Microchip Technology - PIC18LF252T-1/SOG Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity

Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type

Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Obsolete

PIC

8-Bit

40MHz

12C, SPI, UART/USART

Brown-out Detect/Reset, LVD, POR, PWM, WDT
23

32KB (16K x 16)

FLASH

256 x 8

1.5Kx 8

2V ~ 5.5V

A/D 5x10b

External

-40°C ~ 85°C (TA)

Surface Mount

28-SOIC (0.295", 7.50mm Width)
28-S0IC

https://www.e-xfl.com/product-detail/microchip-technology/pic18If252t-i-sog

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf252t-i-sog-4427085
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18FXX2

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)
MCLR Resets
Register Applicable Devices Power-on Reset, WDT Reset_ Wake-up via WDT
Brown-out Reset RESET Instruction or Interrupt
Stack Resets
IPR2 242 | 442 | 252 | 452 ---1 1111 ---1 1111 ---u uuuu
PIR2 242 | 442 | 252 | 452 ---0 0000 ---0 0000 ---u uuuu
PIE2 242 | 442 | 252 | 452 ---0 0000 ---0 0000 ---u uuuu
IPR1 242 | 442 | 252 | 452 1111 1111 1111 1111 uuuu uuuu
242 | 442 | 252 | 452 -111 1111 -111 1111 -uuu uuuu
242 | 442 | 252 | 452 0000 0000 0000 0000 vuuu uuuu(
FIRT 242 | 442 | 252 | 452 -000 0000 -000 0000 -uuu uuuu(®
242 | 442 | 252 | 452 0000 0000 0000 0000 uuuu uuuu
PIET 242 | 442 | 252 | 452 -000 0000 -000 0000 -uuu uuuu
TRISE 242 | 442 | 252 | 452 0000 -111 0000 -111 uuuu -uuu
TRISD 242 | 442 | 252 | 452 1111 1111 1111 1111 uuuu uuuu
TRISC 242 | 442 | 252 | 452 1111 1111 1111 1111 uuuu uuuu
TRISB 242 | 442 | 252 | 452 1111 1111 1111 1111 uuuu uuuu
TRISAGS) | 242 | 442 | 252 | 452 -111 11110 -111 11110 ~uuu uuuu®
LATE 242 | 442 | 252 | 452 ---- -XXX ---- -uuu ---- -uuu
LATD 242 | 442 | 252 | 452 XXXX XXXX uuuu uuuu uuuu uuuu
LATC 242 | 442 | 252 | 452 XXXX XKXXX uuuu uuuu uuuu uuuu
LATB 242 | 442 | 252 | 452 XXXX XKXXX uuuu uuuu uuuu uuuu
LATA(5:8) 242 | 442 | 252 | 452 —xxx xxxx®) ~uuu uuuu® ~uuu uuuu®
PORTE 242 | 442 | 252 | 452 ---- -000 ---- -000 ---- -uuu
PORTD 242 | 442 | 252 | 452 XXXX XXXX uuuu uuuu uuuu uuuu
PORTC 242 | 442 | 252 | 452 XXXX XXXX uuuu uuuu uuuu uuuu
PORTB 242 | 442 | 252 | 452 XXXX XKXXX uuuu uuuu uuuu uuuu
PORTAGS) | 242 | 442 | 252 | 452 -x0x 00000 ~uou 0000® ~uuu uuuu®

Legend: u = unchanged, x = unknown,

Note 1:

vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are

- = unimplemented bit, read as '0', g = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

One or more bits in the INTCONX or PIRXx registers will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt

updated with the current value of the PC. The STKPTR is modified to point to the next location in the

hardware stack.
See Table 3-2 for RESET value for specific condition.
Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other

an

Oscillator modes, they are disabled and read '0’.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0’.

© 2006 Microchip Technology Inc.

DS39564C-page 31

PIC18FXX2

4.9 Data Memory Organization

The data memory is implemented as static RAM. Each
register in the data memory has a 12-bit address,
allowing up to 4096 bytes of data memory. Figure 4-6
and Figure 4-7 show the data memory organization for
the PIC18FXX2 devices.

The data memory map is divided into as many as 16
banks that contain 256 bytes each. The lower 4 bits of
the Bank Select Register (BSR<3:0>) select which
bank will be accessed. The upper 4 bits for the BSR are
not implemented.

The data memory contains Special Function Registers
(SFR) and General Purpose Registers (GPR). The
SFRs are used for control and status of the controller
and peripheral functions, while GPRs are used for data
storage and scratch pad operations in the user’s appli-
cation. The SFRs start at the last location of Bank 15
(OxFFF) and extend downwards. Any remaining space
beyond the SFRs in the Bank may be implemented as
GPRs. GPRs start at the first location of Bank 0 and
grow upwards. Any read of an unimplemented location
will read as ’0’s.

The entire data memory may be accessed directly or
indirectly. Direct addressing may require the use of the
BSR register. Indirect addressing requires the use of a
File Select Register (FSRn) and a corresponding Indi-
rect File Operand (INDFn). Each FSR holds a 12-bit
address value that can be used to access any location
in the Data Memory map without banking.

