

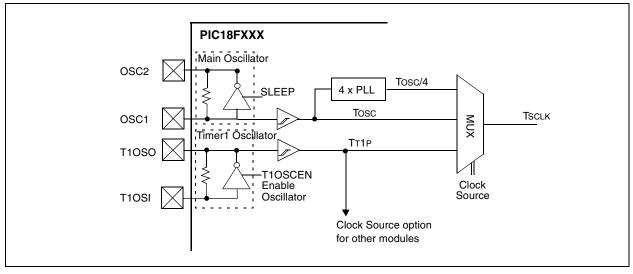
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf452-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 Oscillator Switching Feature

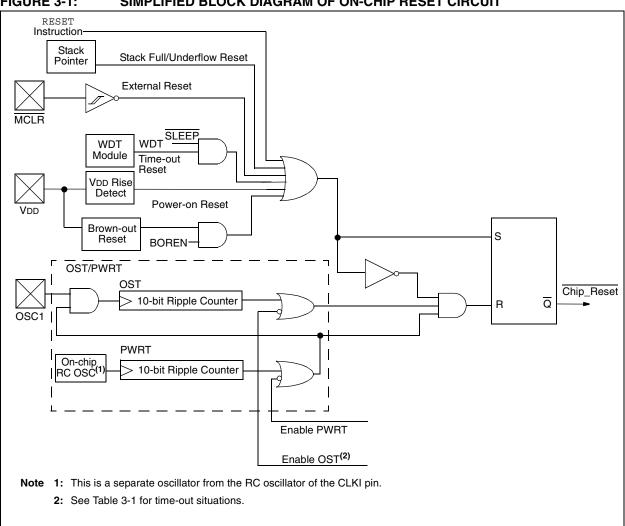
The PIC18FXX2 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low frequency clock source. For the PIC18FXX2 devices, this alternate clock source is the Timer1 oscillator. If a low frequency crystal (32 kHz, for example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has been enabled, the device can switch to a Low Power Execution mode. Figure 2-7 shows a block diagram of the system clock sources. The clock switching feature is enabled <u>by programming the Oscillator Switching</u> Enable (OSCSEN) bit in Configuration Register1H to a '0'. Clock switching is disabled in an erased device. See Section 11.0 for further details of the Timer1 oscillator. See Section 19.0 for Configuration Register details.

FIGURE 2-7: DEVICE CLOCK SOURCES

3.0 RESET

The PIC18FXXX differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- C) MCLR Reset during SLEEP
- Watchdog Timer (WDT) Reset (during normal d) operation)
- e) Programmable Brown-out Reset (BOR)
- f) **RESET** Instruction
- g) Stack Full Reset
- Stack Underflow Reset h)


Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP and by the RESET instruction.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

The MCLR pin is not driven low by any internal RESETS, including the WDT.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

TABLE 3-3:		IIIALI				L REGISTERS (CONTI	NUED)
Register	Арр	olicabl	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt
FSR1H	242	442	252	452	xxxx	uuuu	uuuu
FSR1L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
BSR	242	442	252	452	0000	0000	uuuu
INDF2	242	442	252	452	N/A	N/A	N/A
POSTINC2	242	442	252	452	N/A	N/A	N/A
POSTDEC2	242	442	252	452	N/A	N/A	N/A
PREINC2	242	442	252	452	N/A	N/A	N/A
PLUSW2	242	442	252	452	N/A	N/A	N/A
FSR2H	242	442	252	452	xxxx	uuuu	uuuu
FSR2L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
STATUS	242	442	252	452	x xxxx	u uuuu	u uuuu
TMR0H	242	442	252	452	0000 0000	uuuu uuuu	uuuu uuuu
TMR0L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
T0CON	242	442	252	452	1111 1111	1111 1111	uuuu uuuu
OSCCON	242	442	252	452	0	0	u
LVDCON	242	442	252	452	00 0101	00 0101	uu uuuu
WDTCON	242	442	252	452	0	0	u
RCON ⁽⁴⁾	242	442	252	452	0q 11qq	0q qquu	uu qquu
TMR1H	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	242	442	252	452	0-00 0000	u-uu uuuu	u-uu uuuu
TMR2	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
PR2	242	442	252	452	1111 1111	1111 1111	1111 1111
T2CON	242	442	252	452	-000 0000	-000 0000	-uuu uuuu
SSPBUF	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPADD	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
SSPCON1	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
SSPCON2	242	442	252	452	0000 0000	0000 0000	uuuu uuuu

 TABLE 3-3:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

- Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
 - 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
 - **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
 - 4: See Table 3-2 for RESET value for specific condition.
 - 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.
 - 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

5.2.2 TABLAT - TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch is used to hold 8-bit data during data transfers between program memory and data RAM.

