

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf242-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6.2 OSCILLATOR TRANSITIONS

The PIC18FXX2 devices contain circuitry to prevent "glitches" when switching between oscillator sources. Essentially, the circuitry waits for eight rising edges of the clock source that the processor is switching to. This ensures that the new clock source is stable and that its pulse width will not be less than the shortest pulse width of the two clock sources.

A timing diagram indicating the transition from the main oscillator to the Timer1 oscillator is shown in Figure 2-8. The Timer1 oscillator is assumed to be running all the time. After the SCS bit is set, the processor is frozen at the next occurring Q1 cycle. After eight synchronization cycles are counted from the Timer1 oscillator, operation resumes. No additional delays are required after the synchronization cycles.

The sequence of events that takes place when switching from the Timer1 oscillator to the main oscillator will depend on the mode of the main oscillator. In addition to eight clock cycles of the main oscillator, additional delays may take place. If the main oscillator is configured for an external crystal (HS, XT, LP), then the transition will take place after an oscillator start-up time (TOST) has occurred. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for HS, XT and LP modes, is shown in Figure 2-9.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR PIC18F442/242

FIGURE 4-2: PROGRAM MEMORY MAP AND STACK FOR PIC18F452/252

FIGURE 4-6: DATA MEMORY MAP FOR PIC18F242/442

FIGURE 4-7: DATA MEMORY MAP FOR PIC18F252/452

4.14 RCON Register

The Reset Control (RCON) register contains flag bits that allow differentiation between the sources of a device RESET. These flags include the TO, PD, POR, BOR and RI bits. This register is readable and writable.

- Note 1: If the BOREN configuration bit is set (Brown-out Reset enabled), the BOR bit is '1' on a Power-on Reset. After a Brownout Reset has occurred, the BOR bit will be cleared, and must be set by firmware to indicate the occurrence of the next Brown-out Reset.
 - 2: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent Power-on Resets may be detected.

REGISTER 4-3: RCON REGISTER

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	_	—	RI	TO	PD	POR	BOR
bit 7							bit 0

bit 7	IPEN: Interrupt Priority Enable bit		
	1 = Enable priority levels on inter	rupts	
	0 = Disable priority levels on inter-	rupts (16CXXX	(Compatibility mode)
bit 6-5	Unimplemented: Read as '0'		
bit 4	RI: RESET Instruction Flag bit		
	1 = The RESET instruction was no	ot executed	
	0 = The RESET instruction was e	kecuted causing	g a device RESET
	(must be set in software after	a Brown-out R	eset occurs)
bit 3	TO: Watchdog Time-out Flag bit		
	1 = After power-up, CLRWDT instr	uction, or SLEE	IP instruction
	0 = A WDI time-out occurred		
bit 2	PD: Power-down Detection Flag I	bit	
	1 = After power-up or by the CLR	WDT instruction	
		struction	
bit 1	POR: Power-on Reset Status bit		
	1 = A Power-on Reset has not or	curred	
	0 = A Power-on Reset occurred	a Power-on R	aset occurs)
hit O	(Indici de set in soltware alter	a rower-on ne	
DIL U	BOR: Brown-out Reset Status bit	a autor d	
	\perp = A Brown-out Reset has not o	currea	
	(must be set in software after	a Brown-out R	eset occurs)
	(
	Legend:		
	R = Readable bit W =	Writable bit	U = Unimplemented bit, read as '0'

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR

x = Bit is unknown

5.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

5.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit EEPGD determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

Control bit CFGS determines if the access will be to the configuration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on configuration registers, regardless of EEPGD (see "Special Features of the CPU", Section 19.0). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, will allow a program memory erase operation. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), due to RESET values of zero.

Control bit WR initiates write operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

Note: Interrupt flag bit EEIF, in the PIR2 register, is set when the write is complete. It must be cleared in software.