The instruction set and architecture allow operations
across all banks. This may be accomplished by indirect
addressing or by the use of the MOVFF instruction. The
MOVFF instruction is a two-word/two-cycle instruction
that moves a value from one register to another.

To ensure that commonly used registers (SFRs and
select GPRs) can be accessed in a single cycle,
regardless of the current BSR values, an Access Bank
is implemented. A segment of Bank 0 and a segment of
Bank 15 comprise the Access RAM. Section 4.10
provides a detailed description of the Access RAM.

4.91 GENERAL PURPOSE REGISTER
FILE

The register file can be accessed either directly or indi-
rectly. Indirect addressing operates using a File Select
Register and corresponding Indirect File Operand. The
operation of indirect addressing is shown in
Section 4.12.

Enhanced MCU devices may have banked memory in
the GPR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other RESETS.

Data RAM is available for use as GPR registers by all
instructions. The top half of Bank 15 (0xF80 to OxFFF)
contains SFRs. All other banks of data memory contain
GPR registers, starting with Bank 0.

4.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers
used by the CPU and Peripheral Modules for control-
ling the desired operation of the device. These regis-
ters are implemented as static RAM. A list of these
registers is given in Table 4-1 and Table 4-2.

The SFRs can be classified into two sets; those asso-
ciated with the “core” function and those related to the
peripheral functions. Those registers related to the
“core” are described in this section, while those related
to the operation of the peripheral features are
described in the section of that peripheral feature.

The SFRs are typically distributed among the
peripherals whose functions they control.

The unused SFR locations will be unimplemented and
read as '0's. See Table 4-1 for addresses for the SFRs.

DS39564C-page 42

© 2006 Microchip Technology Inc.

PIC18FXX2

FIGURE 4-6: DATA MEMORY MAP FOR PIC18F242/442
BSR<3:0> Data Memory Map
000h
= 0000 00h| Access RAM | ooF
Bank O - EPR_ — 7 080h
FFh OFFh
— 0001 00h 100h
_4’ Bank 1 GPR
FFh 1FFh
- 0010 00h 200h
—> Bank 2 GPR
FFh 2FFh
300h
Access Bank
00h
Access RAM low
oo1r S L MAdcecs RAM Miah] 7FR
= Access RAM high | 80
—1110 P Read oo (SFRS) FFh
~ Bank 14
When a =0,
the BSR is ignored and the
Access Bank is used.
The first 128 bytes are General
Purpose RAM (from Bank 0).
The second 128 bytes are
Special Function Registers
EFFh (from Bank 15).
=1111 00h Unused Eggn
—> Bank15 | — — — — 7 F80h
FFh SFR FFFh
Whena =1,
the BSR is used to specify the
RAM location that the
instruction uses.

© 2006 Microchip Technology Inc.

DS39564C-page 43

PIC18FXX2

4.12 Indirect Addressing, INDF and
FSR Registers

Indirect addressing is a mode of addressing data mem-
ory, where the data memory address in the instruction
is not fixed. An FSR register is used as a pointer to the
data memory location that is to be read or written. Since
this pointer is in RAM, the contents can be modified by
the program. This can be useful for data tables in the
data memory and for software stacks. Figure 4-9
shows the operation of indirect addressing. This shows
the moving of the value to the data memory address
specified by the value of the FSR register.

Indirect addressing is possible by using one of the
INDF registers. Any instruction using the INDF register
actually accesses the register pointed to by the File
Select Register, FSR. Reading the INDF register itself,
indirectly (FSR = 0), will read 00h. Writing to the INDF
register indirectly, results in a no operation. The FSR
register contains a 12-bit address, which is shown in
Figure 4-10.

The INDFn register is not a physical register. Address-
ing INDFn actually addresses the register whose
address is contained in the FSRn register (FSRn is a
pointer). This is indirect addressing.

Example 4-4 shows a simple use of indirect addressing
to clear the RAM in Bank1 (locations 100h-1FFh) in a
minimum number of instructions.
EXAMPLE 4-4: HOW TO CLEAR RAM
(BANK1) USING INDIRECT
ADDRESSING

LFSR FSRO ,0x100 ;
NEXT CLRF POSTINCO ; Clear INDF
; register and
; inc pointer
; All done with

BTFSS FSROH, 1

; Bankl?
GOTO NEXT ; NO, clear next
CONTINUE ; YES, continue

There are three indirect addressing registers. To
address the entire data memory space (4096 bytes),
these registers are 12-bit wide. To store the 12-bits of
addressing information, two 8-bit registers are
required. These indirect addressing registers are:

1. FSRO: composed of FSROH:FSROL
2. FSR1: composed of FSR1H:FSR1L
3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDFO, INDF1 and
INDF2, which are not physically implemented. Reading
or writing to these registers activates indirect address-
ing, with the value in the corresponding FSR register
being the address of the data. If an instruction writes a
value to INDFO, the value will be written to the address
pointed to by FSROH:FSROL. A read from INDF1 reads

the data from the address pointed to by
FSR1H:FSR1L. INDFn can be used in code anywhere
an operand can be used.

