



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                |
| Number of I/O              | 34                                                                        |
| Program Memory Size        | 32KB (16K x 16)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 256 x 8                                                                   |
| RAM Size                   | 1.5K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                 |
| Data Converters            | A/D 8x10b                                                                 |
| Oscillator Type            | External                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 44-VQFN Exposed Pad                                                       |
| Supplier Device Package    | 44-QFN (8x8)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf452-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| TADLE 1-3. FIGIOLANZ FINOUT I/O DESCRIFTIONS | TABLE 1-3: | PIC18F4X2 PINOUT I/O DESCRIPTIONS |
|----------------------------------------------|------------|-----------------------------------|
|----------------------------------------------|------------|-----------------------------------|

| Din Marra                 | Pi       | in Numb       | ber     | Pin           | Buffer                  | Decerimtica                                                                                                                                                         |
|---------------------------|----------|---------------|---------|---------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | DIP      | PLCC          | TQFP    | Туре          | Туре                    | Description                                                                                                                                                         |
| MCLR/Vpp                  | 1        | 2             | 18      |               |                         | Master Clear (input) or high voltage ICSP programming enable pin.                                                                                                   |
| MCLR                      |          |               |         | I             | ST                      | Master Clear (Reset) input. This pin is an active low RESET to the device.                                                                                          |
| Vpp                       |          |               |         | I             | ST                      | High voltage ICSP programming enable pin.                                                                                                                           |
| NC                        |          |               |         | —             | _                       | These pins should be left unconnected.                                                                                                                              |
| OSC1/CLKI<br>OSC1         | 13       | 14            | 30      | I             | ST                      | Oscillator crystal or external clock input.<br>Oscillator crystal input or external clock source<br>input. ST buffer when configured in RC mode,<br>CMOS otherwise. |
| CLKI                      |          |               |         | I             | CMOS                    | External clock source input. Always associated<br>with pin function OSC1. (See related OSC1/CLKI,<br>OSC2/CLKO pins.)                                               |
| OSC2/CLKO/RA6<br>OSC2     | 14       | 15            | 31      | 0             | _                       | Oscillator crystal or clock output.<br>Oscillator crystal output. Connects to crystal<br>or resonator in Crystal Oscillator mode                                    |
| CLKO                      |          |               |         | 0             | _                       | In RC mode, OSC2 pin outputs CLKO,<br>which has 1/4 the frequency of OSC1 and<br>denotes the instruction cycle rate                                                 |
| RA6                       |          |               |         | I/O           | TTL                     | General Purpose I/O pin.                                                                                                                                            |
|                           |          |               |         |               |                         | PORTA is a bi-directional I/O port.                                                                                                                                 |
| RA0/AN0<br>RA0<br>AN0     | 2        | 3             | 19      | I/O<br>I      | TTL<br>Analog           | Digital I/O.<br>Analog input 0.                                                                                                                                     |
| RA1/AN1<br>RA1<br>AN1     | 3        | 4             | 20      | I/O           | TTL<br>Analog           | Digital I/O.<br>Analog input 1                                                                                                                                      |
| RA2/AN2/VREF-             | 4        | 5             | 21      |               | , maneg                 |                                                                                                                                                                     |
| RA2<br>AN2<br>VREE-       |          |               |         | I/O<br>I      | TTL<br>Analog<br>Analog | Digital I/O.<br>Analog input 2.<br>A/D Beference Voltage (Low) input                                                                                                |
| BA3/AN3/VBEE+             | 5        | 6             | 22      |               | 7 maiog                 | The reference voltage (Low) input.                                                                                                                                  |
| RA3<br>AN3<br>VREF+       | 0        | 0             |         | I/O<br>I<br>I | TTL<br>Analog<br>Analog | Digital I/O.<br>Analog input 3.<br>A/D Reference Voltage (High) input.                                                                                              |
| RA4/T0CKI<br>RA4<br>T0CKI | 6        | 7             | 23      | I/O<br>I      | ST/OD<br>ST             | Digital I/O. Open drain when configured as output.<br>Timer0 external clock input.                                                                                  |
| RA5/AN4/SS/LVDIN<br>RA5   | 7        | 8             | 24      | I/O           | TTL                     | Digital I/O.                                                                                                                                                        |
| AN4<br>SS                 |          |               |         |               | Analog<br>ST<br>Analog  | Analog input 4.<br>SPI Slave Select input.<br>Low Voltage Detect Input                                                                                              |
| RA6                       |          |               |         |               | 7 maiog                 | (See the OSC2/CLKO/RA6 pin.)                                                                                                                                        |
| Legend: TTL = TTL c       | compati  | i<br>ble inpu | t       | 1             |                         | CMOS = CMOS compatible input or output                                                                                                                              |
| ST = Schmit               | tt Trigg | er input      | with CM | IOS lev       | els                     | I = Input                                                                                                                                                           |

O = Output OD = Open Drain (no P diode to VDD)

P = Power

## 2.4 External Clock Input

The EC and ECIO Oscillator modes require an external clock source to be connected to the OSC1 pin. The feedback device between OSC1 and OSC2 is turned off in these modes to save current. There is no oscillator start-up time required after a Power-on Reset or after a recovery from SLEEP mode.