REGISTER 8-3: INTCON3 REGISTER

	R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
	INT2IP	INT1IP		INT2IE	INT1IE		INT2IF	INT1IF
	bit 7							bit 0
bit 7	INT2IP: IN	IT2 External I	nterrupt Prio	rity bit				
	1 = High p	riority						
	0 = Low pr	iority						
bit 6	INT1IP: IN	IT1 External I	nterrupt Prio	rity bit				
	1 = High p	riority						
	0 = Low pr	iority						
bit 5	Unimplem	nented: Read	as '0'					
bit 4	INT2IE: IN	IT2 External I	nterrupt Ena	ble bit				
	1 = Enable	es the INT2 ex	ternal interr	upt				
	0 = Disable	es the INT2 e	xternal interr	upt				
bit 3	INT1IE: IN	IT1 External I	nterrupt Ena	ble bit				
	1 = Enable	es the INT1 ex	ternal interr	upt				
	0 = Disable	es the INT1 e	xternal interr	upt				
bit 2	Unimplem	nented: Read	as '0'					
bit 1	INT2IF: IN	T2 External I	nterrupt Flag	bit				
	1 = The IN	T2 external ir	nterrupt occu	rred (must b	e cleared in	software)		
	0 = The IN	T2 external ir	nterrupt did n	ot occur				
bit 0	INT1IF: IN	T1 External I	nterrupt Flag	bit				
	1 = The IN	T1 external ir	nterrupt occu	rred (must b	e cleared in	software)		
	0 = The IN	T1 external ir	nterrupt did n	ot occur				
	Legend:							
	R = Reada	able bit	W = Wr	itable bit	U = Unimp	lemented	bit, read as	'0'
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is u	Inknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: TRISE REGISTER

	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0
	bit 7							bit 0
bit 7	IBF: Input	Buffer Full S	Status bit			0011		
	1 = A word 0 = No word	nas been i rd has been	received and	d waiting to be	e read by the	e CPU		
bit 6		out Buffer Fi	III Status bit					
bit 0	1 = The ou	tput buffer	still holds a	previously wri	tten word			
	0 = The ou	tput buffer	has been re	ad				
bit 5	IBOV: Inpu	ut Buffer Ov	erflow Dete	ct bit (in Micro	processor n	node)		
	1 = A write	e occurred w	/hen a previ	iously input wo	ord has not	been read		
	0 = No over	erflow occur	red					
bit 4	PSPMODE: Parallel Slave Port Mode Select bit							
	1 = Paralle	el Slave Por	t mode					
	0 = Genera	al purpose I	/O mode					
bit 3	Unimplem	nented: Rea	id as '0'					
bit 2	TRISE2: R	E2 Directio	n Control bi	t				
	1 = Input 0 = Output	t						
bit 1	TRISE1: R	E1 Directio	n Control bi	t				
	1 = Input							
	0 = Output	t						
bit 0	TRISE0: R	E0 Directio	n Control bi	t				
	1 = Input 0 = Output	ł						
		•						
	Legend:							
	R = Reada	able bit	W = \	Writable bit	U = Unim	plemented I	oit, read as '	0'
	- n = Value	e at POR	'1' = I	Bit is set	'0' = Bit is	cleared	x = Bit is u	nknown

10.0 TIMER0 MODULE

The Timer0 module has the following features:

- Software selectable as an 8-bit or 16-bit timer/ counter
- Readable and writable
- Dedicated 8-bit software programmable prescaler
- Clock source selectable to be external or internal
- Interrupt-on-overflow from FFh to 00h in 8-bit mode and FFFFh to 0000h in 16-bit mode
- Edge select for external clock

Figure 10-1 shows a simplified block diagram of the Timer0 module in 8-bit mode and Figure 10-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

The T0CON register (Register 10-1) is a readable and writable register that controls all the aspects of Timer0, including the prescale selection.

