

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f452-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 RESET

The PIC18FXXX differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- C) MCLR Reset during SLEEP
- Watchdog Timer (WDT) Reset (during normal d) operation)
- e) Programmable Brown-out Reset (BOR)
- f) **RESET** Instruction
- g) Stack Full Reset
- Stack Underflow Reset h)

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP and by the RESET instruction.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

The MCLR pin is not driven low by any internal RESETS, including the WDT.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

NOTES:

TABLE 4-2: REGISTER FILE SUMMARY

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSU	—	—	_	Top-of-Stack	k upper Byte (TOS<20:16>)		0 0000	37
TOSH	Top-of-Stac	k High Byte (1	OS<15:8>)						0000 0000	37
TOSL	Top-of-Stac	k Low Byte (T	OS<7:0>)						0000 0000	37
STKPTR	STKFUL	STKUNF	_	Return Stac	k Pointer				00-0 0000	38
PCLATU	_	—	_	Holding Reg	ister for PC<	20:16>			0 0000	39
PCLATH	Holding Reg	gister for PC<	15:8>						0000 0000	39
PCL	PC Low Byt	te (PC<7:0>)							0000 0000	39
TBLPTRU	_	_	bit21 ⁽²⁾	Program Me	mory Table P	ointer Upper	Byte (TBLPT	R<20:16>)	00 0000	58
TBLPTRH	Program Me	emory Table F	ointer High I	Byte (TBLPTF	R<15:8>)			,	0000 0000	58
TBLPTRL	Program Me	emory Table F	ointer Low E	Syte (TBLPTF	(<7:0>)				0000 0000	58
TABLAT	Program Me	emory Table L	.atch		,				0000 0000	58
PRODH	Product Red	aister Hiah Bv	rte						XXXX XXXX	71
PRODL	Product Red	aister Low Bv	te						XXXX XXXX	71
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	75
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	76
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	77
INDF0	Uses conter	nts of FSR0 to	address data	memory - val	ue of FSR0 no	t changed (no	ot a physical i	reaister)	n/a	50
POSTINC0	Uses conter	nts of FSR0 to	address data	memory - val	ue of FSR0 po	ost-incremente	ed (not a phys	sical register)	n/a	50
POSTDECO	Uses conter	nts of FSB0 to	address data	memory - vali	ue of ESB0 po	st-decrement	ed (not a physical	sical register)	n/a	50
PRFINC0	Uses conter	nts of FSR0 to	address data	memory - val	ue of FSR0 pr	e-incremente	d (not a physi	ical register)	n/a	50
PLUSW0	 Uses contents of FSR0 to address data memory - value of FSR0 (not a physical register). Offect buyers in WEFC 						n/a	50		
ESB0H	Indirect Data Memory Address Pointer 0 High But							0 High Byte	0000	50
FSR0L	Indirect Data Memory Address Pointer 0 Low Byte								xxxx xxxx	50
WREG	Working Re	aister		, ,					xxxx xxxx	n/a
INDF1	Uses conter	nts of FSR1 to	address da	ta memory - v	alue of FSR1	not changed	l (not a physi	cal register)	n/a	50
POSTINC1	Uses conter	nts of FSR1 to	address data	memory - val	ue of FSR1 po	ost-incremente	ed (not a phys	sical register)	n/a	50
POSTDEC1	Uses conter	nts of FSR1 to	address data	memory - val	ue of FSR1 po	st-decremente	ed (not a phys	sical register)	n/a	50
PRFINC1	Uses conter	nts of FSR1 to	address data	memory - val	ue of FSR1 pr	e-incremente	d (not a physi	cal register)	n/a	50
PLUSW1	Uses conter	nts of FSR1 to	address da	ta memory - v	value of FSR1	(not a physic	cal register).	ioui regiotory	n/a	50
	Offset by va	lue in WREG				(not a phyon	sur regiotor).		1.7 C	
FSR1H	_	_	_		Indirect Data	Memory Add	dress Pointer	1 High Byte	0000	50
FSR1L	Indirect Dat	a Memory Ad	dress Pointe	r 1 Low Byte	•				xxxx xxxx	50
BSR	_	—	_	_	Bank Select	Register			0000	49
INDF2	Uses conter	nts of FSR2 to	address da	ta memory - v	alue of FSR2	not changed	l (not a physi	cal register)	n/a	50
POSTINC2	Uses conter	nts of FSR2 to	address data	memory - val	ue of FSR2 po	ost-incremente	ed (not a phys	sical register)	n/a	50
POSTDEC2	Uses conter	nts of FSR2 to	address data	memory - valu	ue of FSR2 po	st-decremente	ed (not a phys	sical register)	n/a	50
PREINC2	Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)						cal register)	n/a	50	
PLUSW2	Uses conter Offset by va	nts of FSR2 to	address da	ta memory - v	alue of FSR2	? (not a physic	cal register).		n/a	50
FSR2H	_	_	_	_	Indirect Data	Memory Add	dress Pointer	2 High Byte	0000	50
FSR2L	Indirect Dat	a Memorv Ad	dress Pointe	r 2 Low Bvte		. ,		<u> </u>	xxxx xxxx	50
STATUS		_	_	N	OV	Z	DC	С	x xxxx	52
TMR0H	Timer0 Reg	ister Hiah Bvt	e				-	-	0000 0000	105
TMR0L	Timer0 Reg	ister Low Byte	Э						XXXX XXXX	105
TOCON	TMB0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	TOPSO	1111 1111	103
		100011	1000	1.005	1.0/1	101.02	101.01	101.00		