5.2.3 TBLPTR - TABLE POINTER REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The table pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 5-1. These operations on the TBLPTR only affect the low order 21 bits.

5.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes, and erases of the FLASH program memory.

When a TBLRD is executed, all 22 bits of the Table Pointer determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the three LSbs of the Table Pointer (TBLPTR<2:0>) determine which of the eight program memory holding registers is written to. When the timed write to program memory (long write) begins, the 19 MSbs of the Table Pointer, TBLPTR (TBLPTR<21:3>), will determine which program memory block of 8 bytes is written to. For more detail, see Section 5.5 ("Writing to FLASH Program Memory").

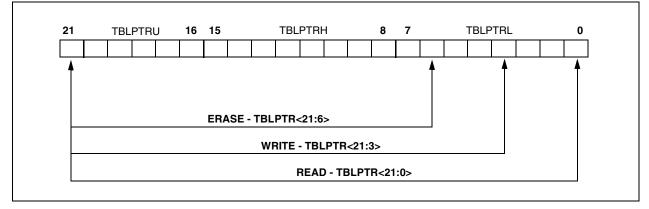

When an erase of program memory is executed, the 16 MSbs of the Table Pointer (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 5-3 describes the relevant boundaries of TBLPTR based on FLASH program memory operations.

TABLE 5-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 5-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

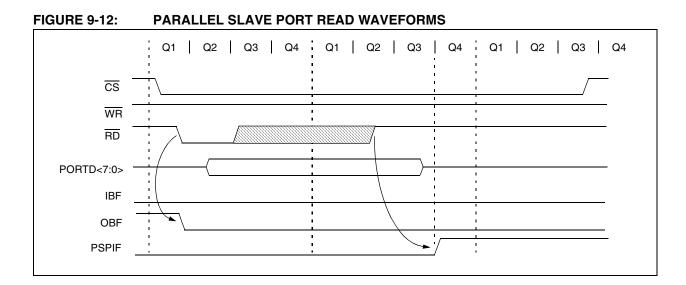


TABLE 9-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTD	Port Data	Latch whe	en written; F	Port pins wher	read				xxxx xxxx	uuuu uuuu
LATD	LATD Data	a Output b	its						xxxx xxxx	uuuu uuuu
TRISD	PORTD D	ata Directi	on bits						1111 1111	1111 1111
PORTE	_	_	_	—	_	RE2	RE1	RE0	000	000
LATE	_	_	_	_	_	LATE Data	a Output bits	5	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE D	ata Direction	n bits	0000 -111	0000 -111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IF	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0L register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, x....etc.) will clear the prescaler count.

Note:	Writing to TMR0L when the prescaler is
	assigned to Timer0 will clear the prescaler
	count, but will not change the prescaler
	assignment.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, (i.e., it can be changed "on-the-fly" during program execution).

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IE bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

10.4 16-Bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (refer to Figure 10-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16-bits of Timer0 without having to verify that the read of the high and low byte were valid due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16-bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
TMR0L	Timer0 Modu	ule Low Byte F	Register						xxxx xxxx	uuuu uuuu
TMR0H	Timer0 Modu	ule High Byte I	Register						0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	_	PORTA Data	Direction F	Register					-111 1111	-111 1111

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

13.2 Timer1 Oscillator

The Timer1 oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. The oscillator is a low power oscillator rated up to 200 KHz. See Section 11.0 for further details.

13.3 Timer3 Interrupt

The TMR3 Register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled/disabled by setting/clearing TMR3 interrupt enable bit, TMR3IE (PIE2<1>).

13.4 Resetting Timer3 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer3.

Note:	The special event triggers from the CCP
	module will not set interrupt flag bit,
	TMR3IF (PIR1<0>).

Timer3 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer3 is running in Asynchronous Counter mode, this RESET operation may not work. In the event that a write to Timer3 coincides with a special event trigger from CCP1, the write will take precedence. In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer3.