REGISTER 10-1: TOCON: TIMER0 CONTROL REGISTER

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	TMR0ON	T08BIT	T0CS	T0SE	PSA	T0PS2	T0PS1	T0PS0	
	bit 7							bit 0	
bit 7	TMR0ON:	Timer0 On/Of	ff Control bit						
	1 = Enable	s Timer0							
	0 = Stops T	ïmer0							
bit 6	T08BIT: Timer0 8-bit/16-bit Control bit								
	1 = Timer0	is configured	as an 8-bit t	imer/counter					
	0 = Timer0	is configured	as a 16-bit t	imer/counter					
bit 5	TOCS: Time	er0 Clock Sou	urce Select b	oit					
	1 = Transiti	on on TOCKI	pin						
	0 = Internal instruction cycle clock (CLKO)								
bit 4	TOSE: Timer0 Source Edge Select bit								
	1 = Increme	ent on high-to	-low transitio	on on TOCKI	pin				
		ent on low-to-	high transitio	on on Tucki	pin				
bit 3	PSA: Timer	10 Prescaler A	Assignment t	oit					
	1 = TImer0	prescaler is I	NOT assigne	ed. Timer0 clo ≫or0 clock in	ock input by	passes pre	scaler.		
					out comes i	rom presoa	aler output.		
bit 2-0	TUPS2:TUP	250: Timeru F	rescaler Sei	ect dits					
	111 = 1.25	6 prescale va	llue						
	110 = 1.120 101 = 1.64	prescale val							
	100 = 1:32	prescale valu	he						
	011 = 1:16	prescale valu	he						
	010 = 1:8	prescale valu	he						
	001 = 1:4	prescale valu	he						
	000 = 1:2	prescale valu	ər						
	Legend:								
	R = Readal	ole bit	W = Writa	able bit	U = Unimple	emented b	it, read as 'C)'	
	- n = Value	at POR	'1' = Bit is	s set	'0' = Bit is c	leared	x = Bit is ur	nknown	

FIGURE 10-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

11.2 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 11-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

TABLE 11-1: CAPACITOR SELECTION FOR THE ALTERNATE OSCILLATOR

Osc Type	Freq	C1	C2		
LP	32 kHz	TBD ⁽¹⁾	TBD ⁽¹⁾		
Crystal to be Tested:					
32.768 kHz Epson C-001R32.768K-A ± 20 PPM					

- **Note 1:** Microchip suggests 33 pF as a starting point in validating the oscillator circuit.
 - 2: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - **3:** Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.

11.3 Timer1 Interrupt

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/ clearing TMR1 interrupt enable bit, TMR1IE (PIE1<0>).

11.4 Resetting Timer1 using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The spe	cial e	vent	trigg	ers from tl	ne CC	P1
	module	will	not	set	interrupt	flag	bit
	TMR1IF (PIR1<0>).						

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

11.5 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 11-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 high byte buffer. This provides the user with the ability to accurately read all 16-bits of Timer1 without having to determine whether a read of the high byte followed by a read of the low byte is valid, due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H buffer register. Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 high byte buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

