

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f452t-i-l

Email: info@E-XFL.COM

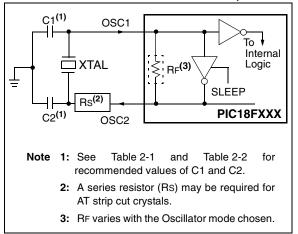
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18FXX2 can be operated in eight different Oscillator modes. The user can program three configuration bits (FOSC2, FOSC1, and FOSC0) to select one of these eight modes:

- 1. LP Low Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High Speed Crystal/Resonator
- 4. HS + PLL High Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor
- 6. RCIO External Resistor/Capacitor with I/O pin enabled
- 7. EC External Clock
- 8. ECIO External Clock with I/O pin enabled


2.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HS+PLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The PIC18FXX2 oscillator design requires the use of a parallel cut crystal.

Note:	Use of a series cut crystal may give a fre-
	quency out of the crystal manufacturers
	specifications.

FIGURE 2-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP CONFIGURATION)

TABLE 2-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Tested:						
Mode Freq C1 C2						
ХТ	455 kHz	68 - 100 pF	68 - 100 pF			
	2.0 MHz	15 - 68 pF	15 - 68 pF			
	4.0 MHz	15 - 68 pF	15 - 68 pF			
HS	8.0 MHz	10 - 68 pF	10 - 68 pF			
	16.0 MHz	10 - 22 pF	10 - 22 pF			

These values are for design guidance only. See notes following this table.

Resonators Used:						
455 kHz	Panasonic EFO-A455K04B	± 0.3%				
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%				
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%				
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%				
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%				
All resonat	All resonators used did not have built-in capacitors.					

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

- 2: When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use high-gain HS mode, try a lower frequency resonator, or switch to a crystal oscillator.
- **3:** Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components, or verify oscillator performance.

2.6.1 SYSTEM CLOCK SWITCH BIT

The system clock source switching is performed under software control. The system clock switch bit, SCS (OSCCON<0>) controls the clock switching. When the SCS bit is '0', the system clock source comes from the main oscillator that is selected by the FOSC configuration bits in Configuration Register1H. When the SCS bit is set, the system clock source will come from the Timer1 oscillator. The SCS bit is cleared on all forms of RESET. Note: The Timer1 oscillator must be enabled and operating to switch the system clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 control register (T1CON). If the Timer1 oscillator is not enabled, then any write to the SCS bit will be ignored (SCS bit forced cleared) and the main oscillator will continue to be the system clock source.

REGISTER 2-1: OSCCON REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1
		—	—	_			SCS
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

bit 0 SCS: System Clock Switch bit

When OSCSEN configuration bit = '0' and T1OSCEN bit is set:

1 = Switch to Timer1 oscillator/clock pin

0 = Use primary oscillator/clock input pin

When OSCSEN and T1OSCEN are in other states: bit is forced clear

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

8.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority Registers (IPR1, IPR2). The operation of the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 8-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
	bit 7							bit 0
bit 7			e Port Read	/Write Interr	upt Priority	bit		
	1 = High pri 0 = Low pri	•						
bit 6		•	nterrupt Prio	rity bit				
	1 = High pri	•						
L:1 C	0 = Low price	,	late much D					
bit 5	1 = High pri		Interrupt Pr	iority bit				
	0 = Low prie	•						
bit 4			t Interrupt P	riority bit				
	1 = High pri							
bit 3	0 = Low prid	•	onous Serial	Port Interru	nt Priority b	;+		
DIL 3	1 = High pri	-	Shous Sena	FOILING	pt Fliolity b	11		
	0 = Low pri							
bit 2			pt Priority bi	t				
	1 = High pri 0 = Low pri							
bit 1		•	2 Match Inter	runt Priority	bit			
	1 = High pri			i apri nonty				
	0 = Low price	ority						
bit 0			ow Interrupt	Priority bit				
	1 = High pri 0 = Low pri	•						
	• = L on ph							