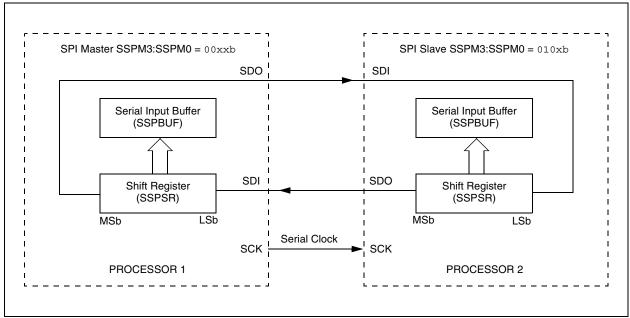
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR2	—	_	_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	0 0000	0 0000
PIE2	—	_	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	0 0000	0 0000
IPR2	_	-	-	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	1 1111	1 1111
TMR3L	Holding F	ding Register for the Least Significant Byte of the 16-bit TMR3 Register xxxx xxxx uuuu uuuu								
TMR3H	Holding F	ding Register for the Most Significant Byte of the 16-bit TMR3 Register xxxx xxxx uuuu uuuu								
T1CON	RD16		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	u-uu uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

15.3.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON registers, and then set the SSPEN bit. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:


- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISC<4> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

15.3.4 TYPICAL CONNECTION

Figure 15-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 15-2: SPI MASTER/SLAVE CONNECTION

PIC18FXX2

15.4.4 CLOCK STRETCHING

Both 7- and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

15.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 15-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software, regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence, in order to prevent an overflow condition.

15.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address, and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs, and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

15.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs, regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 15-9).

Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
2: The CKP bit can be set in software, regardless of the state of the BF bit.

15.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode, and clock stretching is controlled by the BF flag, as in 7-bit Slave Transmit mode (see Figure 15-11).

15.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the buffer full flag bit, BF, and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 15-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

15.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

15.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

15.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge (ACK = 0), and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call) or when the slave has properly received its data.

15.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note: In the MSSP module, the RCEN bit must be set after the ACK sequence or the RCEN bit will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the baud rate generator is suspended from counting, holding SCL low. The MSSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>).

15.4.11.1 BF Status Flag

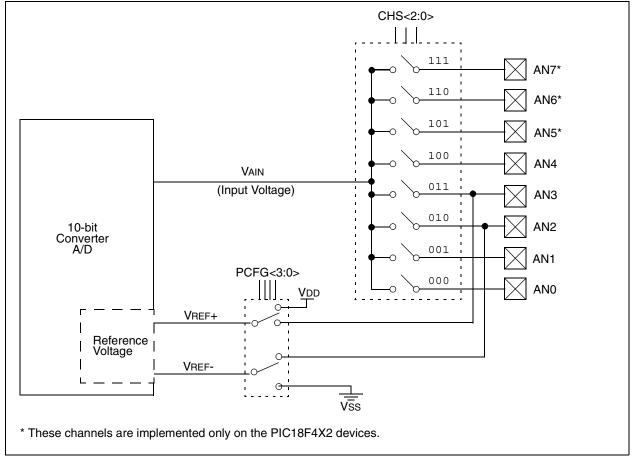
In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

15.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

15.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur). The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF- pin.


The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit, ADIF is set. The block diagram of the A/D module is shown in Figure 17-1.

FIGURE 17-1: A/D BLOCK DIAGRAM

Byte-oriented file register operations Example Instruction 15 10 9 8 7 0 OPCODE d a f (FILE #) ADDWF MYREG, W, B	
OPCODE d a f (FILE #) ADDWF MYREG, W, B	
d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address	
Byte to Byte move operations (2-word)	
15 12 11 0 OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2 15 12 11 0 1111 f (Destination FILE #) f = 12-bit file register address	
Bit-oriented file register operations	
15 12 11 9 8 7 0 OPCODE b (BIT #) a f (FILE #) BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address f BSF MYREG, bit, B	
Literal operations	
15 8 7 0 OPCODE k (literal) MOVLW 0x7F k = 8-bit immediate value K	
Control operations	
CALL, GOTO and Branch operations	
15 8 7 0 OPCODE n<7:0> (literal) GOTO Label 15 12 11 0 1111 n<19:8> (literal) 1111	
n = 20-bit immediate value	
15 8 7 0 OPCODE S n<7:0> (literal) CALL MYFUNC 15 12 11 0 n<19:8> (literal) S = Fast bit	
15 11 10 0 OPCODE n<10:0> (literal) BRA MYFUNC	
15 8 7 0 OPCODE n<7:0> (literal) BC MYFUNC	