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator modes.
 Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers and bits are reserved on the PIC18F2X2 devices; always maintain these clear.

6.0 DATA EEPROM MEMORY

The Data EEPROM is readable and writable during normal operation over the entire VDD range. The data memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (SFR).

There are four SFRs used to read and write the program and data EEPROM memory. These registers are:

- EECON1
- EECON2
- EEDATA
- EEADR

The EEPROM data memory allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to FFh.

The EEPROM data memory is rated for high erase/ write cycles. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature, as well as from chip to chip. Please refer to parameter D122 (Electrical Characteristics, Section 22.0) for exact limits.

6.1 EEADR

The address register can address up to a maximum of 256 bytes of data EEPROM.

6.2 EECON1 and EECON2 Registers

EECON1 is the control register for EEPROM memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the EEPROM write sequence.

Control bits RD and WR initiate read and write operations, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at the completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), due to the RESET condition forcing the contents of the registers to zero.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when write is complete. It must be cleared in software.

9.6 Parallel Slave Port

The Parallel Slave Port is implemented on the 40-pin devices only (PIC18F4X2).

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit, PSPMODE (TRISE<4>) is set. It is asynchronously readable and writable by the external world through RD control input pin, RE0/RD and WR control input pin, RE1/WR.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, <u>RE1/WR</u> to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low.

The PORTE I/O pins become control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs), and the ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

FIGURE 9-11: PARALLEL SLAVE PORT WRITE WAVEFORMS

13.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- RESET from CCP module trigger

Figure 13-1 is a simplified block diagram of the Timer3 module.

Register 13-1 shows the Timer3 control register. This register controls the Operating mode of the Timer3 module and sets the CCP clock source.

Register 11-1 shows the Timer1 control register. This register controls the Operating mode of the Timer1 module, as well as contains the Timer1 oscillator enable bit (T1OSCEN), which can be a clock source for Timer3.