Note 1: This bit is reserved on PIC18F2X2 devices; always maintain this bit set.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit#	Buffer	Function
RB0/INT0	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input0. Internal software programmable weak pull-up.
RB1/INT1	bit1	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input1. Internal software programmable weak pull-up.
RB2/INT2	bit2	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input2. Internal software programmable weak pull-up.
RB3/CCP2 ⁽³⁾	bit3	TTL/ST ⁽⁴⁾	Input/output pin or Capture2 input/Compare2 output/PWM output when CCP2MX configuration bit is enabled. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5/PGM ⁽⁵⁾	bit5	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Low voltage ICSP enable pin.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 9-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: A device configuration bit selects which I/O pin the CCP2 pin is multiplexed on.

4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.

5: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB5 I/O function. LVP must be disabled to enable RB5 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

TABLE 9-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Da	LATB Data Output Register							xxxx xxxx	uuuu uuuu
TRISB	PORTB	PORTB Data Direction Register							1111 1111	1111 1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	11-0 0-00

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

15.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

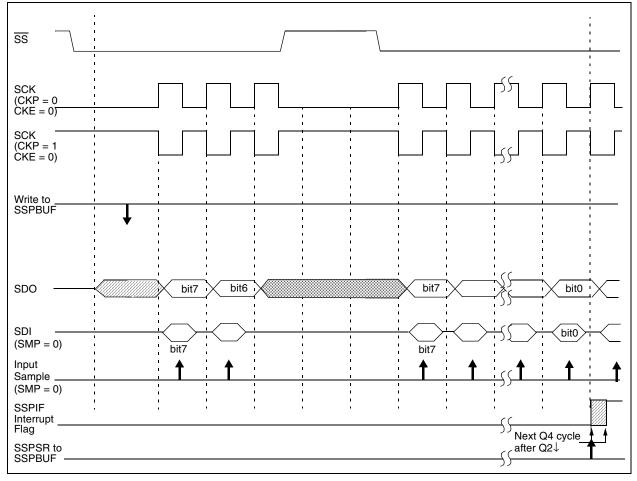
While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

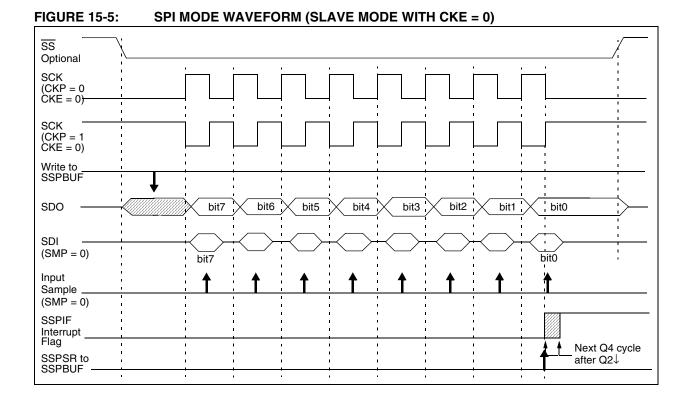
While in SLEEP mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from sleep.

15.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The Data Latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no

longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/ pull-down resistors may be desirable, depending on the application.


Note	1: When the SPI is in Slave mode with \overline{SS}
	pin control enabled (SSPCON<3:0> =
	0100), the SPI module will reset if the \overline{SS}
	pin is set to VDD.


2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to 0. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

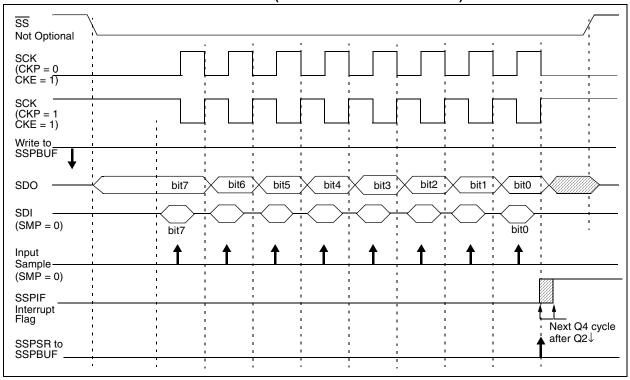

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function), since it cannot create a bus conflict.

