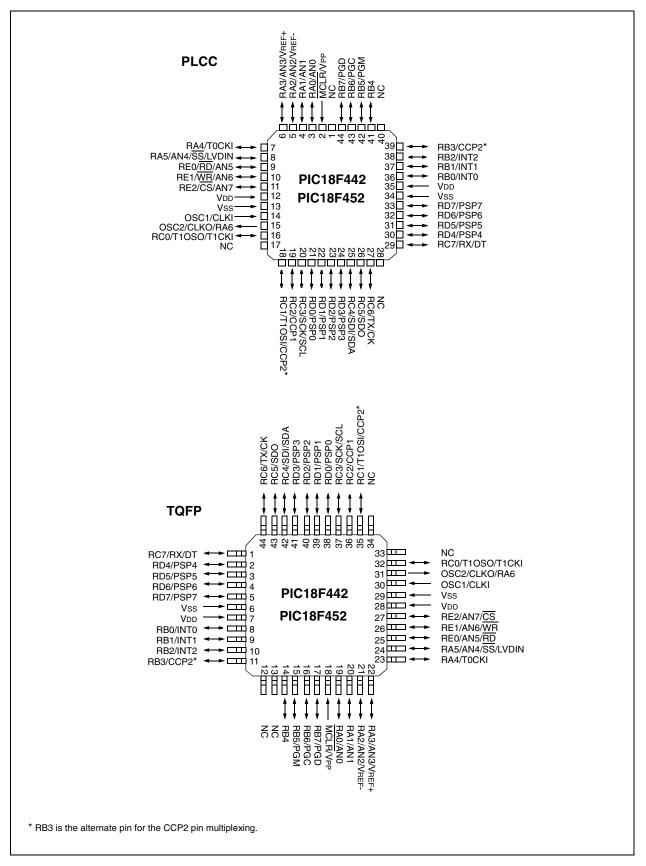


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf442-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 1-2: PIC18F2X2 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nome	Pin N	umber	Pin	Buffer	Description				
Pin Name	DIP	SOIC	Туре	Туре	Description				
					PORTC is a bi-directional I/O port.				
RC0/T1OSO/T1CKI	11	11							
RC0			I/O	ST	Digital I/O.				
T1OSO			0	_	Timer1 oscillator output.				
T1CKI			I.	ST	Timer1/Timer3 external clock input.				
RC1/T1OSI/CCP2	12	12							
RC1			I/O	ST	Digital I/O.				
T1OSI			I.	CMOS	Timer1 oscillator input.				
CCP2			I/O	ST	Capture2 input, Compare2 output, PWM2 output.				
RC2/CCP1	13	13							
RC2			I/O	ST	Digital I/O.				
CCP1			I/O	ST	Capture1 input/Compare1 output/PWM1 output.				
RC3/SCK/SCL	14	14							
RC3			I/O	ST	Digital I/O.				
SCK			I/O	ST	Synchronous serial clock input/output for SPI mode.				
SCL			I/O	ST	Synchronous serial clock input/output for I ² C mode				
RC4/SDI/SDA	15	15							
RC4			I/O	ST	Digital I/O.				
SDI			I.	ST	SPI Data In.				
SDA			I/O	ST	I ² C Data I/O.				
RC5/SDO	16	16							
RC5		_	I/O	ST	Digital I/O.				
SDO			0	_	SPI Data Out.				
RC6/TX/CK	17	17							
RC6		-	I/O	ST	Digital I/O.				
ТХ			0	_	USART Asynchronous Transmit.				
СК			I/O	ST	USART Synchronous Clock (see related RX/DT).				
RC7/RX/DT	18	18							
RC7			I/O	ST	Digital I/O.				
RX			Ι	ST	USART Asynchronous Receive.				
DT			I/O	ST	USART Synchronous Data (see related TX/CK).				
Vss	8, 19	8, 19	Р	—	Ground reference for logic and I/O pins.				
Vdd	20	20	Р		Positive supply for logic and I/O pins.				
Legend: TTL = TTL o					CMOS = CMOS compatible input or output				