If INDFO, INDF1 or INDF2 are read indirectly via an
FSR, all '0's are read (zero bit is set). Similarly, if
INDFO, INDF1 or INDF2 are written to indirectly, the
operation will be equivalent to a NOP instruction and the
STATUS bits are not affected.

4.12.1 INDIRECT ADDRESSING
OPERATION

Each FSR register has an INDF register associated
with it, plus four additional register addresses. Perform-
ing an operation on one of these five registers deter-
mines how the FSR will be modified during indirect
addressing.

When data access is done to one of the five INDFn
locations, the address selected will configure the FSRn
register to:

* Do nothing to FSRn after an indirect access (no
change) - INDFn

¢ Auto-decrement FSRn after an indirect access
(post-decrement) - POSTDECnh

¢ Auto-increment FSRn after an indirect access
(post-increment) - POSTINCn

¢ Auto-increment FSRn before an indirect access
(pre-increment) - PREINCn

¢ Use the value in the WREG register as an offset
to FSRn. Do not modify the value of the WREG or
the FSRn register after an indirect access (no
change) - PLUSWn

When using the auto-increment or auto-decrement fea-
tures, the effect on the FSR is not reflected in the
STATUS register. For example, if the indirect address
causes the FSR to equal '0', the Z bit will not be set.

Incrementing or decrementing an FSR affects all 12
bits. That is, when FSRnL overflows from an increment,
FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a
stack pointer, in addition to its uses for table operations
in data memory.

Each FSR has an address associated with it that per-
forms an indexed indirect access. When a data access
to this INDFn location (PLUSWn) occurs, the FSRn is
configured to add the signed value in the WREG regis-
ter and the value in FSR to form the address before an
indirect access. The FSR value is not changed.

If an FSR register contains a value that points to one of
the INDFn, an indirect read will read 00h (zero bit is
set), while an indirect write will be equivalent to a NOP
(STATUS bits are not affected).

If an indirect addressing operation is done where the
target address is an FSRnH or FSRnL register, the
write operation will dominate over the pre- or
post-increment/decrement functions.

DS39564C-page 50

© 2006 Microchip Technology Inc.

PIC18FXX2

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY

MOVLW D'é64
MOVWF COUNTER

MOVLW BUFFER ADDR_HIGH

MOVWF FSROH

MOVLW BUFFER_ADDR_LOW

MOVWF FSROL

MOVLW CODE_ADDR_UPPER

MOVWF TBLPTRU

MOVLW CODE_ADDR_HIGH

MOVWF TBLPTRH

MOVLW CODE_ADDR_LOW

MOVWF TBLPTRL
READ BLOCK
TBLRD* +

MOVF TABLAT, W

MOVWF POSTINCO
DECFSZ COUNTER

BRA READ BLOCK

MODIFY_ WORD

MOVLW DATA ADDR_HIGH

MOVWF FSROH

MOVLW DATA ADDR_LOW

MOVWF FSROL

MOVLW NEW_DATA LOW

MOVWF POSTINCO

MOVLW NEW_DATA HIGH

MOVWF INDFO
ERASE_BLOCK

MOVLW CODE_ADDR_UPPER

MOVWF TBLPTRU

MOVLW CODE_ADDR_HIGH

MOVWF TBLPTRH

MOVLW CODE_ADDR_LOW

MOVWF TBLPTRL

BSF EECON1, EEPGD
BCF EECON1, CFGS
BSF EECON1, WREN
BSF EECON1, FREE
BCF INTCON, GIE

MOVLW 55h
MOVWF EECON2
MOVLW AAh
MOVWF EECON2

BSF EECON1, WR
BSF INTCON, GIE

TBLRD* -
WRITE_BUFFER_BACK
MOVLW 8

MOVWF COUNTER_HI

MOVLW BUFFER_ADDR_HIGH

MOVWF FSROH

MOVLW BUFFER_ADDR LOW

MOVWF FSROL
PROGRAM_LOOP

MOVLW 8

MOVWF COUNTER
WRITE_WORD TO HREGS

MOVF POSTINCO,

MOVWF TABLAT

TBLWT+*

DECFSZ COUNTER

BRA WRITE_WORD TO_HREGS

W

7

7

number of bytes in erase block

point to buffer

Load TBLPTR with the base
address of the memory block

read into TABLAT, and inc
get data

store data

done?

repeat

point to buffer

update buffer word

load TBLPTR with the base
address of the memory block

point to FLASH program memory
access FLASH program memory
enable write to memory

enable Row Erase operation
disable interrupts

write 55h

write AAh

start erase (CPU stall)
re-enable interrupts
dummy read decrement

number of write buffer groups of 8 bytes

point to buffer

number of bytes in holding register

get low byte of buffer data
present data to table latch

write data, perform a short write
to internal TBLWT holding register.
loop until buffers are full

DS39564C-page 62

© 2006 Microchip Technology Inc.

PIC18FXX2

6.3 Reading the Data EEPROM
Memory

To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD con-
trol bit (EECON1<7>), clear the CFGS control bit

EXAMPLE 6-1: DATA EEPROM READ

(EECON1<6>), and then set control bit RD
(EECON1<0>). The data is available for the very next
instruction cycle; therefore, the EEDATA register can
be read by the next instruction. EEDATA will hold this
value until another read operation, or until it is written to
by the user (during a write operation).