PIC18FXX2

BTF	sc	Bit Test Fi	le, Skip if Cle	ear	BT	FSS	Bit Test F	ile, Skip if Se	ŧ
Synt	ax:	[label] B	FSC f,b[,a]		Syr	itax:	[label] B	TFSS f,b[,a]	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Оре	erands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]		
Ope	ration:	skip if (f <b< td=""><td>>) = 0</td><td></td><td>Ope</td><td>eration:</td><td>skip if (f<b< td=""><td>>) = 1</td><td></td></b<></td></b<>	>) = 0		Ope	eration:	skip if (f <b< td=""><td>>) = 1</td><td></td></b<>	>) = 1	
Statu	us Affected:	None			Sta	tus Affected:	None		
Enco	oding:	1011	bbba ff	ff ffff	Enc	oding:	1010	bbba ff	ff
Desc	cription:	next instruct If bit 'b' is C fetched du execution i cycle instruct Access Ba riding the E	egister 'f' is 0 ction is skippe), then the nex ring the current s discarded, a nstead, makin uction. If 'a' is nk will be sele 3SR value. If 'ill be selected (default).	ed. At instruction and a NOP is ag this a two- 0, the ected, over- a' = 1, then	De	scription:	next instru If bit 'b' is f fetched du tion execu NOP is exe a two-cycle Access Ba riding the I	register 'f' is 1 ction is skippe I, then the ner ring the curre tion, is discare cuted instead e instruction. I nk will be sele 3SR value. If <i>i</i> II be selected (default).	ed. xt i ded , m If 'a ect 'a'
Wor	ds:	1			Wo	rds:	1		
Cycl	es:		ycles if skip a a 2-word inst		Сус	cles:		cycles if skip a a 2-word ins	
QC	ycle Activity:				Q	Cycle Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	-
	Decode	Read register 'f'	Process Data	No operation		Decode	Read register 'f'	Process Data	(
lf sk	kip:				lf s	skip:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	(
lf sk	ip and follow	-			lf s	kip and follow	ed by 2-word	d instruction:	
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	-
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	
	No operation	No operation	No operation	No operation		No	No	No operation	
	<u>nple</u> : Before Instru PC	FALSE : TRUE : ction	IFSC FLAG	, 1, 0	<u>Exa</u>	umple: Before Instru PC	FALSE : TRUE :	TFSS FLAG dress (here)	,
	After Instruct If FLAG< PC If FLAG< PC	1> = 0; = ado 1> = 1;	iress (true)			After Instruct If FLAG< PC If FLAG< PC	ion 1> = 0; = ado 1> = 1;	dress (FALSE) dress (TRUE))

		a ∈ [0,1]			
per	ation:	skip if (f <t< td=""><td>) = 1</td><td></td><td></td></t<>) = 1		
tatu	s Affected:	None			
nco	ding:	1010	bbba	ffff	ffff
esc	ription:	If bit 'b' in next instru If bit 'b' is fetched du tion execu NOP is exe a two-cycl Access Ba riding the the bank v BSR value	uction is s 1, then th uring the o ttion, is di ecuted ins e instruct ank will be BSR valu will be sel	kipped. e next ins current in scarded a tead, ma ion. If 'a' e selected e. If 'a' = ected as	struction struc- and a king this is 0, the d, over- 1, then
/orc	ls:	1			
ycle	es:		cycles if a y a 2-wor		
C	ycle Activity:				
r	Q1	Q2	Q3		Q4
	Decode	Read register 'f'	Process		No eration
fsk	ip:				
	Q1	Q2	Q3		Q4
	No operation	No operation	No operati	ion op	No eration
f sk	ip and follow	ed by 2-wor	d instruct	ion:	
_	Q1	Q2	Q3		Q4
	No operation	No operation	No operati	on op	No eration
	No operation	No operation	No operati	on op	No eration
xan	<u>nple</u> :	HERE H FALSE : TRUE :	:	FLAG, 1,	. 0
I	Before Instruction		dress (HI	ERE)	