In the EC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-4 shows the pin connections for the EC Oscillator mode.

# FIGURE 2-4: EXTERNAL CLOCK INPUT OPERATION



The ECIO Oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 2-5 shows the pin connections for the ECIO Oscillator mode.

# FIGURE 2-5:

#### OPERATION (ECIO CONFIGURATION)

**EXTERNAL CLOCK INPUT** 



# 2.5 HS/PLL

A Phase Locked Loop circuit is provided as a programmable option for users that want to multiply the frequency of the incoming crystal oscillator signal by 4. For an input clock frequency of 10 MHz, the internal clock frequency will be multiplied to 40 MHz. This is useful for customers who are concerned with EMI due to high frequency crystals.

The PLL can only be enabled when the oscillator configuration bits are programmed for HS mode. If they are programmed for any other mode, the PLL is not enabled and the system clock will come directly from OSC1.

The PLL is one of the modes of the FOSC<2:0> configuration bits. The Oscillator mode is specified during device programming.

A PLL lock timer is used to ensure that the PLL has locked before device execution starts. The PLL lock timer has a time-out that is called TPLL.



# REGISTER 5-1: EECON1 REGISTER (ADDRESS FA6h)

|       | R/W-x                                                                                                                                                                                                                                                                                                                   | R/W-x                                                         | U-0                                                 | R/W-0                                | R/W-x                        | R/W-0        | R/S-0         | R/S-0       |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|------------------------------|--------------|---------------|-------------|--|--|--|--|
|       | EEPGD                                                                                                                                                                                                                                                                                                                   | CFGS                                                          | —                                                   | FREE                                 | WRERR                        | WREN         | WR            | RD          |  |  |  |  |
|       | bit 7                                                                                                                                                                                                                                                                                                                   | -                                                             |                                                     |                                      |                              |              |               | bit 0       |  |  |  |  |
| bit 7 | EEPGD: F<br>1 = Access                                                                                                                                                                                                                                                                                                  | LASH Progr<br>s FLASH Pro                                     | ram or Data<br>ogram mem                            |                                      | √emory Select I              | bit          |               |             |  |  |  |  |
|       | 0 = Access                                                                                                                                                                                                                                                                                                              | s Data EEPF                                                   | ROM memo                                            | ry                                   |                              |              |               |             |  |  |  |  |
| bit 6 | CFGS: FL/                                                                                                                                                                                                                                                                                                               | ASH Progra                                                    | .m/Data EE                                          | or Configura                         | ation Select bit             |              |               |             |  |  |  |  |
|       | 1 = Access<br>0 = Access                                                                                                                                                                                                                                                                                                | ঃ Configurati<br>s FLASH Prc                                  | ion registers<br>ogram or Da                        | ₃<br>ata EEPRO№                      | √ memory                     |              |               |             |  |  |  |  |
| bit 5 | Unimplem                                                                                                                                                                                                                                                                                                                | <b>ented:</b> Rea                                             | d as '0'                                            |                                      |                              |              |               |             |  |  |  |  |
| bit 4 | FREE: FLASH Row Erase Enable bit                                                                                                                                                                                                                                                                                        |                                                               |                                                     |                                      |                              |              |               |             |  |  |  |  |
|       | <ul> <li>1 = Erase the program memory row addressed by TBLPTR on the next WR command<br/>(cleared by completion of erase operation)</li> <li>0 = Perform write only</li> <li>WPERP: ELASH Program/Data EE Error Elag bit</li> </ul>                                                                                     |                                                               |                                                     |                                      |                              |              |               |             |  |  |  |  |
| bit 3 | WRERR: F                                                                                                                                                                                                                                                                                                                | FLASH Prog                                                    | jram/Data E                                         | E Error Flaç                         | y bit                        |              |               |             |  |  |  |  |
|       | <ul> <li>1 = A write operation is prematurely terminated         <ul> <li>(any RESET during self-timed programming in normal operation)</li> <li>= The write operation completed</li> </ul> </li> </ul>                                                                                                                 |                                                               |                                                     |                                      |                              |              |               |             |  |  |  |  |
|       | Note: Wh<br>tra                                                                                                                                                                                                                                                                                                         | hen a WREF<br>acing of the e                                  | R occurs, t<br>error conditi                        | the EEPGD<br>ion.                    | and CFGS bits                | are not cle  | ared. This    | allows      |  |  |  |  |
| bit 2 | WREN: FL                                                                                                                                                                                                                                                                                                                | _ASH Progra                                                   | am/Data EE                                          | Write Enab                           | le bit                       |              |               |             |  |  |  |  |
|       | 1 = Allows<br>0 = Inhibits                                                                                                                                                                                                                                                                                              | write cycles<br>write to the                                  | ;<br>; EEPROM                                       |                                      |                              |              |               |             |  |  |  |  |
| bit 1 | WR: Write                                                                                                                                                                                                                                                                                                               | Control bit                                                   |                                                     |                                      |                              |              |               |             |  |  |  |  |
|       | <ul> <li>1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.<br/>(The operation is self timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)</li> <li>0 = Write cycle to the EEPROM is complete</li> </ul> |                                                               |                                                     |                                      |                              |              |               |             |  |  |  |  |
| bit 0 | RD: Read                                                                                                                                                                                                                                                                                                                | Control bit                                                   |                                                     |                                      |                              |              |               |             |  |  |  |  |
|       | 1 = Initiates<br>(Read f<br>in softv<br>0 = Does n                                                                                                                                                                                                                                                                      | s an EEPRC<br>takes one cy<br>vare. RD bit<br>not initiate ar | )M read<br>/cle. RD is c<br>cannot be s<br>n EEPROM | cleared in ha<br>set when EE<br>read | Irdware. The RE<br>PGD = 1.) | ) bit can or | ıly be set (n | ot cleared) |  |  |  |  |
|       | ·                                                                                                                                                                                                                                                                                                                       |                                                               |                                                     |                                      |                              |              |               |             |  |  |  |  |
|       | Legend:                                                                                                                                                                                                                                                                                                                 |                                                               |                                                     |                                      |                              |              |               |             |  |  |  |  |