MOVLW DATA EE_ADDR
MOVWF EEADR

MOVF EEDATA, W W = EEDATA

; Data Memory Address to read

BCF EECON1, EEPGD Point to DATA memory
BSF EECON1, RD EEPROM Read

i
i

BCF EECON1, CFGS ; Access program FLASH or Data EEPROM memory
i

6.4 Writing to the Data EEPROM
Memory

To write an EEPROM data location, the address must
first be written to the EEADR register and the data writ-
ten to the EEDATA register. Then the sequence in
Example 6-2 must be followed to initiate the write cycle.

The write will not initiate if the above sequence is not
exactly followed (write 55h to EECON2, write AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code exe-

EXAMPLE 6-2: DATA EEPROM WRITE

cution (i.e., runaway programs). The WREN bit should
be kept clear at all times, except when updating the
EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECONT,
EEADR and EDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. The WREN bit must be set on a previous instruc-
tion. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the EEPROM Write Complete
Interrupt Flag bit (EEIF) is set. The user may either
enable this interrupt, or poll this bit. EEIF must be
cleared by software.

MOVLW DATA EE_ADDR
MOVWF EEADR
MOVLW DATA EE_DATA

Data Memory Address to read

i
i
MOVWF EEDATA ; Data Memory Value to write
i
i

BCF EECON1, EEPGD Point to DATA memory
BCF EECON1, CFGS Access program FLASH or Data EEPROM memory
BSF EECON1, WREN Enable writes
BCF INTCON, GIE ; Disable interrupts
Required MOVLW 55h ;
Sequence MOVWF EECON2 ; Write 55h
MOVLW AAh g
MOVWEF EECON2 ; Write AAh
BSF EECON1, WR ; Set WR bit to begin write
BSF INTCON, GIE ; Enable interrupts

; user code execution

BCF EECON1, WREN ; Disable writes on write complete (EEIF set)

© 2006 Microchip Technology Inc.

DS39564C-page 67

PIC18FXX2

8.6 INTO Interrupt

External interrupts on the RBO/INTO, RB1/INT1 and
RB2/INT2 pins are edge triggered: either rising, if the
corresponding INTEDGx bit is set in the INTCONZ reg-
ister, or falling, if the INTEDGx bit is clear. When a valid
edge appears on the RBx/INTx pin, the corresponding
flag bit INTxF is set. This interrupt can be disabled by
clearing the corresponding enable bit INTXE. Flag bit
INTXF must be cleared in software in the Interrupt Ser-
vice Routine before re-enabling the interrupt. All exter-
nal interrupts (INTO, INT1 and INT2) can wake-up the
processor from SLEEP, if bit INTXE was set prior to
going into SLEEP. If the global interrupt enable bit GIE
is set, the processor will branch to the interrupt vector
following wake-up.

Interrupt priority for INT1 and INT2 is determined by the
value contained in the interrupt priority bits, INT1IP
(INTCONB3<6>) and INT2IP (INTCON3<7>). There is
no priority bit associated with INTO. It is always a high
priority interrupt source.

EXAMPLE 8-1:

8.7 TMRO Interrupt

In 8-bit mode (which is the default), an overflow
(FFh — 00h) in the TMRO register will set flag bit
TMROIF. In 16-bit mode, an overflow (FFFFh — 0000h)
in the TMROH: TMROL registers will set flag bit TMROIF.
The interrupt can be enabled/disabled by setting/
clearing enable bit TOIE (INTCON<5>). Interrupt prior-
ity for TimerO is determined by the value contained in
the interrupt priority bit TMROIP (INTCON2<2>). See
Section 10.0 for further details on the TimerO module.

8.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit RBIF
(INTCON<0>). The interrupt can be enabled/disabled
by setting/clearing enable bit, RBIE (INTCON<3>).
Interrupt priority for PORTB interrupt-on-change is
determined by the value contained in the interrupt
priority bit, RBIP (INTCON2<0>).

8.9 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the
stack. Additionally, the WREG, STATUS and BSR regis-
ters are saved on the fast return stack. If a fast return
from interrupt is not used (See Section 4.3), the user
may need to save the WREG, STATUS and BSR regis-
ters in software. Depending on the user’s application,
other registers may also need to be saved. Equation 8-1
saves and restores the WREG, STATUS and BSR
registers during an Interrupt Service Routine.

SAVING STATUS, WREG AND BSR REGISTERS IN RAM

MOVWF W_TEMP
MOVFF BSR,
; USER ISR CODE

i

MOVFF BSR_TEMP, BSR

; W_TEMP is in virtual bank
MOVFF STATUS, STATUS_TEMP ; STATUS_TEMP located anywhere
BSR_TEMP ; BSR located anywhere

; Restore BSR
MOVF W_TEMP, W ; Restore WREG
MOVFF STATUS_TEMP, STATUS ; Restore STATUS

© 2006 Microchip Technology Inc.