ST = Schmitt Trigger input with CMOS levels

I = Input P = Power

O = Output OD = Open Drain (no P diode to VDD)

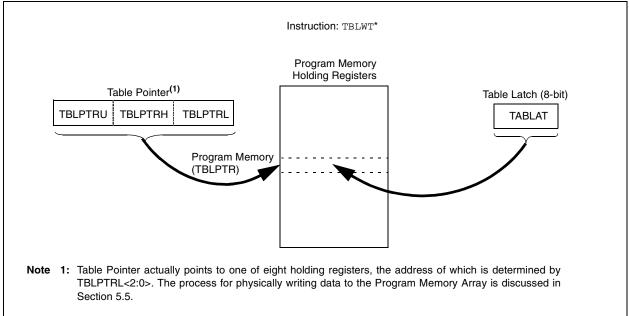
TABLE 3-3:		INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)											
Register	Арг	olicabl	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt						
IPR2	242	442	252	452	1 1111	1 1111	u uuuu						
PIR2	242	442	252	452	0 0000	0 0000	u uuuu (1)						
PIE2	242	442	252	452	0 0000	0 0000	u uuuu						
IPR1	242	442	252	452	1111 1111	1111 1111	uuuu uuuu						
IFRI	242	442	252	452	-111 1111	-111 1111	-uuu uuuu						
	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (1)						
PIR1	242	442	252	452	-000 0000	-000 0000	-uuu uuuu (1)						
	242	442	252	452	0000 0000	0000 0000	uuuu uuuu						
PIE1	242	442	252	452	-000 0000	-000 0000	-uuu uuuu						
TRISE	242	442	252	452	0000 -111	0000 -111	uuuu -uuu						
TRISD	242	442	252	452	1111 1111	1111 1111	uuuu uuuu						
TRISC	242	442	252	452	1111 1111	1111 1111	սսսս սսսս						
TRISB	242	442	252	452	1111 1111	1111 1111	սսսս սսսս						
TRISA ^(5,6)	242	442	252	452	-111 1111 (5)	-111 1111 (5)	-uuu uuuu (5)						
LATE	242	442	252	452	xxx	uuu	uuu						
LATD	242	442	252	452	XXXX XXXX	uuuu uuuu	սսսս սսսս						
LATC	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu						
LATB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu						
LATA ^(5,6)	242	442	252	452	-xxx xxxx(5)	-uuu uuuu (5)	-uuu uuuu (5)						
PORTE	242	442	252	452	000	000	uuu						
PORTD	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս						
PORTC	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս						
PORTB	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս						
PORTA ^(5,6)	242	442	252	452	-x0x 0000 (5)	-u0u 0000 (5)	-uuu uuuu (5)						

 TABLE 3-3:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).


- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for RESET value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.
- 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
OSCCON	—	—	—	—	—	—	—	SCS	0	21
LVDCON	_	—	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	191
WDTCON	_	—	—	—	_	—	—	SWDTE	0	203
RCON	IPEN	_	_	RI	TO	PD	POR	BOR	01 11qq	53, 28, 84
TMR1H	Timer1 Reg	xxxx xxxx	107							
TMR1L	Timer1 Reg	xxxx xxxx	107							
T1CON	RD16		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	107
TMR2	Timer2 Reg	ister							0000 0000	111
PR2	Timer2 Peri	od Register							1111 1111	112
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	111
SSPBUF	SSP Receiv	e Buffer/Tran	smit Register	ſ		•	•		xxxx xxxx	125
SSPADD	SSP Addres	ss Register in	I ² C Slave me	ode. SSP Bau	ud Rate Reloa	ad Register ir	I ² C Master	mode.	0000 0000	134
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	126
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	127
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	137
ADRESH	A/D Result	Register High	Byte	•	•	•	•	•	xxxx xxxx	187,188
ADRESL	A/D Result	Register Low	Byte						xxxx xxxx	187,188
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON	0000 00-0	181
ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	182
CCPR1H	Capture/Co	mpare/PWM	Register1 Hig	h Byte		•	•		xxxx xxxx	121, 123
CCPR1L	Capture/Co	mpare/PWM	Register1 Lov	w Byte					xxxx xxxx	121, 123
CCP1CON			DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	117
CCPR2H	Capture/Co	mpare/PWM	Register2 Hig	gh Byte		•	•		xxxx xxxx	121, 123
CCPR2L	Capture/Co	mpare/PWM	Register2 Lov	w Byte					xxxx xxxx	121, 123
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	117
TMR3H	Timer3 Reg	ister High Byt	e						xxxx xxxx	113
TMR3L	Timer3 Reg	ister Low Byte	e						xxxx xxxx	113
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	113
SPBRG	USART1 Ba	aud Rate Gen	erator	•		•	•		0000 0000	168
RCREG	USART1 Re	eceive Regist	ər						0000 0000	175, 178, 180
TXREG	USART1 Transmit Register								0000 0000	173, 176, 179
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	166
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	167
EEADR	Data EEPR	OM Address	Register		•			•	0000 0000	65, 69
EEDATA	Data EEPR	OM Data Reg	ister						0000 0000	69
EECON2	Data EEPR	OM Control R	legister 2 (no	t a physical re	egister)					65, 69
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	66

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator modes. 2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers and bits are reserved on the PIC18F2X2 devices; always maintain these clear.

5.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

5.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit EEPGD determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

Control bit CFGS determines if the access will be to the configuration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on configuration registers, regardless of EEPGD (see "Special Features of the CPU", Section 19.0). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, will allow a program memory erase operation. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), due to RESET values of zero.

Control bit WR initiates write operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

Note: Interrupt flag bit EEIF, in the PIR2 register, is set when the write is complete. It must be cleared in software.

	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—			EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF			
	bit 7							bit 0			
bit 7-5	Unimplemented: Read as '0'										
bit 4	EEIF: Data	a EEPROM/F	LASH Write	Operation Int	terrupt Flag	bit					
		rite operation									
		rite operation	•		ot been sta	rted					
bit 3		s Collision In			.						
		collision occu collision occ	•	e cleared in s	software)						
bit 2		w Voltage De		Elog bit							
		/oltage condi		•	eared in soft	ware)					
		vice voltage									
bit 1	TMR3IF: T	MR3 Overflo	w Interrupt F	lag bit	-	-					
	1 = TMR3	register over	lowed (must	be cleared in	n software)						
	0 = TMR3	register did n	ot overflow								
bit 0	CCP2IF: C	CPx Interrup	t Flag bit								
	Capture m										
		1 register ca			leared in so	oftware)					
		R1 register c	apture occur	red							
	$\frac{\text{Compare r}}{1 - \Lambda \text{TMB}}$		mnare match	occurred (m	ust ha claa	rad in coft	ware)				
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred 										
	PWM mod	•									
	Unused in	this mode									
	Legend:										

