be the \overline{WR} input and RE2/ \overline{CS} to be the \overline{CS} (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low.

The PORTE I/O pins become control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs), and the ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

FIGURE 9-10: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE

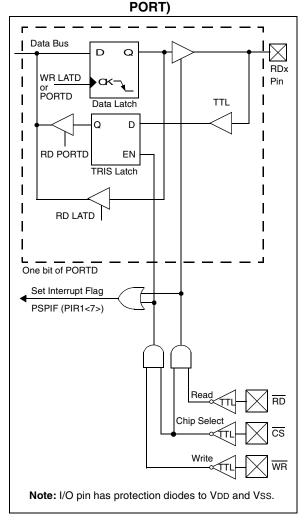


FIGURE 9-11: PARALLEL SLAVE PORT WRITE WAVEFORMS

14.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 14-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	14	12	10	8	7	6.58

TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	All C	e on Other SETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾ ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF								0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
TRISC	PORTC Da	ata Direction	Register						1111	1111	1111	1111
TMR2	Timer2 Mo	dule Registe	er						0000	0000	0000	0000
PR2	Timer2 Mo	dule Period	Register						1111	1111	1111	1111
T2CON	1	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
CCPR1L	Capture/Co	ompare/PWI	M Register1	(LSB)					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/Co	ompare/PWI	M Register1	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP1CON	- DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0									0000	00	0000
CCPR2L	Capture/Compare/PWM Register2 (LSB)									xxxx	uuuu	uuuu
CCPR2H	Capture/Compare/PWM Register2 (MSB)										uuuu	uuuu
CCP2CON	DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M								00	0000	00	0000

 $\label{eq:local_$

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

15.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the buffer full flag bit, BF, and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 15-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

15.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

15.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

15.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge (ACK = 0), and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call) or when the slave has properly received its data.

15.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note: In the MSSP module, the RCEN bit must be set after the ACK sequence or the RCEN bit will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the baud rate generator is suspended from counting, holding SCL low. The MSSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge sequence enable bit, (SSPCON2<4>).

15.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

15.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

15.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

16.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- Enable the transmission by setting enable bit TXEN.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART T	ransmit F	Register						0000 0000	0000 0000
TXSTA	CSRC TX9 TXEN SYNC — BRGH TRMT TX							TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	e Genera	tor Regist		0000 0000	0000 0000				

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

16.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set

TABLE 16-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		Valu All C RES	ther
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	-00x	0000	-00x
RCREG	USART Receive Register								0000	0000	0000	0000
TXSTA	CSRC TX9 TXEN SYNC — BRGH TRMT TX9								0000	-010	0000	-010
SPBRG	Baud Rate	Generat		0000	0000	0000	0000					

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

18.1 Control Register

The Low Voltage Detect Control register controls the operation of the Low Voltage Detect circuitry.

REGISTER 18-1: LVDCON REGISTER

U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
_	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5 IRVST: Internal Reference Voltage Stable Flag bit

- 1 = Indicates that the Low Voltage Detect logic will generate the interrupt flag at the specified voltage range
- 0 = Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the LVD interrupt should not be enabled
- bit 4 LVDEN: Low Voltage Detect Power Enable bit
 - 1 = Enables LVD, powers up LVD circuit
 - 0 = Disables LVD, powers down LVD circuit
- bit 3-0 LVDL3:LVDL0: Low Voltage Detection Limit bits
 - 1111 = External analog input is used (input comes from the LVDIN pin)
 - 1110 = 4.5V 4.77V
 - 1101 = 4.2V 4.45V
 - 1100 = 4.0V 4.24V
 - 1011 = 3.8V 4.03V
 - 1010 = 3.6V 3.82V
 - 1001 = 3.5V 3.71V
 - 1000 = 3.3V 3.50V
 - 0111 = 3.0V 3.18V0110 = 2.8V - 2.97V
 - 0110 = 2.00 2.97 V
 - 0101 = 2.7V 2.86V
 - 0100 = 2.5V 2.65V0011 = 2.4V - 2.54V
 - 0011 2.11 2.011
 - 0010 = 2.2V 2.33V0001 = 2.0V - 2.12V
 - 0000 = Reserved

Note: LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage of the device are not tested.