DS39564C-page 85

PIC18FXX2

FIGURE 9-5: BLOCK DIAGRAM OF RB2:RBO0 PINS
VbbD
RBPU®) Weak
D_{ P Pull-up

Data Latch

Data Bus D Q II: ._&
1/0 pin(

WR Port CK_

TRIS Latch

D Q
TTL 7
Input
WRTRIS CK T\ Buffer
S

RD TRIS

RD Port EN
RBO/INT K Z&

\I |
Schmitt Trigger RD Port
Buffer

Note 1: /O pins have diode protection to VDD and Vss.

2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
FIGURE 9-6: BLOCK DIAGRAM OF RB3 PIN
VbD
RBPU®) D_{ gWeak
CCP2MX Pull-up
(3)
CCP Output 1 VDD
Enable® 0
CCP Output
Data Latch)
Data Bus D Q+—e /0 pin
WR LATB or
WR PORTB Ky D—| N
TRIS Latch Vss
D
TTL
WR TRISB CI:__ Input 7
Q¢ Buffer
RD TRISB
RD LATB
RD PORTB EN
RD PORTB
CCP2 Input® K
Schmitt Trigger T\‘
Buffer
CCP2MX =0
Note 1: /O pin has diode protection to VDD and Vss.
2: To enable weak pull-ups, set the appropriate DDR bit(s) and clear the RBPU bit (INTCON2<7>).
3: The CCP2 input/output is multiplexed with RB3 if the CCP2MX bit is enabled (=’0’) in the configuration register.

© 2006 Microchip Technology Inc. DS39564C-page 91

PIC18FXX2

13.0 TIMER3 MODULE

The Timer3 module timer/counter has the following
features:

¢ 16-bit timer/counter
(two 8-bit registers; TMR3H and TMR3L)
* Readable and writable (both registers)
¢ Internal or external clock select
¢ Interrupt-on-overflow from FFFFh to 0000h
¢ RESET from CCP module trigger

Figure 13-1 is a simplified block diagram of the Timer3
module.

Register 13-1 shows the Timer3 control register. This
register controls the Operating mode of the Timer3
module and sets the CCP clock source.

Register 11-1 shows the Timer1 control register. This
register controls the Operating mode of the Timer1
module, as well as contains the Timer1 oscillator
enable bit (T1OSCEN), which can be a clock source for
Timer3.

REGISTER 13-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

| RD16 | T3CCP2 | T3CKPS1 | T3CKPSO | T3CCP1 | T3SYNC | TMR3CS | TMR3ON

bit 7

bit 0

bit 7 RD16: 16-bit Read/Write Mode Enable bit
1 = Enables register Read/Write of Timer3 in one 16-bit operation
0 = Enables register Read/Write of Timer3 in two 8-bit operations
bit6-3 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits

1x =Timer3 is the clock source for compare/capture CCP modules

01 =Timer3 is the clock source for compare/capture of CCP2,
Timer1 is the clock source for compare/capture of CCP1

00 =Timer1 is the clock source for compare/capture CCP modules

bit 5-4 T3CKPS1:T3CKPSO0: Timer3 Input Clock Prescale Select bits

11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value

bit 2 T3SYNC: Timer3 External Clock Input Synchronization Control bit
(Not usable if the system clock comes from Timer1/Timer3)

When TMR3CS = 1:

1 = Do not synchronize external clock input

0 = Synchronize external clock input

When TMR3CS = 0:

This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.
bit 1 TMR3CS: Timer3 Clock Source Select bit

1 = External clock input from Timer1 oscillator or T1CKI
(on the rising edge after the first falling edge)

0 = Internal clock (Fosc/4)
bit 0 TMR3ON: Timer3 On bit

1 = Enables Timer3
0 = Stops Timer3

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
- n = Value at POR 1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

© 2006 Microchip Technology Inc.

DS39564C-page 113

PIC18FXX2

I2C SLAVE MODE TIMING SEN = 1 (RECEPTION, 10-BIT ADDRESS)

FIGURE 15-14

"19S urewal [[IM YN
puE ‘Y UO }08))0 OU dABY
[11M 300[0 YauIU B} Jo 8Bpe
Buley ayy a1040q Ja)sibas
aavdss eui jo erepdn uy :3joN I«

2IBMYOS Ul
b, O UBHIM dMO |«

18S Ulewsal ||Im N
PUE ‘YN UO 10848 Ou aABY
JIIM 300[0 ypuIu By} Jo Bpa
Buiey ey ei04eq eisiBas
aavdss ey jo arepdn uy

dM0

300[0 YU JO
abpa Buij|e} Joye ssaippe jo 81Aq
ubiy yum patepdn st AVdSS
usym asempiey Aq pases|) I«

"Juss jou sI MOV "INy IS
SI 4NgdSS esnedaq
1os s| >On_ww«

[

pajepdn
8Q 0} SpedU AAVYdSS
1eys Buneoipul Jes si yN

300[0 YuIU JO
abpa Bui||e} Jo)e ssaippe Jo alAq
MO| yum pajepdn sl QVdSS
uaym asempiey Aq pases|) I«

payepdn
8Q 0} spesu aavdSs 8ui
+| 1eys Bueoiput 1es si v

(<1>1VLSdSS) vN

S

bey) 4g sesjo 0}
4N9dsSs Jo peas >EE:Q I*

Jajsuel}
sojeuIw.a)
19)SE\ sng

BIBM}OS Ul paIes|D |«

2IBM}OS Ul paIes|) |«

olAg ere(aAledeYy alAg ereq anlLoay

1, 0119s SI dMD
BUN Moj pjay s! %2010

| = MOV asneosq

aoe|d uaxe}
MOJ P|8y 10U S! %90[0

sey aavdss Jo erepdn
Ihun moj pjay s1 %00

Beyy 4g Jeoo 03!