REGISTER 13-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write I 1 = Enables register Read 0 = Enables register Read	Mode Enable bit I/Write of Timer3 in on I/Write of Timer3 in two	e 16-bit operation o 8-bit operations					
bit 6-3	T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits 1x = Timer3 is the clock source for compare/capture CCP modules 01 = Timer3 is the clock source for compare/capture of CCP2, Timer1 is the clock source for compare/capture of CCP1 00 = Timer1 is the clock source for compare/capture CCP modules							
bit 5-4	T3CKPS1:T3CKPS0 : Timer3 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value							
bit 2	T3SYNC: Timer3 External (Not usable if the system of <u>When TMR3CS = 1:</u> 1 = Do not synchronize external0 = Synchronize externalWhen TMR3CS = 0:This bit is ignored. Timer3	I Clock Input Synchror clock comes from Time kternal clock input clock input	hization Control bit er1/Timer3) k when TMR3CS = 0.					
bit 1	TMR3CS: Timer3 Clock Source Select bit 1 = External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first falling edge) 0 = Internal clock (Eosc/4)							
bit 0	TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3							
	Legend:							
	R = Readable bit - n = Value at POR	W = Writable bit '1' = Bit is set	U = Unimplemented '0' = Bit is cleared	bit, read as '0' x = Bit is unknown				

15.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 15-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SMP	CKE	D/A	Р	S	R/W	UA	BF			
	bit 7							bit 0			
bit 7	SMP: Sam	ple bit									
	SPI Master	mode:									
	1 = Input da	ata sampled	at end of da	ata output tir	ne						
		ata sampieu	at middle o	data outpu	time						
	SMP must	<u>node:</u> be cleared v	when SPI is	used in Slav	e mode						
hit 6		Clock Edge	Select		e mode						
	When CKP		001001								
	1 = Data tra	<u> </u>	n rising edge	of SCK							
	0 = Data tra	ansmitted or	n falling edge	e of SCK							
	When CKP	= 1:									
	1 = Data tra	ansmitted or	n falling edge	e of SCK							
	0 = Data tra	ansmitted or	n rising edge	of SCK							
bit 5	D/A: Data//	Address bit									
	Used in I ² C mode only										
bit 4	P: STOP bi	it									
	Used in I ² (cleared.	C mode only	y. This bit is	cleared wh	nen the MS	SP module	is disabled,	SSPEN is			
bit 3	S: START b	oit									
	Used in I ² C mode only										
bit 2	R/W: Read	/Write bit inf	ormation								
	Used in I ² C mode only										
bit 1	UA: Update	e Address									
	Used in I ² C	mode only									
bit 0	BF: Buffer	BF: Buffer Full Status bit (Receive mode only)									
	1 = Receive	e complete,	SSPBUF is	full							
	0 = Receive	e not comple	ete, SSPBUI	is empty							
	Legend:										
		bla hit	\// _ \//ritab	lo hit		lomontod bi	t road as 'O	,			
								alvaavra			
	-n = value	al POR	I = BIT IS S	sei	v = Bit IS	ciearea	x = bit is u	IKNOWN			

15.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 15-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 15-3, Figure 15-5, and Figure 15-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 15-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

10-10.	Aaster aates er		
	ACK Bus h transf	SSPOV is set because <u>SS</u> PDF still full. ACK is not	
	Receive Data Byte		
t held low until of SSPADD has	Beceive Data Byte D7 D6 D5 D4 D3 D2 D1 D0 7 2 3 4 5 6 7 8	Cleared by hardware when SSPADD is updated with high byte of address	
Clock is update	e of Address	BUF are updated diress needs to be needs to be	
is held low until	Receive Second Byt A7 A6 A5 A4 A.	Dummy read of SSF Dummy read of SSF to clear BF flag with low by hardw with low by te of a Updated Updated	
Clock	$BDA = \frac{\text{Receive First Byte of Address}}{1 \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{3} \sqrt{48} \sqrt{38} \sqrt{4CK}}$ $SCL = \frac{1}{5} \sqrt{1} \sqrt{2} \sqrt{3} \sqrt{4} \sqrt{5} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{3} \sqrt{4} \sqrt{5} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{3} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{3} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{3} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{6} \sqrt{7} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{6} \sqrt{7} \sqrt{8} \sqrt{9} \sqrt{6} \sqrt{7} \sqrt{7} \sqrt{6} \sqrt{7} \sqrt{7} \sqrt{6} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{6} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} 7$	BF (SSPSTAT<0.) SSPOV (SSPCON<6.) and (SSPSTAT<1.) A (SSPSTAT<1.) A (SSPSTAT<1.) DA (SSPSTAT<1.) DA (SSPSTAT<1.) CAP does not reset to '0' when SEN = 0) CRP does not reset to '0' when SEN = 0)	