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

n = Value at POR

'1' = Bit is set

'0' = Bit is cleared x = Bit is unknown

ΒZ **Branch if Zero**

Syntax: [label] BZ n Operands: $-128 \le n \le 127$ Operation: if Zero bit is '1'

 $(PC) + 2 + 2n \rightarrow PC$

Status Affected: None

Encoding: 1110 0000 nnnn nnnn

Description: If the Zero bit is '1', then the pro-

gram will branch.

The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then

a two-cycle instruction.

1 Words: Cycles: 1(2)

Q Cycle Activity: If Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	Write to PC
	'n'	Data	
No	No	No	No
operation	operation	operation	operation

If No Jump:

Q1	Q2	Q3	Q4	
Decode	Read literal	Process	No	
	'n'	Data	operation	

Example: HERE BZJump

Before Instruction

PC address (HERE)

After Instruction

If Zero

PC address (Jump) If Zero

РC address (HERE+2) **CALL Subroutine Call**

Syntax: [label] CALL k[,s]

Operands: $0 \leq k \leq 1048575$

 $s \in [0,1]$

Operation: $(PC) + 4 \rightarrow TOS$,

 $k \rightarrow PC < 20:1>$ if s = 1

 $(W) \rightarrow WS$,

 $(STATUS) \rightarrow STATUSS,$

 $(BSR) \rightarrow BSRS$

Status Affected: None

Encodina:

kkkk₀ 1st word (k<7:0>) 1110 110s k₇kkk kkkk₈ 2nd word(k<19:8>) 1111 k₁₉kkk kkkk

Description: Subroutine call of entire 2 Mbyte

> memory range. First, return address (PC+4) is pushed onto the return stack. If 's' = 1, the W, STATUS and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:1>.

CALL is a two-cycle instruction.

2 Words: 2 Cycles:

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read literal	Push PC to	Read literal
	'k'<7:0>,	stack	'k'<19:8>,
			Write to PC
No	No	No	No
operation	operation	operation	operation

Example: HERE CALL THERE, 1

Before Instruction

PC address (HERE)

After Instruction

PC TOS address (THERE) address (HERE + 4)

WS W **BSRS BSR**

STATUSS= **STATUS**

COMF	Complem	ent f			CF	PFSEQ
Syntax:	[label] C	COMF	f [,d [,a	ι]	Sy	ntax:
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5			Ор	erands:
Operation:	$a \in [0,1]$ $(\overline{f}) \rightarrow d\epsilon$	est			Op	eration:
Status Affected:	N, Z				- 0.	
Encoding:	0001	11da	ffff	ffff	Sta	atus Affected:
Description: Words:	plemented stored in N stored back 'a' is 0, the selected, of If 'a' = 1, the selected and (default).	contents of register 'f' are com- lented. If 'd' is 0, the result is led in W. If 'd' is 1, the result is led back in register 'f' (default). If led 0, the Access Bank will be leted, overriding the BSR value. In then the bank will be leted as per the BSR value leted as per the BSR value leted ault).				coding: scription:
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4	_ Wo	ords:
Decode	Read register 'f'	Proces Data	-	Write to estination	Су	cles:
Example:	COMF	REG, 0), 0			
Before Instru REG	ection = 0x13				Q	Cycle Activity: Q1
After Instruct	tion = 0x13					Decode

0xEC

CPFSEQ	PFSEQ Compare f with W, skip if f = W							
Syntax:	[label]	CPFSEC] f [,a]				
Operands:	$0 \le f \le 2$ $a \in [0,1]$							
Operation:	(f) – (W) skip if (f (unsigne		rison)					
Status Affected:	None							
Encoding:	0110	001a	fff	f	ffff			
Description:	memory of W by subtract If 'f' = W tion is d cuted in cycle ins Access riding th the bank	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).						
Nords:	1							
Cycles: 1(2) Note: 3 cycles if skip and follow by a 2-word instruction.								
Q Cycle Activity:								
Q1	Q2	Q	3		Q4			
Decode	Read	Proce	ess		No			