FIGURE 15-4: SLAVE SYNCHRONIZATION WAVEFORM

FIGURE 15-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

16.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

16.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the Transmit (serial) Shift Register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and interrupt bit TXIF (PIR1<4>) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE

(PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE, and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit, which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 16.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Note: TXIF is not cleared immediately upon loading data into the transmit buffer TXREG. The flag bit becomes valid in the second instruction cycle following the load instruction.

TABLE 16-8:	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART T	ransmit F	Register						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	e Genera	ator Regist	er					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Master Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

16.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,		Valu All C RES	ther
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	-00x	0000	-00x
TXREG	USART TI	ransmit F	Register						0000	0000	0000	0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
SPBRG	Baud Rate	e Genera	ator Regist	er					0000	0000	0000	0000

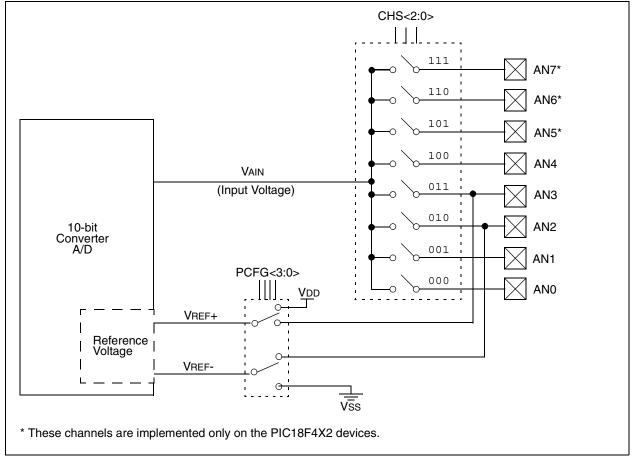
TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF- pin.


The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit, ADIF is set. The block diagram of the A/D module is shown in Figure 17-1.

FIGURE 17-1: A/D BLOCK DIAGRAM

NOTES:

ADDWFC	ADD W ar	nd Carry bit	to f	
Syntax:	[<i>label</i>] A[DDWFC f	[,d [,a]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	(W) + (f) +	$(C) \rightarrow dest$		
Status Affected:	N,OV, C, [DC, Z		
Encoding:	0010	00da f	fff	ffff
Description:	memory lo result is pl result is pl tion 'f'. If 'a will be selo	e Carry Flag ocation 'f'. If aced in W. I aced in data a' is 0, the A octed. If 'a' is overridden.	d' is 0, f 'd' is memo ccess I	the 1, the ory loca- Bank
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	C	24
Decode	Read register 'f'	Process Data	Writ destir	te to nation
Example:	ADDWFC	REG, 0,	1	
Before Instru Carry bit REG W After Instruct	= 1 = 0x02 = 0x4D			
Carry bit REG W				

AND	LW	AND liter	al with '	w		
Synt	ax:	[label] A	NDLW	k		
Ope	rands:	$0 \le k \le 25$	5			
Ope	ration:	(W) .AND	$k \to W$			
Statu	us Affected:	N,Z				
Enco	oding:	0000	1011	kkk	k	kkkk
Desc	cription:	The conte the 8-bit li placed in '	teral 'k'.			
Word	ds:	1				
Cycl	es:	1				
QC	ycle Activity					
	Q1	Q2	Q3	3		Q4
	Decode	Read literal 'k'	Proce Data		Wr	ite to W
	<u>nple</u> : Before Instru	ANDLW	0x5F			