W = Writable bit

'1' = Bit is set

R = Readable bit

- n = Value at POR

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

# 11.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

When TMR1CS = 0, Timer1 increments every instruction cycle. When TMR1CS = 1, Timer1 increments on every rising edge of the external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored, and the pins are read as '0'.

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 14.0).



# FIGURE 11-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE



# FIGURE 11-1: TIMER1 BLOCK DIAGRAM

#### 15.4.6.1 I<sup>2</sup>C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the  $I^2C$  bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz  $I^2C$  operation. See Section 15.4.7 ("Baud Rate Generator"), for more detail. A typical transmit sequence would go as follows:

- 1. The user generates a START condition by setting the START enable bit, SEN (SSPCON2<0>).
- SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP Module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- 9. The MSSP Module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a STOP condition by setting the STOP enable bit PEN (SSPCON2<2>).
- 12. Interrupt is generated once the STOP condition is complete.

#### 16.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 16-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 16-1. From this, the error in baud rate can be determined. Example 16-1 shows the calculation of the baud rate error for the following conditions:

- Fosc = 16 MHz
- Desired Baud Rate = 9600
- BRGH = 0
- SYNC = 0

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

#### 16.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

## EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

| Desired Baud Rate    | = $Fosc / (64 (X + 1))$                                                                                                                  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Solving for X:       |                                                                                                                                          |
| X<br>X<br>X          | = ((Fosc / Desired Baud Rate) / 64) - 1<br>= ((16000000 / 9600) / 64) - 1<br>= [25.042] = 25                                             |
| Calculated Baud Rate | = 16000000 / (64 (25 + 1)) = 9615                                                                                                        |
| Error                | <ul> <li><u>(Calculated Baud Rate – Desired Baud Rate)</u><br/>Desired Baud Rate</li> <li>(9615 – 9600) / 9600</li> <li>0.16%</li> </ul> |
|                      |                                                                                                                                          |

#### TABLE 16-1: BAUD RATE FORMULA

| SYNC | BRGH = 0 (Low Speed)                      | BRGH = 1 (High Speed)      |
|------|-------------------------------------------|----------------------------|
| 0    | (Asynchronous) Baud Rate = Fosc/(64(X+1)) | Baud Rate = Fosc/(16(X+1)) |
| 1    | (Synchronous) Baud Rate = FOSC/(4(X+1))   | N/A                        |

Legend: X = value in SPBRG (0 to 255)

#### TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

| Name  | Bit 7   | Bit 6     | Bit 5     | Bit 4     | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on<br>POR, BOR | Value on<br>All Other<br>RESETS |
|-------|---------|-----------|-----------|-----------|-------|-------|-------|-------|----------------------|---------------------------------|
| TXSTA | CSRC    | TX9       | TXEN      | SYNC      |       | BRGH  | TRMT  | TX9D  | 0000 -010            | 0000 -010                       |
| RCSTA | SPEN    | RX9       | SREN      | CREN      | ADDEN | FERR  | OERR  | RX9D  | 0000 -00x            | 0000 -00x                       |
| SPBRG | Baud Ra | te Genera | 0000 0000 | 0000 0000 |       |       |       |       |                      |                                 |