W = Writable bit

'1' = Bit is set

REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R = Readable bit

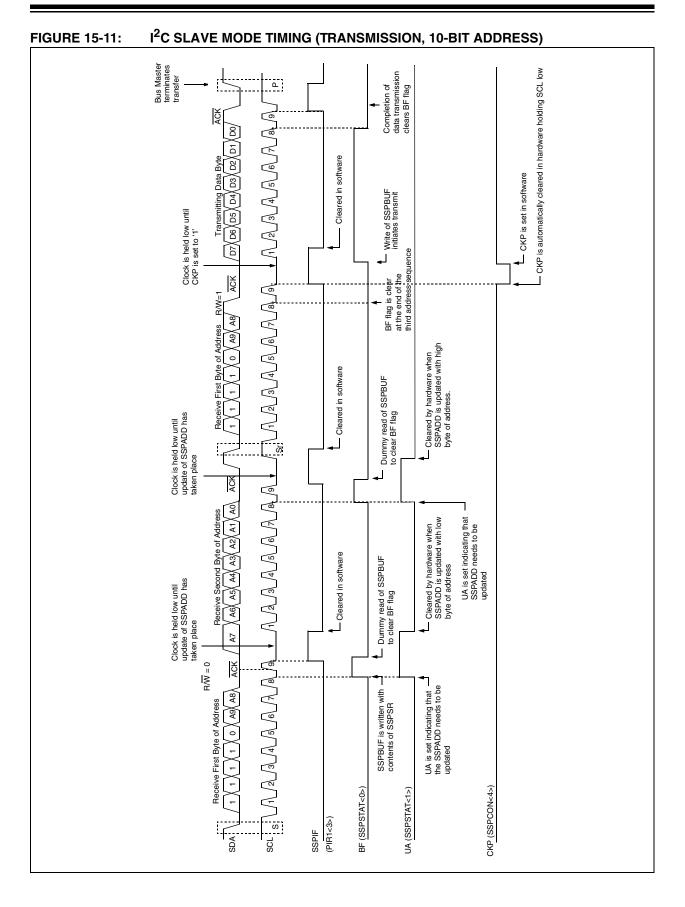
- n = Value at POR

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

TABLE 9-1: PORTA FUNCTIONS


Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 9-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

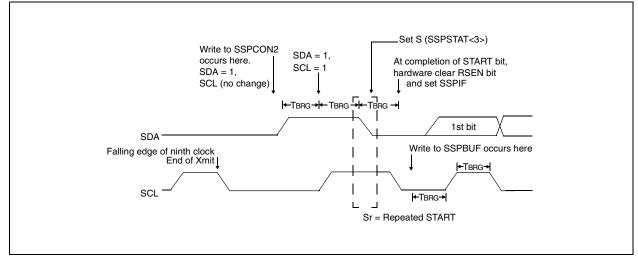
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTA		RA6	RA5	RA4	RA3	RA2	RA1	RA0	-x0x 0000	-u0u 0000
LATA		LATA Dat	a Output F	legister					-xxx xxxx	-uuu uuuu
TRISA	_	PORTA D	ata Directi	on Registe	er			-111 1111	-111 1111	
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

15.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

15.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 15-20: REPEAT START CONDITION WAVEFORM

16.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 16-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 16-1. From this, the error in baud rate can be determined. Example 16-1 shows the calculation of the baud rate error for the following conditions:

- Fosc = 16 MHz
- Desired Baud Rate = 9600
- BRGH = 0
- SYNC = 0

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

16.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

Desired Baud Rate	= Fosc / (64 (X + 1))
Solving for X:	
X X X	= ((Fosc / Desired Baud Rate) / 64) - 1 = ((16000000 / 9600) / 64) - 1 = [25.042] = 25
Calculated Baud Rate	= 1600000 / (64 (25 + 1)) = 9615
Error	 <u>(Calculated Baud Rate – Desired Baud Rate)</u> Desired Baud Rate (9615 – 9600) / 9600 0.16%

TABLE 16-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = FOSC/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

Legend: X = value in SPBRG (0 to 255)

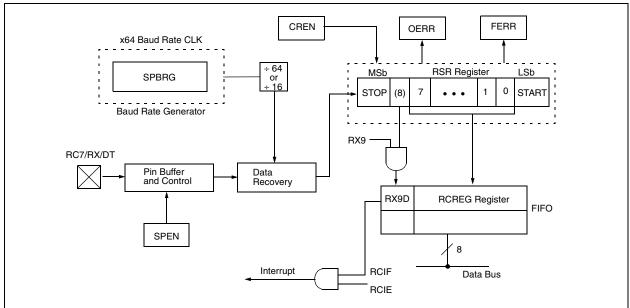
TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x00- 0000	0000 -00x
SPBRG	Baud Ra	te Genera	ator Regis	ster					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

16.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 16-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 16.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

16.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is required, set the BRGH bit.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 16-4: USART RECEIVE BLOCK DIAGRAM