W	=	0xA3
After Instruc	ction	
W	=	0x03

RET	FIE	Return fro	om Interrup	t
Synt	ax:	[label]	RETFIE [s]	
Ope	rands:	$s \in [0,1]$		
Ope	ration:	if s = 1 (WS) → W (STATUSS (BSRS) →	àIEH or PEII /, 5) → STATU • BSR,	·
Statu	us Affected:	GIE/GIEH	, PEIE/GIEL	
Enco	oding:	0000	0000 00	01 000s
Des	cription:	popped ar loaded into enabled by or low prio enable bit. the shador STATUSS into their of W, STATU	w registers V and BSRS a correspondin	ack (TOS) is errupts are her the high terrupt e contents of VS, are loaded g registers, If 's' = 0, no
Wor	ds:	1		
Cycl	es:	2		
•	Cycle Activity:			
	Q1	Q2	Q3	Q4
	Decode	No operation	No operation	pop PC from stack Set GIEH or GIEL
	No	No	No	No
	operation	operation	operation	operation
<u>Exa</u>	<u>mple</u> :	RETFIE 1	L	
	After Interrup PC W BSR STATUS GIE/GIEH	ot H, PEIE/GIEL	= TOS = WS = BSRS = STATU = 1	

RET	LW	Return Li	teral to W	,	
Synt	ax:	[label]	RETLW I	<	
Ope	rands:	$0 \le k \le 25$	5		
Ope	ration:	k → W, (TOS) → I PCLATU,		are unc	hanged
Statu	us Affected:	None			
Enco	oding:	0000	1100	kkkk	kkkk
Desc	cription:	W is loade 'k'. The pro from the to address). (PCLATH)	ogram cou op of the s The high a	unter is tack (th address	loaded ne return s latch
Word	ds:	1			
Cycl	es:	2			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read literal 'k'	Process Data	stad	PC from ck, Write to W
	No operation	No operation	No operatior	n op	No eration
	nple : Call Table	; W conta: ; offset v	ins table <i>r</i> alue	2	

	i , n concarno cas
	; offset value
	; W now has
	; table value
:	
TABLE	
ADDWF PCL	; W = offset
RETLW k0	; Begin table
RETLW k1	;
:	
:	
RETLW kn	; End of table

Before Instruction

W	=	0x07
••		0/10/

After Instruction

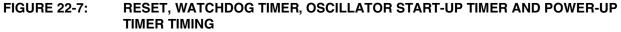
W = value of kn

RLNCF	Rotate L	eft f (no car	ry)	RRCF	Rotate R	ight f thro	ugh Ca	arry
Syntax:	[label]	RLNCF f	[,d [,a]	Syntax:	[label]	RRCF f	[,d [,a]	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	55		Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5		
Operation:	(f<7>) →	dest <n+1>, dest<0></n+1>		Operation:	$(f < n >) \rightarrow$ $(f < 0 >) \rightarrow$ $(C) \rightarrow designed$,	
Status Affected:	N, Z			Status Affected	. ,	51<7>		
Encoding:	0100		fff ffff		0011	00da	ffff	ffff
Description:		ents of regis	ter 'f' are left. If 'd' is 0,	Encoding: Description:		ents of regi		
	the result the result 'f' (defaul Bank will the BSR bank will	t is placed in t is stored ba t). If 'a' is 0, be selected	W. If 'd' is 1, ack in register the Access , overriding s 1, then the as per the		rotated or the Carry is placed is placed (default). Bank will the BSR bank will	Flag. If 'd' Flag. If 'd' back in reg If 'a' is 0, ti be selecte value. If 'a' be selected e (default).	e right is 0, th is 1, th gister 'f he Acc d, over d, over is 1, th d as pe	through ne result e result wess rriding men the
Words:	1					- regist	er f]-→
Cycles:	1			Words:				
Q Cycle Activity:					4			
Q1	Q2	Q3	Q4	Cycles:	1			
Decode	Read register 'f'	Process Data	Write to destination	Q Cycle Activit Q1	y: Q2	Q3		Q4
	Tegister T	Dala	destination	Decode	Read	Process	v	Vrite to
Example:	RLNCF	REG, 1,	0	200000	register 'f'	Data		stination
Before Instru REG	ction = 1010 1	L011		<u>Example</u> :	RRCF	REG, 0	, 0	
After Instruct REG	ion = 0101 (0111		Before Inst REG C	ruction = 1110 = 0	0110		
				After Instru	iction			