Q1	Q2	Q3	Q4
Decode	Read	Process	No
	register 'f'	Data	operation

If skip:

Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation

If skip and followed by 2-word instruction:

Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
No	No	No	No
operation	operation	operation	operation

Example:	HERE NEQUAL EQUAL		EQ REG, 0	
Before Instruct PC Addres W REG After Instructio	S = = =	HERE ? ?		
If REG PC If REG PC	= = ≠ =	W; Address W; Address	(EQUAL)	

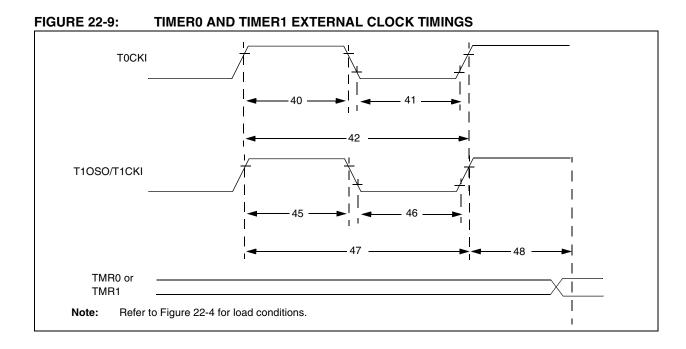


TABLE 22-8: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Symbol		Characteristic		Min	Max	Units	Conditions	
40	Tt0H	T0CKI High Pu	ılse Width	No Prescaler	0.5Tcy + 20	_	ns		
				With Prescaler	10		ns		
41	Tt0L	T0CKI Low Pu	lse Width	No Prescaler	0.5Tcy + 20		ns		
				With Prescaler	10		ns		
42	Tt0P	T0CKI Period		No Prescaler	Tcy + 10		ns		
				With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N	_	ns	N = prescale value (1, 2, 4,, 256)	
45	Tt1H	T1CKI High	Synchronous, no	prescaler	0.5Tcy + 20	_	ns		
		Time	Synchronous,	PIC18FXXX	10	_	ns		
			with prescaler	PIC18 LF XXX	25	_	ns		
			Asynchronous	PIC18FXXX	30	_	ns		
				PIC18 LF XXX	50	_	ns		
46	Tt1L	T1CKI Low	Synchronous, no	prescaler	0.5Tcy + 5		ns		
		Time	Synchronous,	PIC18FXXX	10		ns		
			V	with prescaler	PIC18 LF XXX	25		ns	
			Asynchronous	PIC18FXXX	30		ns		
				PIC18 LF XXX	50		ns		
47	Tt1P	T1CKI input period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N	_	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		60	_	ns		
	Ft1	T1CKI oscillato	or input frequency ra	ange	DC	50	kHz		
48	Tcke2tmrl	Delay from ext increment	ernal T1CKI clock e	edge to timer	2 Tosc	7 Tosc	_		

FIGURE 22-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 22-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	edge	100	_	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clo	ock edge of Byte2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK of	Hold time of SDI data input to SCK edge			ns	
75	TdoR	SDO data output rise time	PIC18FXXX	_	25	ns	
			PIC18 LF XXX	_	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXX	_	25	ns	
			PIC18 LF XXX	_	60	ns	VDD = 2V
78	TscR	SCK output rise time (Master mode)	PIC18FXXX	_	25	ns	
			PIC18 LF XXX	_	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXX	_	25	ns	
			PIC18 LF XXX	_	60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK	PIC18FXXX	_	50	ns	
	TscL2doV	edge	PIC18 LF XXX	_	150	ns	VDD = 2V
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	•	Tcy	_	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

TABLE 22-22: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
130	TAD	A/D clock period	PIC18FXXX	1.6	20 ⁽⁴⁾	μs	Tosc based
			PIC18FXXX	2.0	6.0	μs	A/D RC mode
131	TCNV	Conversion time (not including acquisition	on time) (Note 1)	11	12	TAD	
132	TACQ	Acquisition time (Note 2)		5 10	_	μs μs	VREF = VDD = 5.0V VREF = VDD = 2.5V
135	Tswc	Switching Time from co	onvert o sample	_	(Note 3)		

Note 1: ADRES register may be read on the following TcY cycle.