TABLE 21-1: DEVELOPMENT TOOLS FROM MICROCHIP

MPLAB® Cite Complete MPLAB® Cite Complete Not Magated	N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
WPLAB® C17 C Compiler I	I I
MPLAB [®] C16 Compiler I	Image:
MFARM ^M Assembler/ MPLUN ^{C^M Object Linker I}	I I I I I N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
MPLAB [®] ICE In-Circuit Emulator × <	Image: Constraint of the sector of the se
ICEPIC ^{III} In-Circuit Emulator · <t< th=""><th>Image: Constraint of the sector of the se</th></t<>	Image: Constraint of the sector of the se
MPLAB® ICD In-Circuit ** ** ** ** * <th>. <</th> <
PICSTART® Plus Entry Level <th< th=""><th>· · · ·</th></th<>	· · · ·
PRO MATE® II V <t< th=""><th>> > > <t< th=""></t<></th></t<>	> > <t< th=""></t<>
PICDEMTM 1 Demonstration <	×+ ×
PICDEMTW 2 Demonstration 	
PICDEMTW 3 Demonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration PICDEMTW 14 Demonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration PICDEMTW 17 Demonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration RestLou® Transponder Kit Netical Submonstration Netical Submonstration Vertical Submonstration 125 kHz microIDTW Vertical Submonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration 125 kHz microIDTW Vertical Submonstration Vertical Submonstration Vertical Submonstration Vertical Submonstration	
PICDEM TM 14A Demonstration Board PICDEM TM 17 Demonstration Board KEELoo [®] Evaluation Kit KEELoa [®] Transponder Kit microlD TM Programmer's Kit 125 KHz microlD TM	
125 kHz Anticollision microID TM Developer's Kit	
13.56 MHz Anticollision microID TM Developer's Kit	
MCP2510 CAN Developer's Kit	

© 2006 Microchip Technology Inc.

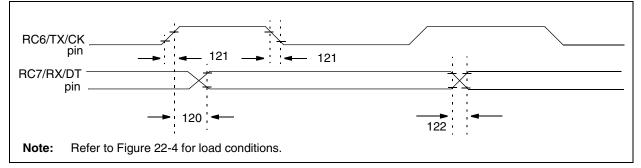

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	PIC18FXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	PIC18FXXX must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	-	μs	PIC18FXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	-	μs	PIC18FXXX must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	_		
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall	100 kHz mode	—	1000	ns	$V_{DD} \ge 4.2V$
		time	400 kHz mode	20 + 0.1 CB	300	ns	$VDD \ge 4.2V$
90	Tsu:sta	START condition setup time	100 kHz mode	4.7	—	μs	Only relevant for Repeated
			400 kHz mode	0.6	_	μs	START condition
91	THD:STA	START condition hold time	100 kHz mode	4.0	—	μs	After this period, the first clock
			400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	SU:DAT Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	STOP condition setup time	100 kHz mode	4.7	—	μs	
			400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from clock	100 kHz mode	_	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
D102	Св	Bus capacitive loading			400	pF	

TABLE 22-16: I²C BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement TSU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.

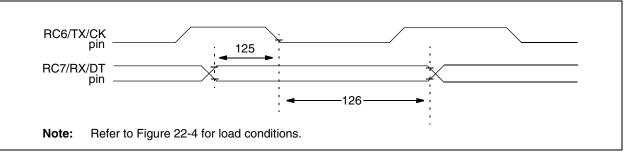
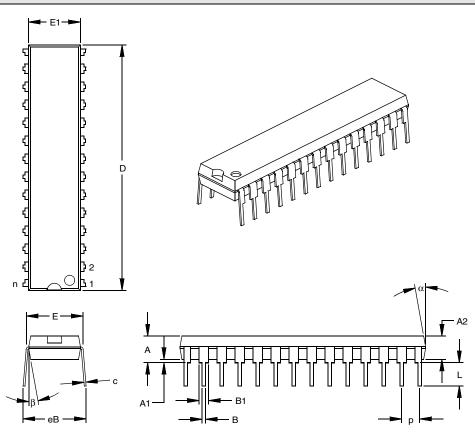

FIGURE 22-20: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 22-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
120	TckH2dtV	<u>SYNC XMIT (MASTER & SLAVE)</u> Clock high to data out valid	PIC18 F XXX	_	50	ns	
			PIC18LFXXX		150	ns	VDD = 2V
121	121 Tckr Clock out rise time and fall tin		PIC18FXXX	_	25	ns	
		(Master mode)	PIC18LFXXX	—	60	ns	VDD = 2V
122	Tdtr	Data out rise time and fall time	PIC18FXXX		25	ns	
			PIC18 LF XXX		60	ns	VDD = 2V