) (<9>NOOdSS) AOdSS

HSdSS J0 sjusjuod

4NgdsSsS jo peas >EE:EJ «|£_>> uaplUM sl 4N9dSS

2IeMyos u| pales|) |«

(<0>1v1SdSS) 49

8JeM)jos ul pases|)
« (<€>1HId)

[

SS8IPPY 4O B}Ag PUODBS BAIBOBY

aoe|d uaye}
sey aavdss Jo alepdn
[un Moj p|dy st %9019

d1dSS

DS39564C-page 147

© 2006 Microchip Technology Inc.

PIC18FXX2

15.4.17.1 Bus Collision During a START
Condition

During a START condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the START condition (Figure 15-26).

b) SCL is sampled low before SDA is asserted low
(Figure 15-27).

During a START condition, both the SDA and the SCL

pins are monitored.

If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:
» the START condition is aborted,
¢ the BCLIF flag is set, and
* the MSSP module is reset to its IDLE state

(Figure 15-26).
The START condition begins with the SDA and SCL
pins de-asserted. When the SDA pin is sampled high,
the baud rate generator is loaded from SSPADD<6:0>
and counts down to 0. If the SCL pin is sampled low
while SDA is high, a bus collision occurs, because it is
assumed that another master is attempting to drive a
data '1' during the START condition.

FIGURE 15-26:

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 15-28). If, however, a '1'is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The baud rate generator is then reloaded and
counts down to 0, and during this time, if the SCL pins
are sampled as '0', a bus collision does not occur. At
the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor
during a START condition is that no two
bus masters can assert a START condition
at the exact same time. Therefore, one
master will always assert SDA before the
other. This condition does not cause a bus
collision, because the two masters must be
allowed to arbitrate the first address follow-
ing the START condition. If the address is
the same, arbitration must be allowed to
continue into the data portion, Repeated
START or STOP conditions.

BUS COLLISION DURING START CONDITION (SDA ONLY)

Set BCLIF,

SDA=0,SCL =1.

SDA \

S bit and SSPIF set because

SDA goes low before the SEN bit is set.

_ — - - — —

SEN cleared automatically because of bus collision.

SSP module reset into IDLE state.

| Y SSPIF and BCLIF are
! cleared in software.

SCL ,
Set SEN, enable START |
condition if SDA =1, SCL=1 |

SEN |

SDA sampled low before l
START condition. Set BCLIF. v
S bit and SSPIF set because

BCLIF SDA=0,SCL=1.

S

SSPIF

L

SSPIF and BCLIF are
cleared in software.

DS39564C-page 160 © 2006 Microchip Technology Inc.

PIC18FXX2

NOTES:

DS39564C-page 164 © 2006 Microchip Technology Inc.

PIC18FXX2

16.1 USART Baud Rate Generator
(BRG)

The BRG supports both the Asynchronous and Syn-
chronous modes of the USART. It is a dedicated 8-bit
baud rate generator. The SPBRG register controls the
period of a free running 8-bit timer. In Asynchronous
mode, bit BRGH (TXSTA<2>) also controls the baud
rate. In Synchronous mode, bit BRGH is ignored.
Table 16-1 shows the formula for computation of the
baud rate for different USART modes, which only apply
in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest inte-
ger value for the SPBRG register can be calculated
using the formula in Table 16-1. From this, the error in
baud rate can be determined.

EXAMPLE 16-1:

Example 16-1 shows the calculation of the baud rate
error for the following conditions:

e Fosc =16 MHz

¢ Desired Baud Rate = 9600

* BRGH=0

e SYNC=0

It may be advantageous to use the high baud rate
(BRGH = 1) even for slower baud clocks. This is
because the FOSc/(16(X + 1)) equation can reduce the
baud rate error in some cases.

Writing a new value to the SPBRG register causes the
BRG timer to be reset (or cleared). This ensures the
BRG does not wait for a timer overflow before
outputting the new baud rate.

16.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times
by a majority detect circuit to determine if a high or a
low level is present at the RX pin.