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

# TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

| BAUD           | Fosc = | 40 MHz     | SPBRG              | 33     | MHz        | SPBRG              | 25     | MHz        | SPBRG              | 20     | MHz        | SPBRG              |
|----------------|--------|------------|--------------------|--------|------------|--------------------|--------|------------|--------------------|--------|------------|--------------------|
| RATE<br>(Kbps) | KBAUD  | %<br>ERROR | value<br>(decimal) |
| 0.3            | NA     | -          | -                  |
| 1.2            | NA     | -          | -                  |
| 2.4            | NA     | -          | -                  | 2.40   | -0.07      | 214                | 2.40   | -0.15      | 162                | 2.40   | +0.16      | 129                |
| 9.6            | 9.62   | +0.16      | 64                 | 9.55   | -0.54      | 53                 | 9.53   | -0.76      | 40                 | 9.47   | -1.36      | 32                 |
| 19.2           | 18.94  | -1.36      | 32                 | 19.10  | -0.54      | 26                 | 19.53  | +1.73      | 19                 | 19.53  | +1.73      | 15                 |
| 76.8           | 78.13  | +1.73      | 7                  | 73.66  | -4.09      | 6                  | 78.13  | +1.73      | 4                  | 78.13  | +1.73      | 3                  |
| 96             | 89.29  | -6.99      | 6                  | 103.13 | +7.42      | 4                  | 97.66  | +1.73      | 3                  | 104.17 | +8.51      | 2                  |
| 300            | 312.50 | +4.17      | 1                  | 257.81 | -14.06     | 1                  | NA     | -          | -                  | 312.50 | +4.17      | 0                  |
| 500            | 625    | +25.00     | 0                  | NA     | -          | -                  | NA     | -          | -                  | NA     | -          | -                  |
| HIGH           | 625    | -          | 0                  | 515.63 | -          | 0                  | 390.63 | -          | 0                  | 312.50 | -          | 0                  |
| LOW            | 2.44   | -          | 255                | 2.01   | -          | 255                | 1.53   | -          | 255                | 1.22   | -          | 255                |
| BAUD           | Fosc = | 16 MHz     | SPBRG              | 10     | MHz        | SPBRG              | 7.159  | 09 MHz     | SPBRG              | 5.068  | 8 MHz      | SPBRG              |
| RATE<br>(Kbps) | KBAUD  | %<br>ERROR | value<br>(decimal) |
| 0.3            | NA     | -          | -                  |
| 1.2            | 1.20   | +0.16      | 207                | 1.20   | +0.16      | 129                | 1.20   | +0.23      | 92                 | 1.20   | 0          | 65                 |
| 2.4            | 2.40   | +0.16      | 103                | 2.40   | +0.16      | 64                 | 2.38   | -0.83      | 46                 | 2.40   | 0          | 32                 |
| 9.6            | 9.62   | +0.16      | 25                 | 9.77   | +1.73      | 15                 | 9.32   | -2.90      | 11                 | 9.90   | +3.13      | 7                  |
| 19.2           | 19.23  | +0.16      | 12                 | 19.53  | +1.73      | 7                  | 18.64  | -2.90      | 5                  | 19.80  | +3.13      | 3                  |
| 76.8           | 83.33  | +8.51      | 2                  | 78.13  | +1.73      | 1                  | 111.86 | +45.65     | 0                  | 79.20  | +3.13      | 0                  |
| 96             | 83.33  | -13.19     | 2                  | 78.13  | -18.62     | 1                  | NA     | -          | -                  | NA     | -          | -                  |
| 300            | 250    | -16.67     | 0                  | 156.25 | -47.92     | 0                  | NA     | -          | -                  | NA     | -          | -                  |
| 500            | NA     | -          | -                  |
| HIGH           | 250    | -          | 0                  | 156.25 | -          | 0                  | 111.86 | -          | 0                  | 79.20  | -          | 0                  |
| LOW            | 0.98   | -          | 255                | 0.61   | -          | 255                | 0.44   | -          | 255                | 0.31   | -          | 255                |
| BAUD           | Fosc   | = 4 MHz    | SPBRG              | 3.5795 | 645 MHz    | SPBRG              | 1      | MHz        | SPBRG              | 32.76  | 8 kHz      | SPBRG              |
| RATE<br>(Kbps) | KBAUD  | %<br>ERROR | value<br>(decimal) |
| 0.3            | 0.30   | -0.16      | 207                | 0.30   | +0.23      | 185                | 0.30   | +0.16      | 51                 | 0.26   | -14.67     | 1                  |
| 1.2            | 1.20   | +1.67      | 51                 | 1.19   | -0.83      | 46                 | 1.20   | +0.16      | 12                 | NA     | -          | -                  |
| 2.4            | 2.40   | +1.67      | 25                 | 2.43   | +1.32      | 22                 | 2.23   | -6.99      | 6                  | NA     | -          | -                  |
| 9.6            | 8.93   | -6.99      | 6                  | 9.32   | -2.90      | 5                  | 7.81   | -18.62     | 1                  | NA     | -          | -                  |
| 19.2           | 20.83  | +8.51      | 2                  | 18.64  | -2.90      | 2                  | 15.63  | -18.62     | 0                  | NA     | -          | -                  |
| 76.8           | 62.50  | -18.62     | 0                  | 55.93  | -27.17     | 0                  | NA     | -          | -                  | NA     | -          | -                  |
| 96             | NA     | -          | -                  |
| 300            | NA     | -          | -                  |
| 500            | NA     | -          | -                  |
| HIGH           | 62.50  | -          | 0                  | 55.93  | -          | 0                  | 15.63  | -          | 0                  | 0.51   | -          | 0                  |
| LOW            | 0.24   | -          | 255                | 0.22   | -          | 255                | 0.06   | -          | 255                | 0.002  | -          | 255                |