FIGURE 15-10: I²C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)

FIGURE 16-5: ASYNCHRONOUS RECEPTION

TABLE 16-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	x00- 0000
RCREG	USART Re	ceive Re	gister						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

20.0 INSTRUCTION SET SUMMARY

The PIC18FXXX instruction set adds many enhancements to the previous PICmicro instruction sets, while maintaining an easy migration from these PICmicro instruction sets.

Most instructions are a single program memory word (16-bits), but there are three instructions that require two program memory locations.

Each single word instruction is a 16-bit word divided into an OPCODE, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18FXXX instruction set summary in Table 20-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 20-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the Call or Return instructions (specified by 's')
- The mode of the Table Read and Table Write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for three double-word instructions. These three instructions were made double-word instructions so that all the required information is available in these 32 bits. In the second word, the 4-MSbs are 1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 20-1 shows the general formats that the instructions can have.

All examples use the format `nnh' to represent a hexadecimal number, where `h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 20-2, lists the instructions recognized by the Microchip Assembler (MPASMTM).

Section 20.1 provides a description of each instruction.

TABLE 20-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register
hhh	Bit address within an 8-bit file register (0 to 7)
BSR	Bank Select Begister Lised to select the current RAM bank
d	
u	d = 0: store result in WREG,
	d = 1: store result in file register f.
dest	Destination either the WREG register or the specified register file location
f	8-bit Register file address (0x00 to 0xFF)
fs	12-bit Register file address (0x000 to 0xFFF). This is the source address.
fd	12-bit Register file address (0x000 to 0xFFF). This is the destination address.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)
label	Label name
mm	The mode of the TBLPTR register for the Table Read and Table Write instructions. Only used with Table Read and Table Write instructions:
*	No Change to register (such as TBLPTR with Table reads and writes)
*+	Post-Increment register (such as TBLPTR with Table reads and writes)
* _	Post-Decrement register (such as TBLPTR with Table reads and writes)
+*	Pre-Increment register (such as TBLPTR with Table reads and writes)
n	The relative address (2's complement number) for relative branch instructions, or the direct address for
	Call/Branch and Return instructions
PRODH	Product of Multiply high byte
PRODL	Product of Multiply low byte
s	Fast Call/Return mode select bit.
	s = 0: do not update into/trom shadow registers s = 1: certain registers loaded into/from shadow registers (Fast mode)
u	Unused or Unchanged
WREG	Working register (accumulator)
x	Don't care (0 or 1)
	The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
TBLPTR	21-bit Table Pointer (points to a Program Memory location)
TABLAT	8-bit Table Latch
TOS	Top-of-Stack
PC	Program Counter
PCL	Program Counter Low Byte
PCH	Program Counter High Byte
PCLATH	Program Counter High Byte Latch
PCLATU	Program Counter Upper Byte Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer
TO	Time-out bit
PD	Power-down bit
C, DC, Z, OV, N	ALU status bits Carry, Digit Carry, Zero, Overflow, Negative
[]	Optional
()	Contents
\rightarrow	Assigned to
< >	Register bit field
E	In the set of
italics	User defined term (font is courier)