CALCULATING BAUD RATE ERROR

Desired Baud Rate Fosc/ (64 (X +1))

Error

(9615 — 9600) / 9600
0.16%

Solving for X:
X = ((Fosc/ Desired Baud Rate) / 64) —1
X = ((16000000/ 9600) / 64) — 1
X = [25.042] =25
Calculated Baud Rate = 16000000/ (64 (25 + 1))
= 9615

(Calculated Baud Rate — Desired Baud Rate)
Desired Baud Rate

TABLE 16-1: BAUD RATE FORMULA

SYNC BRGH = 0 (Low Speed) BRGH = 1 (High Speed)
0 (Asynchronous) Baud Rate = FOSC/(64(X+1)) Baud Rate = FOsc/(16(X+1))
1 (Synchronous) Baud Rate = FOSC/(4(X+1)) N/A

Legend: X = value in SPBRG (0 to 255)

TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Value on Value on

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR. BOR All Other

’ RESETS
TXSTA CSRC TX9 TXEN | SYNC — BRGH | TRMT | TX9D | 0000 -010 0000 -010
RCSTA SPEN RX9 | SREN | CREN | ADDEN | FERR | OERR | RX9D | 0000 -00x | 0000 -00x

SPBRG |Baud Rate Generator Register

0000 0000 0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

DS39564C-page 168

© 2006 Microchip Technology Inc.

PIC18FXX2

20.1 Instruction Set
ADDLW ADD literal to W ADDWF ADD W to f
Syntax: [label] ADDLW Syntax: [label] ADDWF f[,d[,a]
Operands: 0<k<255 Operands: 0<f<255
Operation: W)+k—->W de [8’1]
ae [0,
Status Affected: N, OV, C,DC, Z) 0.1
. Operation: (W) + (f) — dest
Encoding: ‘ 0000 | 1111 ‘ kkkk | kkkk ‘
o Status Affected: N, OV, C, DC, Z
Description: The contents of W are added to the]
8-bit literal 'k' and the result is Encoding: ‘ 0010 | olda ‘ EEff | EEEf ‘
placed in W. Description: Add W to register 'f'. If 'd' is 0, the
Words: 1 result is stored in W. If 'd" is 1, the
) result is stored back in register 'f'
Cycles: 1 (default). If ‘@’ is 0, the Access
Q Cycle Activity: Bank will be selected. If ‘a’is 1, the
Q1 Q2 Q3 Q4 BSR is used.
Decode Read Process Write to W Words: 1
literal 'k' Data
Cycles: 1
Example: ADDLW 0x15 Q Cycle Activity:
. Q1 Q2 Q3 Q4
Before Instruction X
Decode Read Process Write to
W = 0x10 register 'f' Data destination
After Instruction
W = 0x25 Example: ADDWF REG, 0, O
Before Instruction
w = 0x17
REG = 0xC2
After Instruction
w = 0xD9
REG = 0xC2

© 2006 Microchip Technology Inc. DS39564C-page 217

PIC18F

XX2

NEGF Negate f NOP No Operation
Syntax: [label] NEGF f[,a] Syntax: [label] NOP
Operands: 0<f<255 Operands: None
a_e [0.1] Operation: No operation
Operation: (F)+1>f Status Affected: None
Status Affected: N, OV, G, DC, Z Encoding: 0000 | 0000 | 0000 | 0000
Encoding: ‘ 0110 | 110a ‘ ffff | ffff ‘ 1111 | xxXxX | XXXX | XXXX
Description: Location ‘¥’ is negated using two’s Description: No operation.
complement. The result is placed in Words: 1
the data memory location 'f'. If ’a’ is Cveles: 1
0, the Access Bank will be ycles:
selected, overriding the BSR value. Q Cycle Activity:
If 'a’ = 1, then the bank will be Q1 Q2 Q3 Q4
selected as per the BSR value. Decode No No No
Words: 1 operation operation operation
Cycles: 1 £ |
xample:
Q Cycle Activity:
Q1 Q2 Q3 Q4
None.
Decode Read Process Write
register 'f' Data register 'f'
Example: NEGF REG, 1

Before Instruction

REG

= 0011 1010 [Ox3A]

After Instruction

REG

= 1100 0110 [OxC6]

© 2006 Microchip Technology Inc.

DS39564C-page 239

PIC18FXX2

FIGURE 22-9:

TIMERO AND TIMER1 EXTERNAL CLOCK TIMINGS

TMRO or
TMR1

Note: Refer to Figure 22-4 for load conditions.

TABLE 22-8: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Pi{gm Symbol Characteristic Min Max | Units| Conditions
40 TtOH TOCKI High Pulse Width No Prescaler 0.5Tcy + 20 — ns
With Prescaler 10 — ns
41 TtOL TOCKI Low Pulse Width No Prescaler 0.5Tcy + 20 — ns
With Prescaler 10 — ns
42 TtOP TOCKI Period No Prescaler Tcy +10 — ns
With Prescaler Greater of: — ns |N = prescale
20 nsorIcy +40 value
N (1,2, 4,..., 256)
45 Tt1H T1CKI High Synchronous, no prescaler 0.5Tcy + 20 — ns
Time Synchronous, | PIC18FXXX 10 — | ns
with prescaler | p|C18LFXXX 25 — | ns
Asynchronous PIC18FXXX 30 — ns
PIC18LFXXX 50 — ns
46 TtiL T1CKI Low Synchronous, no prescaler 0.5Tcy + 5 — ns
Time Synchronous, PIC18FXXX 10 — ns
with prescaler | p|C18LFXXX 25 — | ns
Asynchronous PIC18FXXX 30 — ns
PIC18LFXXX 50 — ns
47 THP T1CKIl input Synchronous Greater of: — ns |N = prescale
period 20 nsorIcy + 40 value
N (1,2,4,8)
Asynchronous 60 — ns
Ft1 T1CKI oscillator input frequency range DC 50 kHz
48 Tcke2tmrl | Delay from external T1CKI clock edge to timer 2 Tosc 7 Tosc| —
increment

© 2006 Microchip Technology Inc.