#### 16.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 16.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.

- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

| Name   | Bit 7                | Bit 6         | Bit 5     | Bit 4     | Bit 3     | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR, BOR | Value on<br>All Other<br>RESETS |
|--------|----------------------|---------------|-----------|-----------|-----------|--------|--------|--------|----------------------|---------------------------------|
| INTCON | GIE/<br>GIEH         | PEIE/<br>GIEL | TMR0IE    | INTOIE    | RBIE      | TMR0IF | INTOIF | RBIF   | 0000 000x            | 0000 000u                       |
| PIR1   | PSPIF <sup>(1)</sup> | ADIF          | RCIF      | TXIF      | SSPIF     | CCP1IF | TMR2IF | TMR1IF | 0000 0000            | 0000 0000                       |
| PIE1   | PSPIE <sup>(1)</sup> | ADIE          | RCIE      | TXIE      | SSPIE     | CCP1IE | TMR2IE | TMR1IE | 0000 0000            | 0000 0000                       |
| IPR1   | PSPIP <sup>(1)</sup> | ADIP          | RCIP      | TXIP      | SSPIP     | CCP1IP | TMR2IP | TMR1IP | 0000 0000            | 0000 0000                       |
| RCSTA  | SPEN                 | RX9           | SREN      | CREN      | ADDEN     | FERR   | OERR   | RX9D   | 0000 -00x            | 0000 -00x                       |
| RCREG  | USART R              | eceive R      | 0000 0000 | 0000 0000 |           |        |        |        |                      |                                 |
| TXSTA  | CSRC                 | TX9           | TXEN      | SYNC      | _         | BRGH   | TRMT   | TX9D   | 0000 -010            | 0000 -010                       |
| SPBRG  | Baud Rate            | e Genera      |           | 0000 0000 | 0000 0000 |        |        |        |                      |                                 |

#### TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Reception. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

#### FIGURE 16-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)



# 16.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

| Name   | Bit 7                               | Bit 6         | Bit 5  | Bit 4  | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR, BOR |      | Value on<br>OR, BOR<br>RESETS |      |
|--------|-------------------------------------|---------------|--------|--------|-------|--------|--------|--------|----------------------|------|-------------------------------|------|
| INTCON | GIE/<br>GIEH                        | PEIE/<br>GIEL | TMR0IE | INTOIE | RBIE  | TMR0IF | INTOIF | RBIF   | 0000                 | 000x | 0000                          | 000u |
| PIR1   | PSPIF <sup>(1)</sup>                | ADIF          | RCIF   | TXIF   | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000                 | 0000 | 0000                          | 0000 |
| PIE1   | PSPIE <sup>(1)</sup>                | ADIE          | RCIE   | TXIE   | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000                 | 0000 | 0000                          | 0000 |
| IPR1   | PSPIP <sup>(1)</sup>                | ADIP          | RCIP   | TXIP   | SSPIP | CCP1IP | TMR2IP | TMR1IP | 0000                 | 0000 | 0000                          | 0000 |
| RCSTA  | SPEN                                | RX9           | SREN   | CREN   | ADDEN | FERR   | OERR   | RX9D   | 0000                 | -00x | 0000                          | -00x |
| RCREG  | USART Receive Register              |               |        |        |       |        |        |        |                      | 0000 | 0000                          | 0000 |
| TXSTA  | CSRC TX9 TXEN SYNC — BRGH TRMT TX9D |               |        |        |       |        |        |        | 0000                 | -010 | 0000                          | -010 |
| SPBRG  | Baud Rate                           | Generat       |        | 0000   | 0000  | 0000   | 0000   |        |                      |      |                               |      |