RCA	LL	Relative C	Call						
Synt	ax:	[<i>label</i>] R	CALL n						
Ope	rands:	-1024 ≤ n	≤ 1023						
Ope	ration:	(PC) + 2 - (PC) + 2 +	→ TOS, - 2n → P	2					
Statu	us Affected:	None							
Enco	oding:	1101	1nnn	nnnn	nnnn				
Wor	ds:	1K from th return add onto the si compleme Since the l to fetch the new addree This instru- instruction	Subroutine call with a jump up to 1K from the current location. First, return address (PC+2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is a two-cycle instruction.						
Cycl	es:	2							
QC	ycle Activity	:							
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'n' Push PC to stack	Process Data	s Wri	te to PC				
	No	No	No	n	No				
	operation	operation	operatio	n op	eration				

<u>Example</u> :	HERE	RCALL	Jump
------------------	------	-------	------

Before Instruction

PC = Address (HERE)

After Instruction

PC = Address (Jump) TOS = Address (HERE+2)

RES	ET	Reset					
Synt	ax:	[label]	RESET				
Ope	rands:	None					
Ope	ration:	Reset all registers and flags that are affected by a MCLR Reset.					
Statu	us Affected:	All					
Encoding:		0000	0000 1	111	1111		
Desc	cription:	This instr execute a	u <u>ction p</u> rovi MCLR Res	des a set in s	way to software.		
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Start	No		No		
		reset	operation	ор	eration		

Example: RESET

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

SUE	BWFB	Su	Subtract W from f with Borrow						
Synt	tax:	[la	[label] SUBWFB f [,d [,a]						
Ope	rands:	0 ≤ d ∈ a ∈	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(f) -	$(f) - (W) - (\overline{C}) \rightarrow dest$						
State	us Affected:	Ν,	N, OV, C, DC, Z						
Encoding:		0	0101 10da ffff ffff						
Description:		Sul row me in V bac the ove the	Subtract W and the carry flag (bor- row) from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).						
Wor	ds:	1	1						
Cycl	es:	1							
QC	Cycle Activity:								
	Q1		Q2	Q3		Q4			
	Decode	R regi	ead ster 'f'	Process Data	3	Write to destination			
<u>Exa</u>	mple 1:	S	JBWFB	REG, 1,	0				
	Before Instru	iction	1						
REG		=	0x19	(0001	100	1)			
Č		=	1	(0000	110	1)			
	After Instruct	tion	0.00	(-)			
	$\begin{array}{ccc} REG &= 0X \\ W &= 0X \\ C &= 1 \\ Z &= 0 \end{array}$		= 0x0C (0000 1011) = 0x0D (0000 1101)						
			1	·					
Z = N =			0 ; result is positive						
Exa	<u>mple 2</u> :	SI	JBWFB	REG, 0,	0				
	Before Instru	iction	I						
REG		=	0x1B	(0001	101	.1)			
C =		=	0	(0001	101	.0)			
After Instruction									
	REG	=	0x1B	(0001	101	1)			
	C	=	1						
Ž		=	1	; result is zero					
Exai	mple 3:	S	SUBWFB REG, 1, 0						
	Refore Instru	iction	-	., ,					
	REG	=	0x03	(0000	001	1)			
	W	=	0x0E	(0000	110	1)			
	C After Instruct	= tion	1						
	REG	=	0xF5	(1111	010	0)			
			0.05	; [2's co	mp]				
	м С	=	0 0	(0000	110	11)			
	Z N	= =	0 1	; result i	s ne	gative			