15.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 15-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit 0
bit 7	SMP: Sam	ple bit						
	SPI Master	mode:						
	1 = Input da	ata sampled	at end of da	ata output tir	ne			
		ata sampieo	at middle of	data outpu	time			
	SMP must	<u>node:</u> be cleared v	vhen SPI is i	used in Slav	e mode			
hit 6		Clock Edge S	Select		e mode			
bit 0	When CKP	= 0.	501001					
	1 = Data tra	<u> </u>	n rising edge	of SCK				
	0 = Data tra	ansmitted or	n falling edge	e of SCK				
	When CKP	<u>= 1:</u>						
	1 = Data tra	ansmitted or	n falling edge	e of SCK				
	0 = Data tra	ansmitted or	n rising edge	of SCK				
bit 5	D/A: Data/A	Address bit						
	Used in I ² C	mode only						
bit 4	P: STOP bi	t						
	Used in I ² (cleared.	C mode only	y. This bit is	cleared wh	nen the MS	SP module	is disabled,	SSPEN is
bit 3	S: START b	oit						
	Used in I ² C	mode only						
bit 2	R/W: Read	/Write bit inf	ormation					
	Used in I ² C	mode only						
bit 1	UA: Update	e Address						
	Used in I ² C	mode only						
bit 0	BF: Buffer	Full Status b	it (Receive i	mode only)				
	1 = Receive	e complete,	SSPBUF is	full				
	0 = Receive	e not comple	ete, SSPBUI	is empty				
	Legend:]
	R - Roadal	hle hit	W – Writab	le hit	– Inimn	lemented hi	h read as 'N	,
	- n – Value	at POR	'1' - Rit ie d		'0' – Bit ie	cleared	x – Rit ie u	nknown
			1 – Dicio a			oloaiou		

15.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is

sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 15-18).

17.0 COMPATIBLE 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has five inputs for the PIC18F2X2 devices and eight for the PIC18F4X2 devices. This module has the ADCON0 and ADCON1 register definitions that are compatible with the mid-range A/D module.

The A/D allows conversion of an analog input signal to a corresponding 10-bit digital number.

REGISTER 17-1: ADCON0 REGISTER

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 17-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 17-2, configures the functions of the port pins.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

- 000 = channel 0, (AN0)
- 001 = channel 1, (AN1)
- 010 =channel 2, (AN2)
- 011 =channel 3, (AN3)
- 100 =channel 4, (AN4)
- 101 = channel 5, (AN5)
- 110 = channel 6, (AN6)
- 110 = Channel 0, (ANO)
- 111 = channel 7, (AN7)
- **Note:** The PIC18F2X2 devices do not implement the full 8 A/D channels; the unimplemented selections are reserved. Do not select any unimplemented channel.

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically cleared by hardware when the A/D conversion is complete)
 0 = A/D conversion not in progress
- bit 1 Unimplemented: Read as '0'

bit 0 ADON: A/D On bit

1 = A/D converter module is powered up

0 = A/D converter module is shut-off and consumes no operating current

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 17-2: ADCON1 REGISTER

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	А	A	Α	Α	Vdd	Vss	8/0
0001	А	А	А	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	А	А	Α	А	А	Vdd	Vss	5/0
0011	D	D	D	Α	VREF+	А	Α	Α	AN3	Vss	4 / 1
0100	D	D	D	D	А	D	Α	Α	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	А	А	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	—	0/0
1000	А	А	А	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	А	А	А	А	А	А	Vdd	Vss	6/0
1010	D	D	А	Α	VREF+	Α	Α	Α	AN3	Vss	5/1
1011	D	D	А	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	А	VREF+	VREF-	А	А	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels / # of A/D voltage references

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: On any device RESET, the port pins that are multiplexed with analog functions (ANx) are forced to be an analog input.

ADD	OWFC	ADD W a	nd Carry	bit to f					
Synt	tax:	[<i>label</i>] Al	[<i>label</i>] ADDWFC f [,d [,a]						
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(W) + (f) +	$(C) \rightarrow de$	est					
Stat	us Affected:	N,OV, C, I	DC, Z						
Enc	oding:	0010	00da	ffff	ffff				
Des	cription:	Add W, th memory lo result is pl tion 'f'. If 'a will be sel- will not be	e Carry F ocation 'f'. laced in W aced in d a' is 0, the ected. If 'a	lag and (If 'd' is C V. If 'd' is ata mem Access a' is 1, th en.	data), the a 1, the hory loca- Bank he BSR				
Wor	ds:	1							
Cyc	les:	1							
QC	Cycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Process Data	s Wr dest	rite to ination				
Exa	<u>mple</u> :	ADDWFC	REG, (), 1					
	Before Instru	iction							
	Carry bit REG W	= 1 = 0x02 = 0x4D							
	After Instruct	ion							
	Carry bit REG W	= 0 = 0x02 = 0x50							