#### TABLE 16-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

## REGISTER 19-12: DEVICE ID REGISTER 1 FOR PIC18FXX2 (DEVID1: BYTE ADDRESS 3FFFFEh)

|                 | R                                                                   | R                                                                                                                                    | R         | R           | R          | R          | R            | R     |  |  |  |  |  |
|-----------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------|------------|--------------|-------|--|--|--|--|--|
|                 | DEV2                                                                | DEV1                                                                                                                                 | DEV0      | REV4        | REV3       | REV2       | REV1         | REV0  |  |  |  |  |  |
|                 | bit 7                                                               |                                                                                                                                      |           |             |            |            |              | bit 0 |  |  |  |  |  |
| bit 7-5         | <b>DEV2:DEV</b><br>000 = PIC<br>001 = PIC<br>100 = PIC<br>101 = PIC | DEV2:DEV0: Device ID bits<br>000 = PIC18F252<br>001 = PIC18F452<br>100 = PIC18F242<br>101 = PIC18F442<br>BEV4:BEV0: Bevision ID bits |           |             |            |            |              |       |  |  |  |  |  |
| bit 4-0         | REV4:REV<br>These bits                                              | <b>REV4:REV0:</b> Revision ID bits<br>These bits are used to indicate the device revision.                                           |           |             |            |            |              |       |  |  |  |  |  |
|                 | Legend:                                                             |                                                                                                                                      |           |             |            |            |              |       |  |  |  |  |  |
|                 | R = Reada                                                           | ole bit                                                                                                                              | P =Progra | ammable bit | U = Unir   | nplemented | bit, read as | '0'   |  |  |  |  |  |
|                 | - n = Value                                                         | programme                                                                                                                            | ed state  |             |            |            |              |       |  |  |  |  |  |
|                 |                                                                     |                                                                                                                                      |           |             |            |            |              |       |  |  |  |  |  |
| REGISTER 19-13: | DEVICEID                                                            | REGISTE                                                                                                                              | R2FORP    | IC18FXX2    | (DEVID2: E | BYTE ADD   | RESS 3FFI    | FFh)  |  |  |  |  |  |

| R     | R    | R    | R    | R    | R    | R    | R     |
|-------|------|------|------|------|------|------|-------|
| DEV10 | DEV9 | DEV8 | DEV7 | DEV6 | DEV5 | DEV4 | DEV3  |
| bit 7 |      |      |      |      |      |      | bit 0 |

### bit 7-0 **DEV10:DEV3:** Device ID bits These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

| Legend:                 |                     |                                     |
|-------------------------|---------------------|-------------------------------------|
| R = Readable bit        | P =Programmable bit | U = Unimplemented bit, read as '0'  |
| - n = Value when device | e is unprogrammed   | u = Unchanged from programmed state |

# TABLE 20-1: OPCODE FIELD DESCRIPTIONS

| Field           | Description                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| a               | RAM access bit                                                                                                                              |
|                 | a = 0: RAM location in Access RAM (BSR register is ignored)<br>a = 1: RAM bank is specified by BSR register                                 |
| hhh             | Bit address within an 8-bit file register (0 to 7)                                                                                          |
| BSR             | Bank Select Begister Lised to select the current RAM bank                                                                                   |
| d               |                                                                                                                                             |
| u               | d = 0: store result in WREG,                                                                                                                |
|                 | d = 1: store result in file register f.                                                                                                     |
| dest            | Destination either the WREG register or the specified register file location                                                                |
| f               | 8-bit Register file address (0x00 to 0xFF)                                                                                                  |
| fs              | 12-bit Register file address (0x000 to 0xFFF). This is the source address.                                                                  |
| fd              | 12-bit Register file address (0x000 to 0xFFF). This is the destination address.                                                             |
| k               | Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)                                                    |
| label           | Label name                                                                                                                                  |
| mm              | The mode of the TBLPTR register for the Table Read and Table Write instructions.<br>Only used with Table Read and Table Write instructions: |
| *               | No Change to register (such as TBLPTR with Table reads and writes)                                                                          |
| *+              | Post-Increment register (such as TBLPTR with Table reads and writes)                                                                        |
| * _             | Post-Decrement register (such as TBLPTR with Table reads and writes)                                                                        |
| +*              | Pre-Increment register (such as TBLPTR with Table reads and writes)                                                                         |
| n               | The relative address (2's complement number) for relative branch instructions, or the direct address for                                    |
|                 | Call/Branch and Return instructions                                                                                                         |
| PRODH           | Product of Multiply high byte                                                                                                               |
| PRODL           | Product of Multiply low byte                                                                                                                |
| s               | Fast Call/Return mode select bit.                                                                                                           |
|                 | s = 0: do not update into/trom shadow registers<br>s = 1: certain registers loaded into/from shadow registers (Fast mode)                   |
| u               | Unused or Unchanged                                                                                                                         |
| WREG            | Working register (accumulator)                                                                                                              |
| x               | Don't care (0 or 1)                                                                                                                         |
|                 | The assembler will generate code with $x = 0$ . It is the recommended form of use for compatibility with all Microchip software tools.      |
| TBLPTR          | 21-bit Table Pointer (points to a Program Memory location)                                                                                  |
| TABLAT          | 8-bit Table Latch                                                                                                                           |
| TOS             | Top-of-Stack                                                                                                                                |
| PC              | Program Counter                                                                                                                             |
| PCL             | Program Counter Low Byte                                                                                                                    |
| PCH             | Program Counter High Byte                                                                                                                   |
| PCLATH          | Program Counter High Byte Latch                                                                                                             |
| PCLATU          | Program Counter Upper Byte Latch                                                                                                            |
| GIE             | Global Interrupt Enable bit                                                                                                                 |
| WDT             | Watchdog Timer                                                                                                                              |
| TO              | Time-out bit                                                                                                                                |
| PD              | Power-down bit                                                                                                                              |
| C, DC, Z, OV, N | ALU status bits Carry, Digit Carry, Zero, Overflow, Negative                                                                                |
| [ ]             | Optional                                                                                                                                    |
| ( )             | Contents                                                                                                                                    |
| $\rightarrow$   | Assigned to                                                                                                                                 |
| < >             | Register bit field                                                                                                                          |
| E               | In the set of                                                                                                                               |
| italics         | User defined term (font is courier)                                                                                                         |