Syntax:[label]SWAPF f [,d [,a]Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ Operation:(f<3:0>) \rightarrow dest<7:4>, (f<7:4>) \rightarrow dest<3:0>Status Affected:NoneEncoding: 0011 $10da$ Description:The upper and lower nibbles of result is placed in W. If 'd' is 0, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).Words:1Cycles:1Q Cycle Activity: $Q2$ Q1Q2Q3Q4DecodeRead register 'f'ProcessWrite to destination
Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ Operation: $(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>Status Affected:NoneEncoding:001110daffffDescription:The upper and lower nibbles of resister 'f' are exchanged. If 'd' is 0, theresult is placed in W. If 'd' is 1, theresult is placed in register 'f'(default). If 'a' is 0, the AccessBank will be selected, overridingthe BSR value. If 'a' is 1, then thebank will be selected as per theBSR value (default).Words:1Cycles:1Q Cycle Activity:Q1Q1Q2Q3Q4DecodeReadregister 'f'DecodeReadregister 'f'ProcessWrite todestination$
Operation: $(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$ Status Affected:NoneEncoding: 0011 $10da$ ffffDescription:The upper and lower nibbles of result is placed in W. If 'd' is 0, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeRead register 'f'Process DataWrite to destination
Status Affected: None Encoding: 0011 10da ffff ffff Description: The upper and lower nibbles of reister 'f' are exchanged. If 'd' is 0, th result is placed in W. If 'd' is 1, th result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Q Cycle Activity: Q Q3 Q4 Decode Read Process Write to destination
Encoding: 0011 10da ffff ffff Description: The upper and lower nibbles of reister 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destination
Description: The upper and lower nibbles of reister 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destination
Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination
Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination
Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination
Decode Read Process Write to register 'f' Data destination
Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53
After Instruction REG = 0x35

XOF	RWF	Exclusiv	Exclusive OR W with f						
Synt	tax:	[label]	[label] XORWF f[,d[,a]						
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \\ a \in \ [0,1] \end{array}$						
Operation:		(W) .XOF	(W) .XOR. (f) \rightarrow dest						
State	us Affected:	N, Z	N, Z						
Enco	oding:	0001	10da	fff	f	ffff			
Des	cription:	Exclusive with regis is stored is stored ba (default). Bank will the BSR bank will BSR valu	Exclusive OR the contents of W with register 'f'. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in the register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).						
Words:		1							
Cycles:		1							
Q Cycle Activity:									
	Q1	Q2	Q	3		Q4			
	Decode	Read register 'f'	Proce Data	Process Data		/rite to stination			
<u>Exa</u>	mple:	XORWF	REG, 1,	, 0					
	Before Instru REG W After Instruct	iction = 0xAF = 0xB5 tion							
	REG W	= 0x1A = 0xB5							

FIGURE 22-2: PIC18LFXX2 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

22.1 DC Characteristics: PIC18FXX2 (Industrial, Extended) PIC18LFXX2 (Industrial) (Continued)

PIC18LFXX2 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial					
PIC18FXX2 (Industrial, Extended)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
	IDD	Supply Current ^(2,4) (Co	ntinued)					
D010C		PIC18LFXX2	_	10	25	mA	EC, ECIO osc configurations VDD = 4.2V, -40°C to +85°C	
D010C		PIC18FXX2	_	10	25	mA	EC, ECIO osc configurations VDD = 4.2V, -40°C to +125°C	
D013		PIC18LFXX2		.6 10 15	2 15 25	mA mA mA	HS osc configuration Fosc = 4 MHz, $VDD = 2.0V$ Fosc = 25 MHz, $VDD = 5.5V$ HS + PLL osc configurations Fosc = 10 MHz, $VDD = 5.5V$	
D013		PIC18FXX2	_	10 15	15 25	mA mA	HS osc configuration Fosc = 25 MHz, VDD = $5.5V$ HS + PLL osc configurations Fosc = 10 MHz, VDD = $5.5V$	
D014		PIC18LFXX2	_	15	55	μA	Timer1 osc configuration Fosc = 32 kHz, VDD = 2.0V	
D014		PIC18FXX2			200 250	μΑ μΑ	Timer1 osc configuration Fosc = 32 kHz, VDD = 4.2V, -40°C to +85°C Fosc = 32 kHz, VDD = 4.2V, -40°C to +125°C	
IPD Power-down Current ⁽³⁾								
D020		PIC18LFXX2		.08 .1 3	.9 4 10	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C	
D020 D021B		PIC18FXX2		.1 3 15	.9 10 25	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C	

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active Operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

FIGURE 23-21: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