 $\begin{array}{rrrr} REG & = & 1110 & 0110 \\ W & = & 0111 & 0011 \\ C & = & 0 \end{array}$

TABLE 21-1: DEVELOPMENT TOOLS FROM MICROCHIP

MPLAB® Cite Complete MPLAB® Cite Complete Not Magated	N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
WPLAB® C17 C Compiler I	I I
MPLAB [®] C16 Compiler I	Image:
MFARM ^M Assembler/ MPLUN ^{C^M Object Linker I}	I I I I I N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
MPLAB [®] ICE In-Circuit Emulator × <	Image: Constraint of the sector of the se
ICEPIC ^{III} In-Circuit Emulator · <t< th=""><th>Image: Constraint of the sector of the se</th></t<>	Image: Constraint of the sector of the se
MPLAB® ICD In-Circuit ** ** ** ** *<
PICSTART® Plus Entry Level <th< th=""><th>· · · ·</th></th<>	· · · ·
PRO MATE® II V <t< th=""><th>> > > <t< th=""></t<></th></t<>	> > <t< th=""></t<>
PICDEMTM 1 Demonstration <	×+ ×
PICDEMTW 2 Demonstration 	
PICDEMTW 3 Demonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration PICDEMTW 14 Demonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration PICDEMTW 17 Demonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration RestLou® Transponder Kit Netical Submonstration Netical Submonstration Vertical Submonstration 125 kHz microIDTW Vertical Submonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration 125 kHz microIDTW Vertical Submonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration	
PICDEM TM 14A Demonstration Board PICDEM TM 17 Demonstration Board KEELoo [®] Evaluation Kit KEELoa [®] Transponder Kit microlD TM Programmer's Kit 125 KHz microlD TM	
125 kHz Anticollision microID TM Developer's Kit	
13.56 MHz Anticollision microID TM Developer's Kit	
MCP2510 CAN Developer's Kit	


© 2006 Microchip Technology Inc.