	ANDLW AND literal with W					
Synt	ax:	[label] A	NDLW	k		
Ope	rands:	$0 \le k \le 25$	5			
Ope	ration:	(W) .AND	. $k \to W$			
Statu	us Affected:	N,Z				
Enco	oding:	0000	1011	kkk	k	kkkk
Des	cription:	the conte the 8-bit li placed in	ents of W teral 'k'. W.	I are The	ANL	Jed with Ilt is
Wor	ds:	1				
Cycl	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	3		Q4
Decode F		Read literal 'k'	Proce Data	SS A	Wr	ite to W
<u>Exar</u>	<u>mple</u> :	ANDLW	0x5F			
	Before Instru	uction				

W	=	0xA3
After Instru	ction	
W	=	0x03

GOTO Unconditional Branch								
Synt	ax:	[label]	GOTO	k				
Ope	rands:	$0 \le k \le 10$	48575					
Ope	ration:	$k \rightarrow PC < 2$	20:1>					
Statu	us Affected:	None						
Enco 1st v 2nd	oding: vord (k<7:0>) word(k<19:8>	1110 •) 1111	1111 k ₁₉ kkk	k ₇ k: kkk	kk sk	kkkk ₀ kkkk ₈		
Desc	pription:	GOTO allo branch ar 2 Mbyte r value 'k' i GOTO is a instruction	ws an u nywhere nemory s loadec lways a n.	ncono withii range I into two-c	dition n en e. Th PC< cycle	nal tire ne 20-bit 20:1>.		
Word	ds:	2						
Cycl	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q	Q3		Q4		
	Decode	Read literal 'k'<7:0>,	No operat	ion	Rea 'k'	ad literal <19:8>,		

Decode	Read literal	No	Read literal
	'k'<7:0>,	operation	'k'<19:8>,
		-	Write to PC
No	No	No	No
operation	operation	operation	operation

Example: GOTO THERE

After Instruction

PC = Address (THERE)

INC	=	In	cremer	nt f			
Synt	ax:	[label]	INCF	f [,d [,a]	
Ope	rands:	0 d a	$\leq f \leq 25$ $\in [0,1]$ $\in [0,1]$	5			
Ope	ration:	(f	$) + 1 \rightarrow$	dest			
Statu	us Affected:	C	C, DC, N	, OV, Z			
Enco	oding:		0010	10da	fff	f	ffff
		in pl lf so lf so (c	icrement laced in laced ba 'a' is 0, elected, 'a' = 1, t elected a default).	ted. If 'd' W. If 'd' ack in reg the Acce overridir then the as per th	is 0, is 1, t gister ess B ng the bank ie BS	the 'f' (c ank BS will R va	result is result is default). will be R value. be alue
Word	ds:	1					
Cycl	es:	1					
QC	ycle Activity	:					
	Q1		Q2	Q	3		Q4
	Decode	reę	Read gister 'f'	Proce Data	ess a	W des	/rite to stination
<u>Exar</u>	nple:	II	NCF	CNT,	1, 0		
	Before Instru	uctio	n				
	CNT Z C DC	= = =	0xFF 0 ? ?				
	After Instruc	tion					
	CNT Z C DC	= = =	0x00 1 1 1				

FIGURE 23-23: TYPICAL AND MAXIMUM Vol vs. lol (VDD = 5V, -40°C TO +125°C)

24.0 PACKAGING INFORMATION

24.1 Package Marking Information

28-Lead SPDIP

Example

28-Lead SOIC

Example

40-Lead PDIP

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

28-Lead Plastic Small Outline (SO) – Wide, 300 mil Body (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.050			1.27		
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59	
Overall Length	D	.695	.704	.712	17.65	17.87	18.08	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle Top	¢	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-052