DS39564C-page 275

PIC18FXX2

FIGURE 23-9: TYPICAL Ipp vs. Fosc OVER Vbbb (EC MODE)

16

Typical: statistical mean @ 25°C
14 Maximum: mean + 30 (-40°C to 125°C)
Minimum: mean - 3¢ (-40°C to 125°C)

5.5V
5.0V
12
4.5V
10] / 2.2V
A / 4.0V
/

/

Ipp (mA)
o]

4 28 32 36

S
[oe]
_
N
_
o
n
o
N

N

o

Fosc (MHz)

FIGURE 23-10: MAXIMUM Ipp vs. Fosc OVER Vbbp (EC MODE)

16

Typical: statistical mean @ 25°C 5.5V

14 Maximum: mean + 3¢ (-40°C to 125°C)
Minimum: mean — 3¢ (-40°C to 125°C)
//

12

/ 4.5V
10 b

Iob (mA)
fee]

AN
\

3.0V

N

16 2 32 36 40

o
n
N
N
[e5]

Fosc (MHz)

© 2006 Microchip Technology Inc. DS39564C-page 293

PIC18FXX2

FIGURE 23-15: IPD vs. VDD, -40°C TO +125°C (SLEEP MODE, ALL PERIPHERALS DISABLED)
100
L
Max
(-40°C to +125°C)
10
L —
Max //
(+85°C)
__—/
|
<
2 1
Typ (+25°C)
0.1
Typical: statistical mean @ 25°C
Maximum: mean + 30 (-40°C to 125°C)
Minimum: mean — 3¢ (-40°C to 125°C)
0.01 ; ; ; ‘
2.0 25 3.0 35 4.0 45 5.0 5.5
Vbp (V)
FIGURE 23-16: AlBOR vs. VDD OVER TEMPERATURE (BOR ENABLED, VBOR = 2.00 - 2.16V)
90
80
N /
Device Max (+125°C) /
P Held in
o RESET /
T 407 Typ (+25°C) —
30
Device
< in >
20 | SLEEP
10 1
0 "
2.0 25 3.0 35 4.0 45 5.0 55
Vbb (V)

DS39564C-page 296

© 2006 Microchip Technology Inc.

PIC18FXX2

FIGURE 23-27: MINIMUM AND MAXIMUM ViN vs. VoD (I2C INPUT, -40°C TO +125°C)
3.5
VIH Max
Typical: statistical mean @ 25°C
3.0 1 Maximum: mean + 3¢ (-40°C to 125°C)

Minimum:

mean — 36 (-40°C to 125°C)

2.5 1

2.0 1
ViLMax

VIN (V)

ViL Min

0.5 1

0.0

N\ O\
\
\
\
\

-
-~
-~
-
-
-1
-
-
-
//

VIH Min

2.0 25

3.0

4.0
VDD (V)

4.5

5.0 5.5

FIGURE 23-28:

A/D NON-LINEARITY vs. VREFH (VDD = VREFH, -40°C TO +125°C)

3.5 {
-40°C

AN

AN +25°&
N
hY

25

AN
\

\
'\ +85°C N\
. N

s, N
\

Differential or Integral Nonlinearity (LSB)

0.5

25

3.5 4.5

VoD and VREFH (V)

5.5

DS39564C-page 302

© 2006 Microchip Technology Inc.

PIC18FXX2

PIC18FXX2 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. — _I)g ll(ll XXX
Device Temperature Package Pattern
Range
Device PIC18FXx2(), PIC18FXX2T®);
VDD range 4.2V to 5.5V
PIC18LFXXx2(M, PIC18LFXX2T®);
VDD range 2.5V to 5.5V
Temperature | = -40°Cto +85°C (Industrial)
Range E = -40°Cto +125°C (Extended)
Package PT = TQFP (Thin Quad Flatpack)
SO = SOIC
SP = Skinny Plastic DIP
P = PDIP
L = PLCC
Pattern QTP, SQTP, Code or Special Requirements
(blank otherwise)

Examples:

a) PIC18LF452 - I/P 301 = Industrial temp.,
PDIP package, Extended VDD limits,
QTP pattern #301.

b) PIC18LF242 - I/SO = Industrial temp.,
SOIC package, Extended VDD limits.

c) PIC18F442 - E/P = Extended temp.,
PDIP package, normal VDD limits.

Note 1: F Standard Voltage range
LF = Wide Voltage Range

2: T

in tape and reel - SOIC,
PLCC, and TQFP
packages only.

© 2006 Microchip Technology Inc.

DS39564C-page 329