FIGURE 22-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 22-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS


Param. No.	Symbol	Characteristic			Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK \downarrow (DT hold time)				ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	PIC18FXXX	15		ns	
			PIC18LFXXX	20		ns	VDD = 2V

24.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil Body (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES*			MILLIMETERS			
Dimer	ision Limits	MIN	NOM	MAX	MIN	NOM	MAX			
Number of Pins	n		28			28				
Pitch	р		.100			2.54				
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06			
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43			
Base to Seating Plane	A1	.015			0.38					
Shoulder to Shoulder Width		.300	.310	.325	7.62	7.87	8.26			
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49			
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18			
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43			
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38			
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65			
Lower Lead Width B		.016	.019	.022	0.41	0.48	0.56			
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92			
Mold Draft Angle Top α		5	10	15	5	10	15			
Mold Draft Angle Bottom β		5	10	15	5	10	15			

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

PIC18FXX2

I

1
I/O Ports
I ² C (MSSP Module)
ACK Pulse
Read/Write Bit Information (R/W Bit)
I ² C (<u>SSP</u> Module)
ACK Pulse
I ² C Master Mode Reception
I ² C Mode
Clock Stretching
I ² C Mode (MSSP Module)
Registers
I ² C Module
ACK Pulse 138, 139
Acknowledge Sequence Timing158
Baud Rate Generator
Bus Collision
Repeated START Condition162
START Condition160
Clock Arbitration 152
Effect of a RESET 159
General Call Address Support
Master Mode
Operation150
Repeated START Condition Timing 154
Master Mode START Condition
Master Mode Transmission 155
Multi-Master Communication, Bus Collision
and Arbitration
Multi-Master Mode
Operation
Read/Write Bit Information (R/W Bit)
Serial Clock (RC3/SCK/SCL)
Slave Mode
Addressing138
Reception
Transmission
Slave Mode Timing (10-bit Reception,
SEN = 0)142
Slave Mode Timing (10-bit Reception,
SEN = 1)
Slave Mode Timing (10-bit Transmission)
Slave Mode Timing (7-bit Reception,
SEN = 0)
Slave Mode Timing (7-bit Reception,
SEN = 1)146
Slave Mode Timing (7-bit Transmission)
SLEEP Operation159
STOP Condition Timing158
ICEPIC In-Circuit Emulator
ID Locations
,
INCF
INCFSZ
In-Circuit Debugger210
In-Circuit Serial Programming (ICSP) 195, 210
Indirect Addressing
INDF and FSR Registers
Indirect Addressing Operation
Indirect File Operand
INFSNZ
Instruction Cycle
Instruction Flow/Pipelining40
Instruction Format

Instruction Set	 211
ADDLW	
ADDWF	 217
ADDWFC	218
ANDLW	 218
ANDWF	219
	-
BC	 219
BCF	220
BN	
BNC	 221
BNN	
BNOV	 222
BNZ	იიი
BOV	 225
BRA	223
	-
BSF	 223
BTFSC	224
BTFSS	
BTG	 225
BZ	
CALL	 226
CLRF	227
CLRWDT	 227
COMF	228
	-
CPFSEQ	 228
CPFSGT	229
CPFSLT	 229
DAW	 230
DCFSNZ	
DECF	 230
DECFSZ	221
GOTO	 232
INCF	232
	-
INCFSZ	
INFSNZ	 233
IORLW	234
IORWF	
LFSR	 235
MOVF	235
-	
MOVFF	
MOVLB	 236
MOVLW	
-	-
MOVWF	 237
MULLW	228
MULWF	
NEGF	239
NOP	 239
POP	 240
PUSH	040
RCALL	 241
RESET	241
RETFIE	
RETLW	 242
RETURN	
RLCF	 243
RLNCF	244
RRCF	
RRNCF	 245
SETF	
SLEEP	 246
SUBFWB	 246
SUBLW	
SUBWF	 247
SUBWFB	
SWAPF	 248

W

Wake up from CLEED	105 005
Wake-up from SLEEP	195, 205
Using Interrupts	
Watchdog Timer (WDT)	195, 203
Associated Registers	
Control Register	
Postscaler	203, 204
Programming Considerations	
RC Oscillator	
Time-out Period	
WCOL	
WCOL Status Flag	153, 155, 158
WWW, On-Line Support	5

Х

XORLW	251
	201
XOBWE	252
XORWF	252

NOTES: