
Microchip Technology - PIC18LF252T-I/SOG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 23

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1.5K x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 5x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf252t-i-sog

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf252t-i-sog-4427085
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18FXX2
IPR2 242 442 252 452 ---1 1111 ---1 1111 ---u uuuu

PIR2 242 442 252 452 ---0 0000 ---0 0000 ---u uuuu(1)

PIE2 242 442 252 452 ---0 0000 ---0 0000 ---u uuuu

IPR1
242 442 252 452 1111 1111 1111 1111 uuuu uuuu

242 442 252 452 -111 1111 -111 1111 -uuu uuuu

PIR1
242 442 252 452 0000 0000 0000 0000 uuuu uuuu(1)

242 442 252 452 -000 0000 -000 0000 -uuu uuuu(1)

PIE1
242 442 252 452 0000 0000 0000 0000 uuuu uuuu

242 442 252 452 -000 0000 -000 0000 -uuu uuuu

TRISE 242 442 252 452 0000 -111 0000 -111 uuuu -uuu

TRISD 242 442 252 452 1111 1111 1111 1111 uuuu uuuu

TRISC 242 442 252 452 1111 1111 1111 1111 uuuu uuuu

TRISB 242 442 252 452 1111 1111 1111 1111 uuuu uuuu

TRISA(5,6) 242 442 252 452 -111 1111(5) -111 1111(5) -uuu uuuu(5)

LATE 242 442 252 452 ---- -xxx ---- -uuu ---- -uuu

LATD 242 442 252 452 xxxx xxxx uuuu uuuu uuuu uuuu

LATC 242 442 252 452 xxxx xxxx uuuu uuuu uuuu uuuu

LATB 242 442 252 452 xxxx xxxx uuuu uuuu uuuu uuuu

LATA(5,6) 242 442 252 452 -xxx xxxx(5) -uuu uuuu(5) -uuu uuuu(5)

PORTE 242 442 252 452 ---- -000 ---- -000 ---- -uuu

PORTD 242 442 252 452 xxxx xxxx uuuu uuuu uuuu uuuu

PORTC 242 442 252 452 xxxx xxxx uuuu uuuu uuuu uuuu

PORTB 242 442 252 452 xxxx xxxx uuuu uuuu uuuu uuuu

PORTA(5,6) 242 442 252 452 -x0x 0000(5) -u0u 0000(5) -uuu uuuu(5)

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register Applicable Devices
Power-on Reset,
Brown-out Reset

MCLR Resets
WDT Reset

RESET Instruction
Stack Resets

Wake-up via WDT
or Interrupt

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt

vector (0008h or 0018h).
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are

updated with the current value of the PC. The STKPTR is modified to point to the next location in the
hardware stack.

4: See Table 3-2 for RESET value for specific condition.
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other

Oscillator modes, they are disabled and read ’0’.
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ’0’.
© 2006 Microchip Technology Inc. DS39564C-page 31

PIC18FXX2
4.9 Data Memory Organization

The data memory is implemented as static RAM. Each
register in the data memory has a 12-bit address,
allowing up to 4096 bytes of data memory. Figure 4-6
and Figure 4-7 show the data memory organization for
the PIC18FXX2 devices.

The data memory map is divided into as many as 16
banks that contain 256 bytes each. The lower 4 bits of
the Bank Select Register (BSR<3:0>) select which
bank will be accessed. The upper 4 bits for the BSR are
not implemented.

The data memory contains Special Function Registers
(SFR) and General Purpose Registers (GPR). The
SFRs are used for control and status of the controller
and peripheral functions, while GPRs are used for data
storage and scratch pad operations in the user’s appli-
cation. The SFRs start at the last location of Bank 15
(0xFFF) and extend downwards. Any remaining space
beyond the SFRs in the Bank may be implemented as
GPRs. GPRs start at the first location of Bank 0 and
grow upwards. Any read of an unimplemented location
will read as ’0’s.

The entire data memory may be accessed directly or
indirectly. Direct addressing may require the use of the
BSR register. Indirect addressing requires the use of a
File Select Register (FSRn) and a corresponding Indi-
rect File Operand (INDFn). Each FSR holds a 12-bit
address value that can be used to access any location
in the Data Memory map without banking.

The instruction set and architecture allow operations
across all banks. This may be accomplished by indirect
addressing or by the use of the MOVFF instruction. The
MOVFF instruction is a two-word/two-cycle instruction
that moves a value from one register to another.

To ensure that commonly used registers (SFRs and
select GPRs) can be accessed in a single cycle,
regardless of the current BSR values, an Access Bank
is implemented. A segment of Bank 0 and a segment of
Bank 15 comprise the Access RAM. Section 4.10
provides a detailed description of the Access RAM.

4.9.1 GENERAL PURPOSE REGISTER
FILE

The register file can be accessed either directly or indi-
rectly. Indirect addressing operates using a File Select
Register and corresponding Indirect File Operand. The
operation of indirect addressing is shown in
Section 4.12.

Enhanced MCU devices may have banked memory in
the GPR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other RESETS.

Data RAM is available for use as GPR registers by all
instructions. The top half of Bank 15 (0xF80 to 0xFFF)
contains SFRs. All other banks of data memory contain
GPR registers, starting with Bank 0.

4.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers
used by the CPU and Peripheral Modules for control-
ling the desired operation of the device. These regis-
ters are implemented as static RAM. A list of these
registers is given in Table 4-1 and Table 4-2.

The SFRs can be classified into two sets; those asso-
ciated with the “core” function and those related to the
peripheral functions. Those registers related to the
“core” are described in this section, while those related
to the operation of the peripheral features are
described in the section of that peripheral feature.

The SFRs are typically distributed among the
peripherals whose functions they control.

The unused SFR locations will be unimplemented and
read as '0's. See Table 4-1 for addresses for the SFRs.
DS39564C-page 42 © 2006 Microchip Technology Inc.

PIC18FXX2
FIGURE 4-6: DATA MEMORY MAP FOR PIC18F242/442

Bank 0

Bank 1

Bank 14

Bank 15

Data Memory MapBSR<3:0>

= 0000

= 0001

= 1111

080h
07Fh

F80h
FFFh

00h

7Fh
80h

FFh

Access Bank

When a = 0,
the BSR is ignored and the
Access Bank is used.
The first 128 bytes are General
Purpose RAM (from Bank 0).
The second 128 bytes are
Special Function Registers
(from Bank 15).

When a = 1,
the BSR is used to specify the
RAM location that the
instruction uses.

F7Fh
F00h
EFFh

1FFh

100h
0FFh

000hAccess RAM

FFh

00h

FFh

00h

FFh

00h

GPR

GPR

SFR

Unused

Access RAM high

Access RAM low

Bank 3
to

200h

Unused
Read ’00h’= 1110

= 0011

(SFRs)

GPR
2FFh
300h

FFh

00h
Bank 2

= 0010
© 2006 Microchip Technology Inc. DS39564C-page 43

PIC18FXX2
4.12 Indirect Addressing, INDF and
FSR Registers

Indirect addressing is a mode of addressing data mem-
ory, where the data memory address in the instruction
is not fixed. An FSR register is used as a pointer to the
data memory location that is to be read or written. Since
this pointer is in RAM, the contents can be modified by
the program. This can be useful for data tables in the
data memory and for software stacks. Figure 4-9
shows the operation of indirect addressing. This shows
the moving of the value to the data memory address
specified by the value of the FSR register.

Indirect addressing is possible by using one of the
INDF registers. Any instruction using the INDF register
actually accesses the register pointed to by the File
Select Register, FSR. Reading the INDF register itself,
indirectly (FSR = 0), will read 00h. Writing to the INDF
register indirectly, results in a no operation. The FSR
register contains a 12-bit address, which is shown in
Figure 4-10.

The INDFn register is not a physical register. Address-
ing INDFn actually addresses the register whose
address is contained in the FSRn register (FSRn is a
pointer). This is indirect addressing.

Example 4-4 shows a simple use of indirect addressing
to clear the RAM in Bank1 (locations 100h-1FFh) in a
minimum number of instructions.

EXAMPLE 4-4: HOW TO CLEAR RAM
(BANK1) USING INDIRECT
ADDRESSING

There are three indirect addressing registers. To
address the entire data memory space (4096 bytes),
these registers are 12-bit wide. To store the 12-bits of
addressing information, two 8-bit registers are
required. These indirect addressing registers are:

1. FSR0: composed of FSR0H:FSR0L
2. FSR1: composed of FSR1H:FSR1L
3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDF0, INDF1 and
INDF2, which are not physically implemented. Reading
or writing to these registers activates indirect address-
ing, with the value in the corresponding FSR register
being the address of the data. If an instruction writes a
value to INDF0, the value will be written to the address
pointed to by FSR0H:FSR0L. A read from INDF1 reads

the data from the address pointed to by
FSR1H:FSR1L. INDFn can be used in code anywhere
an operand can be used.

If INDF0, INDF1 or INDF2 are read indirectly via an
FSR, all '0's are read (zero bit is set). Similarly, if
INDF0, INDF1 or INDF2 are written to indirectly, the
operation will be equivalent to a NOP instruction and the
STATUS bits are not affected.

4.12.1 INDIRECT ADDRESSING
OPERATION

Each FSR register has an INDF register associated
with it, plus four additional register addresses. Perform-
ing an operation on one of these five registers deter-
mines how the FSR will be modified during indirect
addressing.

When data access is done to one of the five INDFn
locations, the address selected will configure the FSRn
register to:

• Do nothing to FSRn after an indirect access (no
change) - INDFn

• Auto-decrement FSRn after an indirect access
(post-decrement) - POSTDECn

• Auto-increment FSRn after an indirect access
(post-increment) - POSTINCn

• Auto-increment FSRn before an indirect access
(pre-increment) - PREINCn

• Use the value in the WREG register as an offset
to FSRn. Do not modify the value of the WREG or
the FSRn register after an indirect access (no
change) - PLUSWn

When using the auto-increment or auto-decrement fea-
tures, the effect on the FSR is not reflected in the
STATUS register. For example, if the indirect address
causes the FSR to equal '0', the Z bit will not be set.

Incrementing or decrementing an FSR affects all 12
bits. That is, when FSRnL overflows from an increment,
FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a
stack pointer, in addition to its uses for table operations
in data memory.

Each FSR has an address associated with it that per-
forms an indexed indirect access. When a data access
to this INDFn location (PLUSWn) occurs, the FSRn is
configured to add the signed value in the WREG regis-
ter and the value in FSR to form the address before an
indirect access. The FSR value is not changed.

If an FSR register contains a value that points to one of
the INDFn, an indirect read will read 00h (zero bit is
set), while an indirect write will be equivalent to a NOP
(STATUS bits are not affected).

If an indirect addressing operation is done where the
target address is an FSRnH or FSRnL register, the
write operation will dominate over the pre- or
post-increment/decrement functions.

LFSR FSR0 ,0x100 ;
NEXT CLRF POSTINC0 ; Clear INDF

; register and
; inc pointer

BTFSS FSR0H, 1 ; All done with
; Bank1?

GOTO NEXT ; NO, clear next
CONTINUE ; YES, continue
DS39564C-page 50 © 2006 Microchip Technology Inc.

PIC18FXX2
EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY
MOVLW D'64 ; number of bytes in erase block
MOVWF COUNTER
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L
MOVLW CODE_ADDR_UPPER ; Load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

READ_BLOCK
TBLRD*+ ; read into TABLAT, and inc
MOVF TABLAT, W ; get data
MOVWF POSTINC0 ; store data
DECFSZ COUNTER ; done?
BRA READ_BLOCK ; repeat

MODIFY_WORD
MOVLW DATA_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW DATA_ADDR_LOW
MOVWF FSR0L
MOVLW NEW_DATA_LOW ; update buffer word
MOVWF POSTINC0
MOVLW NEW_DATA_HIGH
MOVWF INDF0

ERASE_BLOCK
MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL
BSF EECON1,EEPGD ; point to FLASH program memory
BCF EECON1,CFGS ; access FLASH program memory
BSF EECON1,WREN ; enable write to memory
BSF EECON1,FREE ; enable Row Erase operation
BCF INTCON,GIE ; disable interrupts
MOVLW 55h
MOVWF EECON2 ; write 55h
MOVLW AAh
MOVWF EECON2 ; write AAh
BSF EECON1,WR ; start erase (CPU stall)
BSF INTCON,GIE ; re-enable interrupts
TBLRD*- ; dummy read decrement

WRITE_BUFFER_BACK
MOVLW 8 ; number of write buffer groups of 8 bytes
MOVWF COUNTER_HI
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L

PROGRAM_LOOP
MOVLW 8 ; number of bytes in holding register
MOVWF COUNTER

WRITE_WORD_TO_HREGS
MOVF POSTINC0, W ; get low byte of buffer data
MOVWF TABLAT ; present data to table latch
TBLWT+* ; write data, perform a short write

; to internal TBLWT holding register.
DECFSZ COUNTER ; loop until buffers are full
BRA WRITE_WORD_TO_HREGS
DS39564C-page 62 © 2006 Microchip Technology Inc.

PIC18FXX2
6.3 Reading the Data EEPROM
Memory

To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD con-
trol bit (EECON1<7>), clear the CFGS control bit

(EECON1<6>), and then set control bit RD
(EECON1<0>). The data is available for the very next
instruction cycle; therefore, the EEDATA register can
be read by the next instruction. EEDATA will hold this
value until another read operation, or until it is written to
by the user (during a write operation).

EXAMPLE 6-1: DATA EEPROM READ

6.4 Writing to the Data EEPROM
Memory

To write an EEPROM data location, the address must
first be written to the EEADR register and the data writ-
ten to the EEDATA register. Then the sequence in
Example 6-2 must be followed to initiate the write cycle.

The write will not initiate if the above sequence is not
exactly followed (write 55h to EECON2, write AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code exe-

cution (i.e., runaway programs). The WREN bit should
be kept clear at all times, except when updating the
EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1,
EEADR and EDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. The WREN bit must be set on a previous instruc-
tion. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the EEPROM Write Complete
Interrupt Flag bit (EEIF) is set. The user may either
enable this interrupt, or poll this bit. EEIF must be
cleared by software.

EXAMPLE 6-2: DATA EEPROM WRITE

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access program FLASH or Data EEPROM memory
BSF EECON1, RD ; EEPROM Read
MOVF EEDATA, W ; W = EEDATA

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
MOVLW DATA_EE_DATA ;
MOVWF EEDATA ; Data Memory Value to write
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access program FLASH or Data EEPROM memory
BSF EECON1, WREN ; Enable writes

BCF INTCON, GIE ; Disable interrupts
Required MOVLW 55h ;
Sequence MOVWF EECON2 ; Write 55h

MOVLW AAh ;
MOVWF EECON2 ; Write AAh
BSF EECON1, WR ; Set WR bit to begin write
BSF INTCON, GIE ; Enable interrupts

. ; user code execution

.

.
BCF EECON1, WREN ; Disable writes on write complete (EEIF set)
© 2006 Microchip Technology Inc. DS39564C-page 67

PIC18FXX2
8.6 INT0 Interrupt

External interrupts on the RB0/INT0, RB1/INT1 and
RB2/INT2 pins are edge triggered: either rising, if the
corresponding INTEDGx bit is set in the INTCON2 reg-
ister, or falling, if the INTEDGx bit is clear. When a valid
edge appears on the RBx/INTx pin, the corresponding
flag bit INTxF is set. This interrupt can be disabled by
clearing the corresponding enable bit INTxE. Flag bit
INTxF must be cleared in software in the Interrupt Ser-
vice Routine before re-enabling the interrupt. All exter-
nal interrupts (INT0, INT1 and INT2) can wake-up the
processor from SLEEP, if bit INTxE was set prior to
going into SLEEP. If the global interrupt enable bit GIE
is set, the processor will branch to the interrupt vector
following wake-up.

Interrupt priority for INT1 and INT2 is determined by the
value contained in the interrupt priority bits, INT1IP
(INTCON3<6>) and INT2IP (INTCON3<7>). There is
no priority bit associated with INT0. It is always a high
priority interrupt source.

8.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow
(FFh → 00h) in the TMR0 register will set flag bit
TMR0IF. In 16-bit mode, an overflow (FFFFh → 0000h)
in the TMR0H:TMR0L registers will set flag bit TMR0IF.
The interrupt can be enabled/disabled by setting/
clearing enable bit T0IE (INTCON<5>). Interrupt prior-
ity for Timer0 is determined by the value contained in
the interrupt priority bit TMR0IP (INTCON2<2>). See
Section 10.0 for further details on the Timer0 module.

8.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit RBIF
(INTCON<0>). The interrupt can be enabled/disabled
by setting/clearing enable bit, RBIE (INTCON<3>).
Interrupt priority for PORTB interrupt-on-change is
determined by the value contained in the interrupt
priority bit, RBIP (INTCON2<0>).

8.9 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the
stack. Additionally, the WREG, STATUS and BSR regis-
ters are saved on the fast return stack. If a fast return
from interrupt is not used (See Section 4.3), the user
may need to save the WREG, STATUS and BSR regis-
ters in software. Depending on the user’s application,
other registers may also need to be saved. Equation 8-1
saves and restores the WREG, STATUS and BSR
registers during an Interrupt Service Routine.

EXAMPLE 8-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM
MOVWF W_TEMP ; W_TEMP is in virtual bank
MOVFF STATUS, STATUS_TEMP ; STATUS_TEMP located anywhere
MOVFF BSR, BSR_TEMP ; BSR located anywhere
;
; USER ISR CODE
;
MOVFF BSR_TEMP, BSR ; Restore BSR
MOVF W_TEMP, W ; Restore WREG
MOVFF STATUS_TEMP,STATUS ; Restore STATUS
© 2006 Microchip Technology Inc. DS39564C-page 85

PIC18FXX2
FIGURE 9-5: BLOCK DIAGRAM OF RB2:RB0 PINS

FIGURE 9-6: BLOCK DIAGRAM OF RB3 PIN

Data Latch

RBPU(2)

P

VDD

QD

CK

QD

CK

Q D

EN

Data Bus

WR Port

WR TRIS

RD TRIS

RD Port

Weak
Pull-up

RD Port

RB0/INT

I/O pin(1)

TTL
Input
Buffer

Schmitt Trigger
Buffer

TRIS Latch

Note 1: I/O pins have diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).

Data Latch

P

VDD

QD

CK

Q D

EN

Data Bus

WR LATB or

WR TRISB

RD TRISB

RD PORTB

Weak
Pull-up

CCP2 Input(3)

TTL
Input
Buffer

Schmitt Trigger
Buffer

TRIS Latch

RD LATB

WR PORTB

RBPU(2)

CK

D

Enable(3)
CCP Output

RD PORTB

CCP Output(3) 1

0

P

N

VDD

VSS

I/O pin(1)

Q

CCP2MX

CCP2MX = 0

Note 1: I/O pin has diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate DDR bit(s) and clear the RBPU bit (INTCON2<7>).
3: The CCP2 input/output is multiplexed with RB3 if the CCP2MX bit is enabled (=’0’) in the configuration register.
© 2006 Microchip Technology Inc. DS39564C-page 91

PIC18FXX2
13.0 TIMER3 MODULE

The Timer3 module timer/counter has the following
features:

• 16-bit timer/counter
(two 8-bit registers; TMR3H and TMR3L)

• Readable and writable (both registers)

• Internal or external clock select
• Interrupt-on-overflow from FFFFh to 0000h
• RESET from CCP module trigger

Figure 13-1 is a simplified block diagram of the Timer3
module.

Register 13-1 shows the Timer3 control register. This
register controls the Operating mode of the Timer3
module and sets the CCP clock source.

Register 11-1 shows the Timer1 control register. This
register controls the Operating mode of the Timer1
module, as well as contains the Timer1 oscillator
enable bit (T1OSCEN), which can be a clock source for
Timer3.

REGISTER 13-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON

bit 7 bit 0

bit 7 RD16: 16-bit Read/Write Mode Enable bit
1 = Enables register Read/Write of Timer3 in one 16-bit operation
0 = Enables register Read/Write of Timer3 in two 8-bit operations

bit 6-3 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits

1x = Timer3 is the clock source for compare/capture CCP modules
01 = Timer3 is the clock source for compare/capture of CCP2,

Timer1 is the clock source for compare/capture of CCP1
00 = Timer1 is the clock source for compare/capture CCP modules

bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits

11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value

bit 2 T3SYNC: Timer3 External Clock Input Synchronization Control bit
(Not usable if the system clock comes from Timer1/Timer3)
When TMR3CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
When TMR3CS = 0:
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.

bit 1 TMR3CS: Timer3 Clock Source Select bit
1 = External clock input from Timer1 oscillator or T1CKI

(on the rising edge after the first falling edge)
0 = Internal clock (FOSC/4)

bit 0 TMR3ON: Timer3 On bit

1 = Enables Timer3
0 = Stops Timer3

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
© 2006 Microchip Technology Inc. DS39564C-page 113

PIC18FXX2
FIGURE 15-14: I2C SLAVE MODE TIMING SEN = 1 (RECEPTION, 10-BIT ADDRESS)

S
D

A

S
C

L

S
S

P
IF

B
F

 (
S

S
P

S
TA

T
<

0>
)

S
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

9
1

2
3

4
5

7
8

9
P

1
1

1
1

0
A

9
A

8
A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0
D

7
D

6
D

5
D

4
D

3
D

1
D

0

R
ec

ei
ve

 D
at

a
B

yt
e

A
C

K

R
/W

 =
 0

A
C

K

R
ec

ei
ve

 F
irs

t B
yt

e
of

 A
dd

re
ss

C
le

ar
ed

 in
 s

of
tw

ar
e

D
2

6

(P
IR

1<
3>

)

C
le

ar
ed

 in
 s

of
tw

ar
e

R
ec

ei
ve

 S
ec

on
d

B
yt

e
of

 A
dd

re
ss

C
le

ar
ed

 b
y

ha
rd

w
ar

e
w

he
n

S
S

P
A

D
D

 is
 u

pd
at

ed
 w

ith
 lo

w
by

te
 o

f a
dd

re
ss

 a
fte

r
fa

lli
ng

 e
dg

e

U
A

 (
S

S
P

S
TA

T
<

1>
)

C
lo

ck
 is

 h
el

d
lo

w
 u

nt
il

up
da

te
 o

f S
S

P
A

D
D

 h
as

ta

ke
n

pl
ac

e

U
A

 is
 s

et
 in

di
ca

tin
g

th
at

th
e

S
S

P
A

D
D

 n
ee

ds
 to

 b
e

up
da

te
d

U
A

 is
 s

et
 in

di
ca

tin
g

th
at

S
S

P
A

D
D

 n
ee

ds
 to

 b
e

up
da

te
d

C
le

ar
ed

 b
y

ha
rd

w
ar

e
w

he
n

S
S

P
A

D
D

 is
 u

pd
at

ed
 w

ith
 h

ig
h

by
te

 o
f a

dd
re

ss
 a

fte
r

fa
lli

ng
 e

dg
e

S
S

P
B

U
F

 is
 w

rit
te

n
w

ith
co

nt
en

ts
 o

f S
S

P
S

R
D

um
m

y
re

ad
 o

f S
S

P
B

U
F

to
 c

le
ar

 B
F

 fl
ag

A
C

K

C
K

P

1
2

3
4

5
7

8
9

D
7

D
6

D
5

D
4

D
3

D
1

D
0

R
ec

ei
ve

 D
at

a
B

yt
e

B
us

 M
as

te
r

te
rm

in
at

es
tr

an
sf

er

D
2

6

A
C

K

C
le

ar
ed

 in
 s

of
tw

ar
e

C
le

ar
ed

 in
 s

of
tw

ar
e

S
S

P
O

V
 (

S
S

P
C

O
N

<
6>

)

C
K

P
 w

rit
te

n
to

 ‘1
’

N
o

te
:

A
n

up
da

te
 o

f t
he

 S
S

P
A

D
D

re
gi

st
er

 b
ef

or
e

th
e

fa
lli

ng
ed

ge
 o

f t
he

 n
in

th
 c

lo
ck

 w
ill

ha
ve

 n
o

ef
fe

ct
 o

n
U

A
, a

nd
U

A
 w

ill
 r

em
ai

n
se

t.

N
o

te
:

A
n

up
da

te
 o

f
th

e
S

S
P

A
D

D
re

gi
st

er
 b

ef
or

e
th

e
fa

lli
ng

ed
ge

 o
f

th
e

ni
nt

h
cl

oc
k

w
ill

ha
ve

 n
o

ef
fe

ct
 o

n
U

A
,

an
d

U
A

 w
ill

 r
em

ai
n

se
t.

in
 s

of
tw

ar
e

C
lo

ck
 is

 h
el

d
lo

w
 u

nt
il

up
da

te
 o

f S
S

P
A

D
D

 h
as

ta

ke
n

pl
ac

e of
 n

in
th

 c
lo

ck
.

of
 n

in
th

 c
lo

ck
.

S
S

P
O

V
 is

 s
et

be
ca

us
e

S
S

P
B

U
F

 is
st

ill
 fu

ll.
 A

C
K

 is
 n

ot
 s

en
t.

D
um

m
y

re
ad

 o
f S

S
P

B
U

F
to

 c
le

ar
 B

F
 fl

ag

C
lo

ck
 is

 h
el

d
lo

w
 u

nt
il

C
K

P
 is

 s
et

 to
 ‘1

’
C

lo
ck

 is
 n

ot
 h

el
d

lo
w

be
ca

us
e

A
C

K
 =

 1
© 2006 Microchip Technology Inc. DS39564C-page 147

PIC18FXX2
15.4.17.1 Bus Collision During a START
Condition

During a START condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the START condition (Figure 15-26).

b) SCL is sampled low before SDA is asserted low
(Figure 15-27).

During a START condition, both the SDA and the SCL
pins are monitored.

If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:

• the START condition is aborted,
• the BCLIF flag is set, and
• the MSSP module is reset to its IDLE state

(Figure 15-26).

The START condition begins with the SDA and SCL
pins de-asserted. When the SDA pin is sampled high,
the baud rate generator is loaded from SSPADD<6:0>
and counts down to 0. If the SCL pin is sampled low
while SDA is high, a bus collision occurs, because it is
assumed that another master is attempting to drive a
data '1' during the START condition.

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 15-28). If, however, a '1' is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The baud rate generator is then reloaded and
counts down to 0, and during this time, if the SCL pins
are sampled as '0', a bus collision does not occur. At
the end of the BRG count, the SCL pin is asserted low.

FIGURE 15-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

Note: The reason that bus collision is not a factor
during a START condition is that no two
bus masters can assert a START condition
at the exact same time. Therefore, one
master will always assert SDA before the
other. This condition does not cause a bus
collision, because the two masters must be
allowed to arbitrate the first address follow-
ing the START condition. If the address is
the same, arbitration must be allowed to
continue into the data portion, Repeated
START or STOP conditions.

SDA

SCL

SEN

SDA sampled low before

SDA goes low before the SEN bit is set.

S bit and SSPIF set because

SSP module reset into IDLE state.
SEN cleared automatically because of bus collision.

S bit and SSPIF set because

Set SEN, enable START
condition if SDA = 1, SCL=1

SDA = 0, SCL = 1.

BCLIF

S

SSPIF

SDA = 0, SCL = 1.

SSPIF and BCLIF are
cleared in software.

SSPIF and BCLIF are
cleared in software.

Set BCLIF,

 Set BCLIF.START condition.
DS39564C-page 160 © 2006 Microchip Technology Inc.

PIC18FXX2
NOTES:
DS39564C-page 164 © 2006 Microchip Technology Inc.

PIC18FXX2
16.1 USART Baud Rate Generator
(BRG)

The BRG supports both the Asynchronous and Syn-
chronous modes of the USART. It is a dedicated 8-bit
baud rate generator. The SPBRG register controls the
period of a free running 8-bit timer. In Asynchronous
mode, bit BRGH (TXSTA<2>) also controls the baud
rate. In Synchronous mode, bit BRGH is ignored.
Table 16-1 shows the formula for computation of the
baud rate for different USART modes, which only apply
in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest inte-
ger value for the SPBRG register can be calculated
using the formula in Table 16-1. From this, the error in
baud rate can be determined.

Example 16-1 shows the calculation of the baud rate
error for the following conditions:

• FOSC = 16 MHz

• Desired Baud Rate = 9600
• BRGH = 0
• SYNC = 0

It may be advantageous to use the high baud rate
(BRGH = 1) even for slower baud clocks. This is
because the FOSC/(16(X + 1)) equation can reduce the
baud rate error in some cases.

Writing a new value to the SPBRG register causes the
BRG timer to be reset (or cleared). This ensures the
BRG does not wait for a timer overflow before
outputting the new baud rate.

16.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times
by a majority detect circuit to determine if a high or a
low level is present at the RX pin.

EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

TABLE 16-1: BAUD RATE FORMULA

TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Desired Baud Rate = FOSC / (64 (X + 1))

Solving for X:

X = ((FOSC / Desired Baud Rate) / 64) – 1
X = ((16000000 / 9600) / 64) – 1
X = [25.042] = 25

Calculated Baud Rate = 16000000 / (64 (25 + 1))
= 9615

Error = (Calculated Baud Rate – Desired Baud Rate)
 Desired Baud Rate
= (9615 – 9600) / 9600
= 0.16%

SYNC BRGH = 0 (Low Speed) BRGH = 1 (High Speed)

0
1

(Asynchronous) Baud Rate = FOSC/(64(X+1))
(Synchronous) Baud Rate = FOSC/(4(X+1))

Baud Rate = FOSC/(16(X+1))
N/A

Legend: X = value in SPBRG (0 to 255)

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR, BOR

Value on
All Other
RESETS

TXSTA CSRC TX9 TXEN SYNC — BRGH TRMT TX9D 0000 -010 0000 -010

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 -00x 0000 -00x

SPBRG Baud Rate Generator Register 0000 0000 0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.
DS39564C-page 168 © 2006 Microchip Technology Inc.

PIC18FXX2
20.1 Instruction Set

ADDLW ADD literal to W

Syntax: [label] ADDLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) + k → W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1111 kkkk kkkk

Description: The contents of W are added to the
8-bit literal 'k' and the result is
placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Process
Data

Write to W

Example: ADDLW 0x15

Before Instruction
W = 0x10

After Instruction
W = 0x25

ADDWF ADD W to f

Syntax: [label] ADDWF f [,d [,a]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) + (f) → dest

Status Affected: N, OV, C, DC, Z

Encoding: 0010 01da ffff ffff

Description: Add W to register 'f'. If 'd' is 0, the
result is stored in W. If 'd' is 1, the
result is stored back in register 'f'
(default). If ‘a’ is 0, the Access
Bank will be selected. If ‘a’ is 1, the
BSR is used.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
Write to

destination

Example: ADDWF REG, 0, 0

Before Instruction
W = 0x17
REG = 0xC2

After Instruction
W = 0xD9
REG = 0xC2
© 2006 Microchip Technology Inc. DS39564C-page 217

PIC18FXX2

NEGF Negate f

Syntax: [label] NEGF f [,a]

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: (f) + 1 → f

Status Affected: N, OV, C, DC, Z

Encoding: 0110 110a ffff ffff

Description: Location ‘f’ is negated using two’s
complement. The result is placed in
the data memory location 'f'. If ’a’ is
0, the Access Bank will be
selected, overriding the BSR value.
If ’a’ = 1, then the bank will be
selected as per the BSR value.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write
register 'f'

Example: NEGF REG, 1

Before Instruction
REG = 0011 1010 [0x3A]

After Instruction
REG = 1100 0110 [0xC6]

NOP No Operation

Syntax: [label] NOP

Operands: None

Operation: No operation

Status Affected: None

Encoding: 0000
1111

0000
xxxx

0000
xxxx

0000
xxxx

Description: No operation.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

No
operation

No
operation

Example:

None.
© 2006 Microchip Technology Inc. DS39564C-page 239

PIC18FXX2
FIGURE 22-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 22-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Note: Refer to Figure 22-4 for load conditions.

46

47

45

48

41

42

40

T0CKI

T1OSO/T1CKI

TMR0 or
TMR1

Param
No.

Symbol Characteristic Min Max Units Conditions

40 Tt0H T0CKI High Pulse Width No Prescaler 0.5TCY + 20 — ns

With Prescaler 10 — ns

41 Tt0L T0CKI Low Pulse Width No Prescaler 0.5TCY + 20 — ns

With Prescaler 10 — ns

42 Tt0P T0CKI Period No Prescaler TCY + 10 — ns

With Prescaler Greater of:
20 nS or TCY + 40

 N

— ns N = prescale
value
(1, 2, 4,..., 256)