BTG	Bit Toggl	e f							
Syntax:	[<i>label</i>] B	[label] BTG f,b[,a]							
Operands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	• = • = ·							
Operation:	$(\overline{f} < b >) \to f$								
Status Affected:	None								
Encoding:	0111	bbba	ffff	ffff					
Description:	Bit 'b' in da inverted. I will be sel value. If 'a selected a (default).	f 'a' is 0, t ected, ove t' = 1, thei	he Acces erriding the ban	ss Bank he BSR ik will be					
Words:	1	1							
Cycles:	1	1							
Q Cycle Activity:									
Q1	Q2	Q3	(Q4					
Decode	Read register 'f'	Process Data		/rite ster 'f'					
Example:	BTG I	PORTC,	4, 0						
Before Instru PORTC		0101 [0x7	5]						
After Instruc PORTC	tion: = 0110 (0101 [0x6	5]						

Syntax:		[<i>label</i>] B	[<i>label</i>] BOV n				
-	rands:	-128 ≤ n ≤	127				
Operation:			if overflow bit is '1' (PC) + 2 + 2n \rightarrow PC				
Statu	us Affected:	None					
Enco	oding:	1110	0100	nnnn	nnnn		
Description:		program v The 2's co added to t have incre instruction PC+2+2n.	If the Overflow bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.				
Wor	ds:	1					
Cycl	es:	1(2)					
	Cycle Activity	_	00		04		
	Q1 Decode	Q2 Read literal	Q3 Process		Q4 Vrite to PC		
	Decode	'n'	Data		while to r C		
	No operation	No operation	No operation		No operation		
lf N	o Jump:						
lf N	o Jump: Q1	Q2	Q3		Q4		
lf N	-	Q2 Read literal 'n'	Q3 Proces Data	SS	Q4 No operation		
	Q1	Read literal	Proces Data	SS	No		

IORLW	Inclusive	OR lite	ral with	w
Syntax:	[label]	IORLW	k	
Operands:	$0 \le k \le 25$	5		
Operation:	(W) .OR.	$k \to W$		
Status Affected:	N, Z			
Encoding:	0000	1001	kkkk	kkkk
Description:	The conte the eight- placed in	bit literal		•••
Words:	1			
Cycles:	1			
Q Cycle Activity	:			
Q1	Q2	Q3	3	Q4
Decode	Read literal 'k'	Proce Data		ite to W
Example:	IORLW	0x35		
Before Instru	uction			
W	= 0x9A			
After Instruc	tion			
W	= 0xBF			

IORWF	Inclusive	OR W with	f		
Syntax:	[label]	IORWF f[,d [,a]		
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operation:	(W) .OR.	(f) \rightarrow dest			
Status Affected:	N, Z				
Encoding:	0001	00da ff	ff ffff		
	is 1, the re register 'f' Access B riding the the bank	esult is place esult is place (default). If ' ank will be se BSR value. I will be selecte e (default).	d back in a' is 0, the elected, ove f 'a' = 1, ther		
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		
<u>Example</u> :	IORWF R	ESULT, 0, 1	L		
Before Instru RESULT					

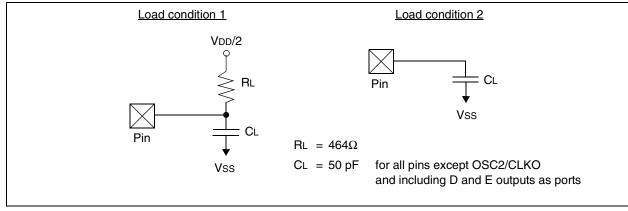
Delote instruction					
RESULT	=	0x13			
W	=	0x91			
After Instruction					
DECULT	_	0v12			