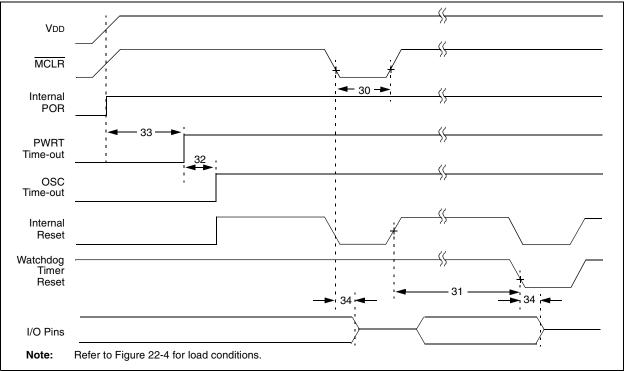

Param. No.	Symbol	Characteristic	>	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKO↓		_	75	200	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLKO↑		—	75	200	ns	(Note 1)
12	TckR	CLKO rise time		—	35	100	ns	(Note 1)
13	TckF	CLKO fall time		—	35	100	ns	(Note 1)
14	TckL2ioV	CLKO↓ to Port out valid		—	_	0.5 TCY + 20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKO \uparrow		0.25 TCY + 25			ns	(Note 1)
16	TckH2iol	Port in hold after CLKO \uparrow		0	_	_	ns	(Note 1)
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port oι	ut valid		50	150	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC18FXXX	100	_	_	ns	
18A		input invalid (I/O in hold time)	PIC18LFXXX	200	_	—	ns	
19	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)		0	_	_	ns	
20	TioR	Port output rise time	PIC18FXXX		10	25	ns	
20A			PIC18LFXXX		_	60	ns	VDD = 2V
21	TioF	Port output fall time	PIC18FXXX	—	10	25	ns	
21A			PIC18LFXXX	—		60	ns	VDD = 2V
22††	TINP	INT pin high or low time		Тсү	_	—	ns	
23††	Trbp	RB7:RB4 change INT high or low time		Тсү		_	ns	
24††	TRCP	RC7:RC4 change INT high or low time		20			ns	

TABLE 22-6: CLKO AND I/O TIMING REQUIREMENTS

†† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

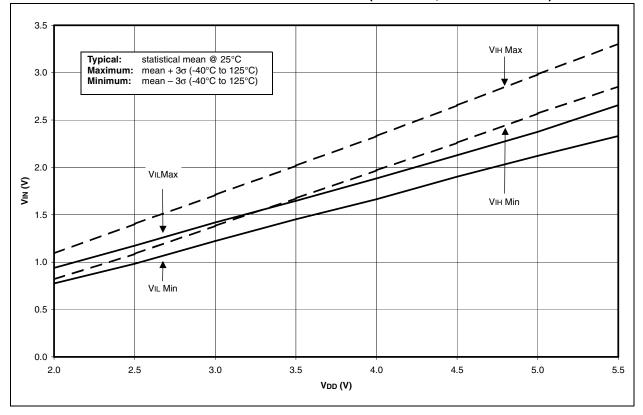
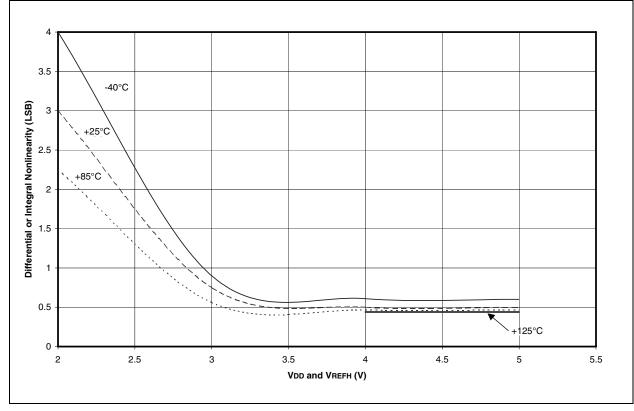



FIGURE 23-28: A/D NON-LINEARITY vs. VREFH (VDD = VREFH, -40°C TO +125°C)

DS39564C-page 302

NOTES:

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18F442". The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN726, "PIC17CXXX to PIC18FXXX Migration". This Application Note is available as Literature Number DS00726.

PIC18FXX2 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	− X /XX XXX Temperature Package Pattern Range	 Examples: a) PIC18LF452 - I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18LF242 - I/SO = Industrial temp., 			
Device	PIC18FXX2 ⁽¹⁾ , PIC18FXX2T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LFXX2 ⁽¹⁾ , PIC18LFXX2T ⁽²⁾ ; VDD range 2.5V to 5.5V	 c) PIC18E1242 - 1/3O = Industrial temp., SOIC package, Extended VDD limits. c) PIC18F442 - E/P = Extended temp., PDIP package, normal VDD limits. 			
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)				
Package	$\begin{array}{rcl} PT &= & TQFP \mbox{ (Thin Quad Flatpack)} \\ SO &= & SOIC \\ SP &= & Skinny \mbox{ Plastic DIP} \\ P &= & PDIP \\ L &= & PLCC \end{array}$	Note 1: F=Standard Voltage rangeLF=Wide Voltage Range2: T=in tape and reel - SOIC, PLCC, and TQFP packages only.			
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)				