- 2: The time for the holding capacitor to acquire the "New" input voltage, when the new input value has not changed by more than 1 LSB from the last sampled voltage. The source impedance (Rs) on the input channels is 50Ω . See Section 17.0 for more information on acquisition time consideration.
- 3: On the next Q4 cycle of the device clock.
- **4:** The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

FIGURE 23-23: TYPICAL AND MAXIMUM Vol vs. lol (VDD = 5V, -40° C TO $+125^{\circ}$ C)

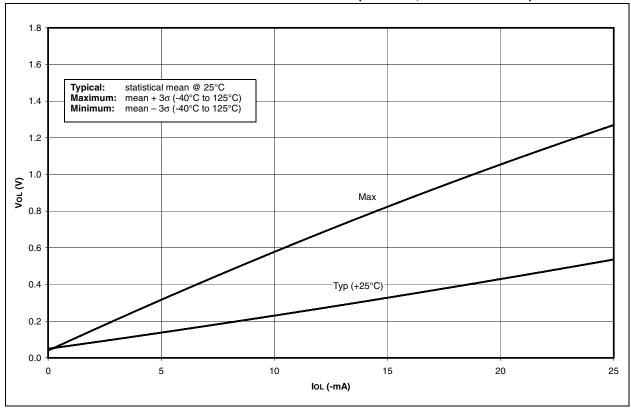
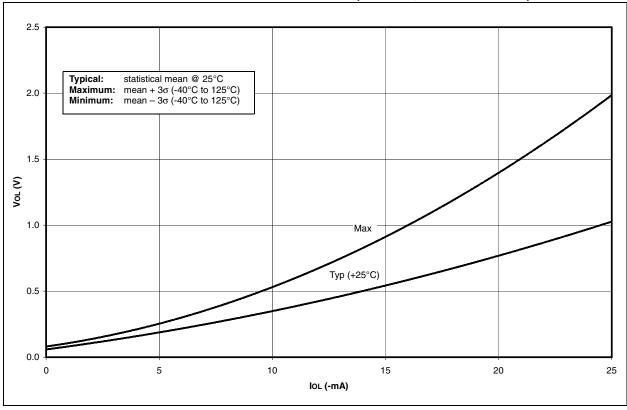
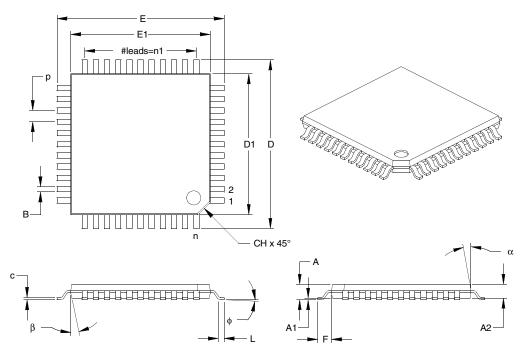




FIGURE 23-24: TYPICAL AND MAXIMUM Vol vs. Iol (VDD = 3V, -40°C TO +125°C)

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units INCHES				MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n	44				44	
Pitch	р	.031				0.80	
Pins per Side	n1	11				11	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	F	.039 REF.			1.00 REF.		
Foot Angle	ф	0	3.5	7	0	3.5	7
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.012	.015	.017	0.30	0.38	0.44
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

^{*} Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. REF: Reference Dimension, usually without tolerance, for information purposes only.

See ASME Y14.5M JEDEC Equivalent: MS-026 Drawing No. C04-076

Revised 07-22-05