RESULT	=	0x13
W	=	0x93

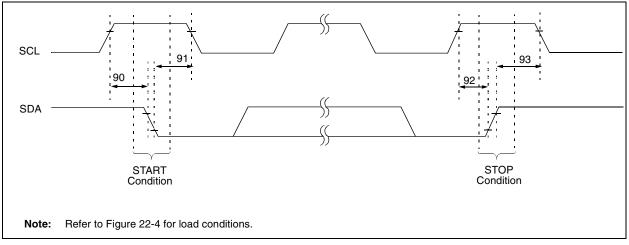
SLEEP	Enter SL	EEP mode		SUBFWB	Subtrac	t f from W w	ith borrow
Syntax:	[label]	SLEEP		Syntax:	[label]	SUBFWB	f [,d [,a]
Operands:	None	None		Operands:		$0 \le f \le 255$	
Operation:	$00h \rightarrow W$				d ∈ [0,1]		
		T postscaler,		Operation	a ∈ [0,1]		.+
	$1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD}$			Operation:		$-(\overline{C}) \rightarrow des$	il
Status Affected:	TO, PD			Status Affecte	· ·	<u>г</u>	
Encoding:	0000	0000 000	00 0011	Encoding:	0101		ff ffff
Description:		er-down statu		Description:		register 'f' an from W (2's o	
Description.		The time-out				If 'd' is 0, the	
		et. Watchdog				W. If 'd' is 1,	
		aler are clea essor is put i					efault). If 'a' is II be selected,
		the oscillate					lue. If 'a' is 1,
Words:	1					bank will be s	
Cycles:	1				-	SR value (de	etault).
Q Cycle Activity:				Words:	1		
Q1	Q2	Q3	Q4	Cycles:	1		
Decode	No	Process	Go to	Q Cycle Acti	-	0.0	<i></i>
	operation	Data	sleep	Q1 Decode	Q2 Read	Q3 Process	Q4 Write to
Example:	SLEEP			Decou	register 'f'	Data	destination
Before Instru				Example 1:	SUBFWB	REG, 1,	0
<u>TO</u> = PD =	?				struction		
PD = After Instruct	-			REG			
$\frac{\overline{TO}}{\overline{PD}} = PD =$	1†			W C	= 2 = 1		
PD =	0			After Ins	-		
† If WDT causes	s wake-up, tl	his bit is clea	red.	REG			
				W C	= 2 = 0		
				Z	= 0 = 1 : re	esult is negativ	/e
				Example 2:	SUBFWB	REG, 0,	
				Before Ir	struction		
				REG			
				W C	= 5 = 1		
				After Ins			
				REG W	= 2 = 3		
				С	= 1		
				Z N	= 0 = 0 ; re	esult is positiv	е
				Example 3:	SUBFWB	REG, 1,	0
					struction		
				REG	= 1		

W 2 = С = 0 After Instruction REG = 0 W = 2 C Z N = = 1 1 ; result is zero ò =

XORWF	Exclusive	e OR W v	vith f				
Syntax:	[label])	[label] XORWF f[,d[,a]					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Operation:	(W) .XOR	. (f) \rightarrow de	st				
Status Affected	l: N, Z						
Encoding:	0001	10da	ffff	ffff			
Description:	Exclusive with regist is stored in stored bac (default). Bank will I the BSR v bank will b BSR value	ter 'f'. If 'c n W. If 'd' ck in the i If 'a' is 0 be select value. If 'a be selected	I' is 0, th is 1, the register 0, the Ac ed, over a' is 1, th ed as pe	e result result is ff cess riding en the			
Words:	1						
Cycles:	1						
Q Cycle Activi	ty:						
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proces Data		/rite to stination			
Example:	XORWF	REG, 1,	0				
Before Ins REG W	truction = 0xAF = 0xB5						
After Instru REG W	uction = 0x1A = 0xB5						

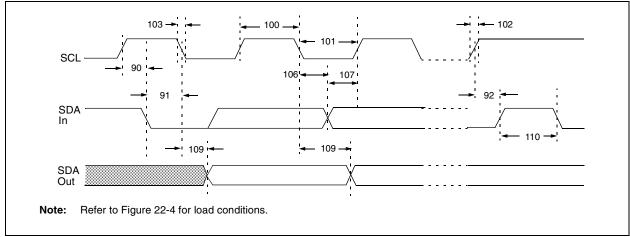

22.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 22-3 apply to all timing specifications unless otherwise noted. Figure 22-4 specifies the load conditions for the timing specifications.