45 Tt1H T1CKI High
Time

Synchronous, no prescaler 0.5TCY + 20 — ns

Synchronous,
with prescaler

PIC18FXXX 10 — ns

PIC18LFXXX 25 — ns

Asynchronous PIC18FXXX 30 — ns

PIC18LFXXX 50 — ns

46 Tt1L T1CKI Low
Time

Synchronous, no prescaler 0.5TCY + 5 — ns

Synchronous,
with prescaler

PIC18FXXX 10 — ns

PIC18LFXXX 25 — ns

Asynchronous PIC18FXXX 30 — ns

PIC18LFXXX 50 — ns

47 Tt1P T1CKI input
period

Synchronous Greater of:
20 nS or TCY + 40

 N

— ns N = prescale
value
(1, 2, 4, 8)

Asynchronous 60 — ns

Ft1 T1CKI oscillator input frequency range DC 50 kHz

48 Tcke2tmrI Delay from external T1CKI clock edge to timer
increment

2 TOSC 7 TOSC —
© 2006 Microchip Technology Inc. DS39564C-page 275

PIC18FXX2
FIGURE 23-9: TYPICAL IDD vs. FOSC OVER VDD (EC MODE)

FIGURE 23-10: MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24 28 32 36 40

FOSC (MHz)

ID
D

 (
m

A
)

5.5V

5.0V

4.5V

4.0V

3.5V

3.0V

2.5V

2.0V

4.2V

Typical: statistical mean @ 25°C
Maximum: mean + 3σ (-40°C to 125°C)
Minimum: mean – 3σ (-40°C to 125°C)

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24 28 32 36 40

FOSC (MHz)

ID
D

 (
m

A
)

5.5V

5.0V

4.5V

4.0V

3.5V

3.0V

2.5V

2.0V

4.2V

Typical: statistical mean @ 25°C
Maximum: mean + 3σ (-40°C to 125°C)
Minimum: mean – 3σ (-40°C to 125°C)
© 2006 Microchip Technology Inc. DS39564C-page 293

PIC18FXX2
FIGURE 23-15: IPD vs. VDD, -40°C TO +125°C (SLEEP MODE, ALL PERIPHERALS DISABLED)

FIGURE 23-16: ΔIBOR vs. VDD OVER TEMPERATURE (BOR ENABLED, VBOR = 2.00 - 2.16V)

0.01

0.1

1

10

100

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

IP
D

 (
u

A
)

Typ (+25°C)

Max
(+85°C)

Max
(-40°C to +125°C)

Typical: statistical mean @ 25°C
Maximum: mean + 3σ (-40°C to 125°C)
Minimum: mean – 3σ (-40°C to 125°C)

0

10

20

30

40

50

60

70

80

90

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

ID
D

 (
μA

)

Max (125C)

Max (85C)

Typ (25C)

Device
Held in
Reset

Device
in

Sleep

Max (+125°C)

Max (+85°C)

Typ (+25°C)

Device
Held in
RESET

Device
in

SLEEP
DS39564C-page 296 © 2006 Microchip Technology Inc.

PIC18FXX2
FIGURE 23-27: MINIMUM AND MAXIMUM VIN vs. VDD (I2C INPUT, -40°C TO +125°C)

FIGURE 23-28: A/D NON-LINEARITY vs. VREFH (VDD = VREFH, -40°C TO +125°C)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

V
IN

 (
V

)

VIH Max

VIH Min

VILMax

VIL Min

Typical: statistical mean @ 25°C
Maximum: mean + 3σ (-40°C to 125°C)
Minimum: mean – 3σ (-40°C to 125°C)

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5

VDD and VREFH (V)

D
if

fe
re

n
ti

al
 o

r
In

te
g

ra
l N

o
n

lin
ea

ri
ty

 (
L

S
B

)

-40C

25C

85C

125C

-40°C

+25°C

+85°C

+125°C
DS39564C-page 302 © 2006 Microchip Technology Inc.

© 2006 Microchip Technology Inc. DS39564C-page 329

PIC18FXX2

PIC18FXX2 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. − X /XX XXX

PatternPackageTemperature
Range

Device

Device PIC18FXX2(1), PIC18FXX2T(2);

VDD range 4.2V to 5.5V
PIC18LFXX2(1), PIC18LFXX2T(2);

VDD range 2.5V to 5.5V

Temperature
Range

I = -40°C to +85°C (Industrial)
E = -40°C to +125°C (Extended)

Package PT = TQFP (Thin Quad Flatpack)
SO = SOIC
SP = Skinny Plastic DIP
P = PDIP
L = PLCC

Pattern QTP, SQTP, Code or Special Requirements
(blank otherwise)

Examples:

a) PIC18LF452 - I/P 301 = Industrial temp.,
PDIP package, Extended VDD limits,
QTP pattern #301.

b) PIC18LF242 - I/SO = Industrial temp.,
SOIC package, Extended VDD limits.

c) PIC18F442 - E/P = Extended temp.,
PDIP package, normal VDD limits.

Note 1: F = Standard Voltage range
LF = Wide Voltage Range

2: T = in tape and reel - SOIC,
PLCC, and TQFP
packages only.

