

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f452-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18FXX2 can be operated in eight different Oscillator modes. The user can program three configuration bits (FOSC2, FOSC1, and FOSC0) to select one of these eight modes:

- 1. LP Low Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High Speed Crystal/Resonator
- 4. HS + PLL High Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor
- 6. RCIO External Resistor/Capacitor with I/O pin enabled
- 7. EC External Clock
- 8. ECIO External Clock with I/O pin enabled

2.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HS+PLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The PIC18FXX2 oscillator design requires the use of a parallel cut crystal.

Note:	Use of a series cut crystal may give a fre-
	quency out of the crystal manufacturers
	specifications.

FIGURE 2-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP CONFIGURATION)

TABLE 2-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Tested:									
Mode	Mode Freq C1 C2								
ХТ	455 kHz	68 - 100 pF	68 - 100 pF						
	2.0 MHz	15 - 68 pF	15 - 68 pF						
	4.0 MHz	15 - 68 pF	15 - 68 pF						
HS	8.0 MHz	10 - 68 pF	10 - 68 pF						
	16.0 MHz	10 - 22 pF	10 - 22 pF						

These values are for design guidance only. See notes following this table.

Resonators Used:						
455 kHz Panasonic EFO-A455K04B ± 0.3%						
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%				
4.0 MHz Murata Erie CSA4.00MG ± 0.5%						
8.0 MHz Murata Erie CSA8.00MT ± 0.5%						
16.0 MHz Murata Erie CSA16.00MX ± 0.5%						
All resonat	ors used did not have built-in	capacitors.				

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

- 2: When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use high-gain HS mode, try a lower frequency resonator, or switch to a crystal oscillator.
- **3:** Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components, or verify oscillator performance.

2.7 Effects of SLEEP Mode on the On-Chip Oscillator

When the device executes a SLEEP instruction, the on-chip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt.

TABLE 2-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin
RC	Floating, external resistor should pull high	At logic low
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6
ECIO	Floating	Configured as PORTA, bit 6
EC	Floating	At logic low
LP, XT, and HS	Feedback inverter disabled, at quiescent voltage level	Feedback inverter disabled, at quiescent voltage level

Note: See Table 3-1, in the "Reset" section, for time-outs due to SLEEP and MCLR Reset.

2.8 Power-up Delays

Power up delays are controlled by two timers, so that no external RESET circuitry is required for most applications. The delays ensure that the device is kept in RESET, until the device power supply and clock are stable. For additional information on RESET operation, see Section 3.0.

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of 72 ms (nominal) on power-up only (POR and BOR). The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable.

With the PLL enabled (HS/PLL Oscillator mode), the time-out sequence following a Power-on Reset is different from other Oscillator modes. The time-out sequence is as follows: First, the PWRT time-out is invoked after a POR time delay has expired. Then, the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional fixed 2 ms (nominal) time-out to allow the PLL ample time to lock to the incoming clock frequency.

TABLE 3-1:	TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up	(2)		Wake-up from
Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc + 2ms	1024 Tosc + 2 ms	72 ms ⁽²⁾ + 1024 Tosc + 2 ms	1024 Tosc + 2 ms
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms ⁽²⁾ + 1024 Tosc	1024 Tosc
EC	72 ms	—	72 ms ⁽²⁾	—
External RC	72 ms	—	72 ms ⁽²⁾	—

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal power-up timer delay, if implemented.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note 1: Refer to Section 4.14 (page 53) for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	0u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x00008h or 0x000018h).

Register	Ар	olicabl	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt
ADRESH	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADRESL	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս
ADCON0	242	442	252	452	0000 00-0	0000 00-0	uuuu uu-u
ADCON1	242	442	252	452	00 0000	00 0000	uu uuuu
CCPR1H	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս
CCPR1L	242	442	252	452	xxxx xxxx	սսսս սսսս	սսսս սսսս
CCP1CON	242	442	252	452	00 0000	00 0000	uu uuuu
CCPR2H	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu
CCPR2L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	242	442	252	452	00 0000	00 0000	uu uuuu
TMR3H	242	442	252	452	xxxx xxxx	սսսս սսսս	սսսս սսսս
TMR3L	242	442	252	452	xxxx xxxx	սսսս սսսս	սսսս սսսս
T3CON	242	442	252	452	0000 0000	սսսս սսսս	uuuu uuuu
SPBRG	242	442	252	452	0000 0000	0000 0000	սսսս սսսս
RCREG	242	442	252	452	0000 0000	0000 0000	սսսս սսսս
TXREG	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
TXSTA	242	442	252	452	0000 -010	0000 -010	uuuu -uuu
RCSTA	242	442	252	452	x000 0000x	0000 000x	սսսս սսսս
EEADR	242	442	252	452	0000 0000	0000 0000	นนนน นนนน
EEDATA	242	442	252	452	0000 0000	0000 0000	นนนน นนนน
EECON1	242	442	252	452	xx-0 x000	uu-0 u000	uu-0 u000
EECON2	242	442	252	452			

TABLE 3-3.	INITIAL IZATION CONDITIONS FOR ALL REGISTERS	
TADLE 3-3.	INITIALIZATION CONDITIONS FOR ALL REGISTERS	CONTINUED

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

4.10 Access Bank

The Access Bank is an architectural enhancement which is very useful for C compiler code optimization. The techniques used by the C compiler may also be useful for programs written in assembly.

This data memory region can be used for:

- Intermediate computational values
- · Local variables of subroutines
- Faster context saving/switching of variables
- Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 128 bytes in Bank 15 (SFRs) and the lower 128 bytes in Bank 0. These two sections will be referred to as Access RAM High and Access RAM Low, respectively. Figure 4-6 and Figure 4-7 indicate the Access RAM areas.

A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register or in the Access Bank. This bit is denoted by the 'a' bit (for access bit).

When forced in the Access Bank (a = 0), the last address in Access RAM Low is followed by the first address in Access RAM High. Access RAM High maps the Special Function registers, so that these registers can be accessed without any software overhead. This is useful for testing status flags and modifying control bits.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's, and writes will have no effect.

A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The STATUS register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR, since the 12-bit addresses are embedded into the instruction word.

Section 4.12 provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW	D'64	;	number of bytes in erase block
	MOVWF	COUNTER		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWE	TBLPTRU	;	address of the memory block
	MOVINE	CODE_ADDR_HIGH		
	MOVIW	CODE ADDE LOW		
	MOVWF	TBLPTRI.		
READ_BLOCK	110 V MI			
	TBLRD*+	F	;	read into TABLAT, and inc
	MOVF	TABLAT, W	;	get data
	MOVWF	POSTINCO	;	store data
	DECFSZ	COUNTER	;	done?
	BRA	READ_BLOCK	;	repeat
MODIFY_WOR	D			
	MOVLW	DATA_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	DATA_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW	NEW_DATA_LOW	;	update buffer word
	MOVWF'	POSTINCO		
	MOVLW	NEW_DATA_HIGH		
EDACE DIOC	MOVWE	INDFO		
ERASE_BLUC.	MOVIW	CODE ADDE IIDEER		load TRLPTR with the base
	MOVWE	TRI.PTRII		address of the memory block
	MOVIW	CODE ADDE HIGH	'	address of the memory brock
	MOVWE	TBLPTRH		
	MOVIW	CODE ADDR LOW		
	MOVWF	TBLPTRL		
	BSF	EECON1, EEPGD	;	point to FLASH program memory
	BCF	EECON1, CFGS	;	access FLASH program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON, GIE	;	disable interrupts
	MOVLW	55h		
	MOVWF	EECON2	;	write 55h
	MOVLW	AAh		
	MOVWF	EECON2	;	write AAh
	BSF	EECON1,WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts
	TBLRD*-	-	;	dummy read decrement
WRITE_BUFF	ER_BACK			
	MOVLW	8	;	number of write buffer groups of 8 bytes
	MOVWF'	COUNTER_HI		
	MOVLW	BUFFER_ADDR_HIGH	;	point to builer
	MOVWE	FSRUH		
	MOAME	FSROL		
PROGRAM LO		FBROD		
11000040-100	MOVIW	8		number of bytes in holding register
	MOVWF	COUNTER	,	
WRITE WORD	TO HREG	IS -		
	MOVF	POSTINCO, W	;	get low byte of buffer data
	MOVWF	TABLAT	;	present data to table latch
	TBLWT+*	*	;	write data, perform a short write
			;	to internal TBLWT holding register.
	DECFSZ	COUNTER	;	loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS		

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of

its corresponding enable bit or the global

enable bit. User software should ensure

the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature

allows for software polling.

8.1 INTCON Registers

The INTCON Registers are readable and writable registers, which contain various enable, priority and flag bits.

REGISTER 8-1: INTCON REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF
	bit 7							bit 0
bit 7	GIE/GIEH:	Global Interrup	t Enable bit					
	When IPEN	<u>I = 0:</u> s all unmasked	interrunte					
	0 = Disable	s all interrupts	Interrupts					
	When IPEN	l = 1:						
	1 = Enables	s all high priorit	y interrupts					
	0 = Disable	s all interrupts						
bit 6	PEIE/GIEL:	Peripheral Inte	errupt Enable	e bit				
	When IPEN	<u>l = 0:</u>	n a vinda a vali in	to www.upto				
	\perp = Enables	s all unmasked s all peripheral	interrunts	terrupts				
	When IPEN	l = 1:	Interrupte					
	1 = Enables	s all low priority	peripheral ir	nterrupts				
	0 = Disable	s all low priority	/ peripheral i	nterrupts				
bit 5	TMR0IE: T	MR0 Overflow	Interrupt Ena	ble bit				
	1 = Enables	s the TMR0 ove	erflow interru	pt				
bit 1			errupt Enchlo	hit				
DIL 4	1 = Enables	s the INT0 exte	rnal interrupt	DIL				
	0 = Disable	s the INT0 exte	ernal interrup	t				
bit 3	RBIE: RB F	Port Change Int	errupt Enable	e bit				
	1 = Enables	s the RB port cl	nange interru	ıpt				
	0 = Disable	s the RB port c	hange interru	upt				
bit 2	TMROIF: TH	VR0 Overflow I	nterrupt Flag) bit	-1 : (1			
	1 = TMR0 r 0 = TMR0 r	egister has ove	overflow	st de cleare	d in softwa	are)		
hit 1		0 External Inte	errunt Flag bit	ł				
Sit 1	1 = The INT	0 external inte	rrupt occurre	d (must be	cleared in	software)		
	0 = The IN1	Γ0 external inte	rrupt did not	occur				
bit 0	RBIF: RB F	ort Change Int	errupt Flag b	it				
	1 = At least	one of the RB	7:RB4 pins c pins have ch	hanged stat	e (must be	e cleared in s	software)	
		mismatch cond	ition will cont	tinue to set	, this hit Ro	adina PORT	[B will and	the
	mi	smatch conditio	on and allow	the bit to be	e cleared.			110

Note:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

9.0 I/O PORTS

Depending on the device selected, there are either five ports or three ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The data latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving.

9.1 PORTA, TRISA and LATA Registers

PORTA is a 7-bit wide, bi-directional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register reads and writes the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, RA5 and RA3:RA0 are configured as analog inputs and read as '0'. RA6 and RA4 are configured as digital inputs.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 9-1: INITIALIZING PORTA

CLRF PORTA	; Initialize PORTA by
	; crearing output
	; data latches
CLRF LATA	; Alternate method
	; to clear output
	; data latches
MOVLW 0x07	; Configure A/D
MOVWF ADCON1	; for digital inputs
MOVLW 0xCF	; Value used to
	; initialize data
	; direction
MOVWF TRISA	; Set RA<3:0> as inputs
	; RA<5:4> as outputs

BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

15.4.4 CLOCK STRETCHING

Both 7- and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

15.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 15-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software, regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence, in order to prevent an overflow condition.

15.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address, and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs, and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

15.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs, regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 15-9).

Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
2: The CKP bit can be set in software, regardless of the state of the BF bit.

15.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode, and clock stretching is controlled by the BF flag, as in 7-bit Slave Transmit mode (see Figure 15-11).

15.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low, while SCL is high, is the START condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the baud rate generator is suspended, leaving the SDA line held low and the START condition is complete.

Note: If at the beginning of the START condition, the SDA and SCL pins are already sampled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF is set, the START condition is aborted, and the I²C module is reset into its IDLE state.

FIGURE 15-19: FIRST START BIT TIMING

15.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

REGISTER 17-2: ADCON1 REGISTER

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	А	A	Α	Α	Vdd	Vss	8/0
0001	А	А	А	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	А	А	Α	А	А	Vdd	Vss	5/0
0011	D	D	D	Α	VREF+	А	Α	Α	AN3	Vss	4 / 1
0100	D	D	D	D	А	D	Α	Α	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	А	А	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	—	0/0
1000	А	А	А	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	А	А	А	А	А	А	Vdd	Vss	6/0
1010	D	D	А	Α	VREF+	А	Α	Α	AN3	Vss	5/1
1011	D	D	А	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	А	VREF+	VREF-	А	А	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels / # of A/D voltage references

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: On any device RESET, the port pins that are multiplexed with analog functions (ANx) are forced to be an analog input.

17.5 Use of the CCP2 Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead

(moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
PIR2			_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	0 0000	0 0000
PIE2		-	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	0 0000	0 0000
IPR2			_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	1 1111	1 0000
ADRESH	A/D Resul	t Register							xxxx xxxx	uuuu uuuu
ADRESL	A/D Resul	t Register							xxxx xxxx	uuuu uuuu
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	000	000
PORTA		RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA		PORTA Data Direction Register						11 1111	11 1111	
PORTE	_	—	—	—	_	RE2	RE1	RE0	000	000
LATE	_		_	_	_	LATE2	LATE1	LATE0	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	IODE — PORTE Data Direction bits			0000 -111	0000 -111	

TABLE 17-2:SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion. Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

	U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
	—			—	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0
	bit 7							bit 0
bit 7-4	Unimplem	ented: Read	as '0'					
bit 3	WRT3: Wri	te Protection	bit ⁽¹⁾					
	1 = Block 3	(006000-00	7FFFh) not v	write protect	ed			
	0 = Block 3	006000-00	7FFFh) write	e protected				
bit 2	WRT2: Write Protection bit ⁽¹⁾							
	1 = Block 2	(004000-00	5FFFh) not v	write protect	ed			
	0 = Block 2	2 (004000-00	5FFFh) write	e protected				
bit 1	WRT1: Wri	te Protection	bit					
	1 = Block 1	(002000-00	3FFFh) not v	write protect	ed			
	0 = Block 1	(002000-00	3FFFh) write	e protected				
bit 0	WRT0: Write Protection bit							
	1 = Block 0	(000200h-0	01FFFh) not	write protect	ted			
	0 = Block 0	(000200h-0	01FFFh) wri	te protected				

REGISTER 19-8: CONFIGURATION REGISTER 6 LOW (CONFIG6L: BYTE ADDRESS 30000Ah)

Note 1: Unimplemented in PIC18FX42 devices; maintain this bit set.

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when devi	ce is unprogrammed	u = Unchanged from programmed state

REGISTER 19-9: CONFIGURATION REGISTER 6 HIGH (CONFIG6H: BYTE ADDRESS 30000Bh)

	R/C-1	R/C-1	C-1	U-0	U-0	U-0	U-0	U-0		
	WRTD	WRTB	WRTC	_	_	_	—	_		
	bit 7							bit 0		
bit 7	WRTD: Da 1 = Data E 0 = Data E	WRTD: Data EEPROM Write Protection bit 1 = Data EEPROM not write protected 0 = Data EEPROM write protected								
bit 6	WRTB: Boot Block Write Protection bit 1 = Boot Block (000000-0001FFh) not write protected 0 = Boot Block (000000-0001FFh) write protected									
bit 5	 WRTC: Configuration Register Write Protection bit 1 = Configuration registers (300000-3000FFh) not write protected 0 = Configuration registers (300000-3000FFh) write protected 									
	Note:	This bit is r	ead only, an	ıd cannot be	changed in	User mode.				
bit 4-0	Unimplem	iented: Rea	d as '0'							
	Legend:									

Legend:		
R = Readable bit	C =Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

22.1 DC Characteristics: PIC18FXX2 (Industrial, Extended) PIC18LFXX2 (Industrial) (Continued)

PIC18LFXX2 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial				
PIC18FXX2 (Industrial, Extended)				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
	IDD	Supply Current ^(2,4) (Co	ntinued)					
D010C		PIC18LFXX2	_	10	25	mA	EC, ECIO osc configurations VDD = 4.2V, -40°C to +85°C	
D010C		PIC18FXX2	_	10	25	mA	EC, ECIO osc configurations VDD = 4.2V, -40°C to +125°C	
D013		PIC18LFXX2		.6 10 15	2 15 25	mA mA mA	HS osc configuration Fosc = 4 MHz, $VDD = 2.0V$ Fosc = 25 MHz, $VDD = 5.5V$ HS + PLL osc configurations Fosc = 10 MHz, $VDD = 5.5V$	
D013		PIC18FXX2	_	10 15	15 25	mA mA	HS osc configuration Fosc = 25 MHz, VDD = $5.5V$ HS + PLL osc configurations Fosc = 10 MHz, VDD = $5.5V$	
D014		PIC18LFXX2	_	15	55	μA	Timer1 osc configuration Fosc = 32 kHz, VDD = 2.0V	
D014		PIC18FXX2			200 250	μΑ μΑ	Timer1 osc configuration Fosc = 32 kHz, VDD = 4.2V, -40°C to +85°C Fosc = 32 kHz, VDD = 4.2V, -40°C to +125°C	
	IPD	Power-down Current ⁽³⁾						
D020		PIC18LFXX2		.08 .1 3	.9 4 10	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C	
D020 D021B		PIC18FXX2		.1 3 15	.9 10 25	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C	

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active Operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

FIGURE 23-3: TYPICAL IDD vs. Fosc OVER VDD (HS/PLL MODE)

NOTES:

PIC18FXX2 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	─ X /XX XXX │ │ │ │ Temperature Package Pattern Range	 Examples: a) PIC18LF452 - I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18LF242 - I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC18F442 - E/P = Extended temp., PDIP package, normal VDD limits.
Device	PIC18FXX2 ⁽¹⁾ , PIC18FXX2T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LFXX2 ⁽¹⁾ , PIC18LFXX2T ⁽²⁾ ; VDD range 2.5V to 5.5V	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP L = PLCC	Note 1: F=Standard Voltage rangeLF=Wide Voltage Range2: T=in tape and reel - SOIC, PLCC, and TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	