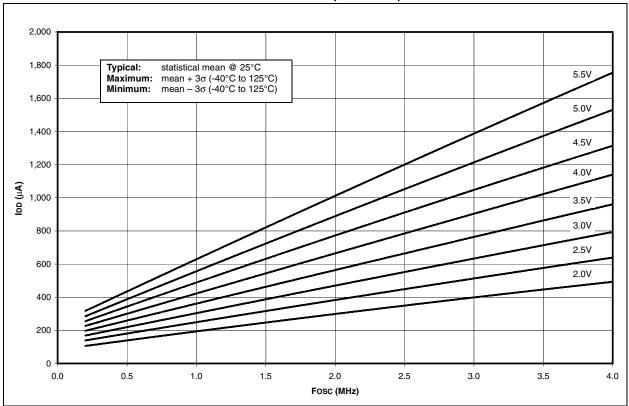
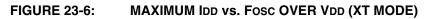
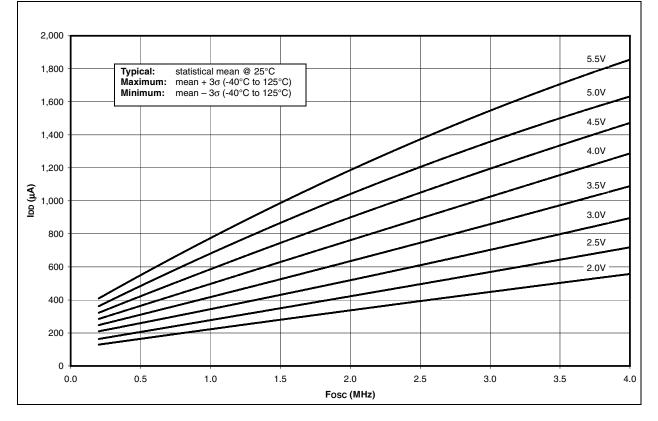

TABLE 22-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

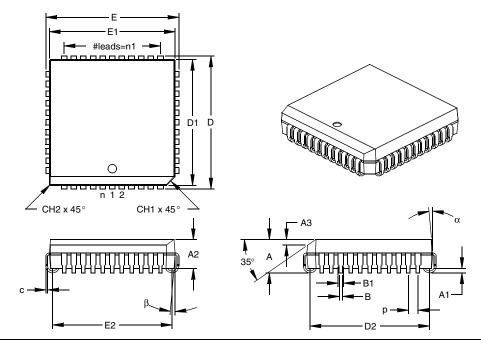
	Standard Operating Conditions (unless otherwise stated)
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial
AC CHARACTERISTICS	-40°C \leq TA \leq +125°C for extended
	Operating voltage VDD range as described in DC spec Section 22.1 and
	Section 22.2.
	LC parts operate for industrial temperatures only.

FIGURE 22-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS



Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	—	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	—		START condition
91	THD:STA	START condition	100 kHz mode	4000	—	ns	After this period, the first
		Hold time	400 kHz mode	600	—		clock pulse is generated
92	TSU:STO	STOP condition	100 kHz mode	4700	—	ns	
		Setup time	400 kHz mode	600	_		
93	THD:STO	STOP condition	100 kHz mode	4000	_	ns	
		Hold time	400 kHz mode	600	—		


FIGURE 23-5: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		MILLIMETERS		
Dimension	Dimension Limits			MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width B		.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-048

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	Ild you like a reply?YN	
Dev	ice: PIC18FXX2	Literature Number: DS39564C
Que	stions:	
1.	What are the best features of this do	ocument?
2.	How does this document meet your	hardware and software development needs?
•		
•		
3.	Do you find the organization of this c	document easy to follow? If not, why?
4.	What additions to the document do	you think would enhance the structure and subject?
5.	What deletions from the document c	ould be made without affecting the overall usefulness?
-		
-		
6.	Is there any incorrect or misleading i	information (what and where)?
7.	How would you improve this docume	ent?
•		
-		