# PIC18FXX2

| BCF                                                                           | Bit Clear                                                                                                                                                                                              | f                                                     |            |                     |  |  |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------|---------------------|--|--|--|
| Syntax:                                                                       | [ <i>label</i> ] E                                                                                                                                                                                     | [label] BCF f,b[,a]                                   |            |                     |  |  |  |
| Operands:                                                                     | 0 ≤ f ≤ 255<br>0 ≤ b ≤ 7<br>a ∈ [0,1]                                                                                                                                                                  | $0 \le f \le 255$<br>$0 \le b \le 7$<br>$a \in [0,1]$ |            |                     |  |  |  |
| Operation:                                                                    | $0 \rightarrow f < b >$                                                                                                                                                                                |                                                       |            |                     |  |  |  |
| Status Affected:                                                              | None                                                                                                                                                                                                   |                                                       |            |                     |  |  |  |
| Encoding:                                                                     | 1001                                                                                                                                                                                                   | bbba                                                  | ffff       | ffff                |  |  |  |
| Description:                                                                  | Bit 'b' in register 'f' is cleared. If 'a'<br>is 0, the Access Bank will be<br>selected, overriding the BSR value.<br>If 'a' = 1, then the bank will be<br>selected as per the BSR value<br>(default). |                                                       |            |                     |  |  |  |
| Words:                                                                        | 1                                                                                                                                                                                                      |                                                       |            |                     |  |  |  |
| Cycles:                                                                       | 1                                                                                                                                                                                                      |                                                       |            |                     |  |  |  |
| Q Cycle Activity:                                                             |                                                                                                                                                                                                        |                                                       |            |                     |  |  |  |
| Q1                                                                            | Q2                                                                                                                                                                                                     | Q                                                     | }          | Q4                  |  |  |  |
| Decode                                                                        | Read<br>register 'f'                                                                                                                                                                                   | Proce<br>Data                                         | ss<br>a re | Write<br>gister 'f' |  |  |  |
| Example:                                                                      | BCF 1                                                                                                                                                                                                  | FLAG_RE                                               | G, 7,      | D                   |  |  |  |
| Before Instruction<br>FLAG_REG = 0xC7<br>After Instruction<br>FLAG_REG = 0x47 |                                                                                                                                                                                                        |                                                       |            |                     |  |  |  |

| BN           |                 | Branch if                                                                       | Branch if Negative                                                                                                                                                                                                                                                               |           |                 |  |  |
|--------------|-----------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|--|--|
| Synt         | ax:             | [ <i>label</i> ] B                                                              | N n                                                                                                                                                                                                                                                                              |           |                 |  |  |
| Ope          | rands:          | -128 ≤ n ≤                                                                      | 127                                                                                                                                                                                                                                                                              |           |                 |  |  |
| Ope          | ration:         | if negative<br>(PC) + 2 +                                                       | bit is '1<br>2n $\rightarrow$ F                                                                                                                                                                                                                                                  | ,<br>PC   |                 |  |  |
| Statu        | us Affected:    | None                                                                            |                                                                                                                                                                                                                                                                                  |           |                 |  |  |
| Enco         | oding:          | 1110                                                                            | 0110                                                                                                                                                                                                                                                                             | nnnn      | nnnn            |  |  |
| Desi         |                 | The 2's co<br>added to t<br>have incre<br>instruction<br>PC+2+2n.<br>a two-cycl | The Negative bit is 1, then the<br>program will branch.<br>The 2's complement number '2n' is<br>added to the PC. Since the PC will<br>have incremented to fetch the next<br>instruction, the new address will be<br>PC+2+2n. This instruction is then<br>a two cycle instruction |           |                 |  |  |
| Wor          | ds:             | 1                                                                               | 1                                                                                                                                                                                                                                                                                |           |                 |  |  |
| Cycl         | es:             | 1(2)                                                                            | 1(2)                                                                                                                                                                                                                                                                             |           |                 |  |  |
| Q C<br>If Ju | ycle Activity   | :                                                                               |                                                                                                                                                                                                                                                                                  |           |                 |  |  |
|              | Q1              | Q2                                                                              | Q3                                                                                                                                                                                                                                                                               |           | Q4              |  |  |
|              | Decode          | Read literal<br>'n'                                                             | Proce<br>Data                                                                                                                                                                                                                                                                    | ss W<br>ເ | /rite to PC     |  |  |
|              | No<br>operation | No<br>operation                                                                 | No<br>operat                                                                                                                                                                                                                                                                     | ion d     | No<br>operation |  |  |
| lf N         | o Jump:         |                                                                                 |                                                                                                                                                                                                                                                                                  |           |                 |  |  |
|              | Q1              | Q2                                                                              | Q3                                                                                                                                                                                                                                                                               |           | Q4              |  |  |
|              | Decode          | Read literal<br>'n'                                                             | Proce<br>Data                                                                                                                                                                                                                                                                    | ss<br>i ( | No<br>operation |  |  |
| <u>Exai</u>  | <u>mple</u> :   | HERE                                                                            | BN                                                                                                                                                                                                                                                                               | Jump      |                 |  |  |
|              | Before Instr    | uction                                                                          |                                                                                                                                                                                                                                                                                  |           |                 |  |  |
|              | PC              | = ad                                                                            | dress (H                                                                                                                                                                                                                                                                         | ERE)      |                 |  |  |

| PC                                     | =           | address                        | (HERE)             |
|----------------------------------------|-------------|--------------------------------|--------------------|
| After Instruction                      |             |                                |                    |
| If Negative<br>PC<br>If Negative<br>PC | =<br>=<br>= | 1;<br>address<br>0;<br>address | (Jump)<br>(HERE+2) |
|                                        |             |                                |                    |

# PIC18FXX2

| COMF                                               | Complement f                                                                                                                                                                                                                                                                                                                       |                                                     |          |          |                     |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|----------|---------------------|--|--|
| Syntax:                                            | [label] (                                                                                                                                                                                                                                                                                                                          | COMF                                                | f [,d    | [,a]     |                     |  |  |
| Operands:                                          | 0 ≤ f ≤ 255<br>d ∈ [0,1]<br>a ∈ [0,1]                                                                                                                                                                                                                                                                                              | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$ |          |          |                     |  |  |
| Operation:                                         | $(\overline{f}) \rightarrow de$                                                                                                                                                                                                                                                                                                    | est                                                 |          |          |                     |  |  |
| Status Affected:                                   | N, Z                                                                                                                                                                                                                                                                                                                               |                                                     |          |          |                     |  |  |
| Encoding:                                          | 0001                                                                                                                                                                                                                                                                                                                               | 11da                                                | fff      | f        | ffff                |  |  |
| Description:                                       | The contents of register 'f' are com<br>plemented. If 'd' is 0, the result is<br>stored in W. If 'd' is 1, the result is<br>stored back in register 'f' (default). I<br>'a' is 0, the Access Bank will be<br>selected, overriding the BSR value<br>If 'a' = 1, then the bank will be<br>selected as per the BSR value<br>(default) |                                                     |          |          |                     |  |  |
| Words:                                             | 1                                                                                                                                                                                                                                                                                                                                  |                                                     |          |          |                     |  |  |
| Cycles:                                            | 1                                                                                                                                                                                                                                                                                                                                  |                                                     |          |          |                     |  |  |
| Q Cycle Activity:                                  |                                                                                                                                                                                                                                                                                                                                    |                                                     |          |          |                     |  |  |
| Q1                                                 | Q2                                                                                                                                                                                                                                                                                                                                 | Q                                                   | 3        |          | Q4                  |  |  |
| Decode                                             | Read<br>register 'f'                                                                                                                                                                                                                                                                                                               | Proce<br>Data                                       | ess<br>a | W<br>des | rite to<br>tination |  |  |
| Example:                                           | COMF                                                                                                                                                                                                                                                                                                                               | REG,                                                | 0, 0     |          |                     |  |  |
| Before Instru<br>REG<br>After Instruct<br>REG<br>W | ction<br>= 0x13<br>ion<br>= 0x13<br>= 0xEC                                                                                                                                                                                                                                                                                         |                                                     |          |          |                     |  |  |

| CPFSEQ                     | Compare                                                                                                                                                                 | Compare f with W, skip if f = W                                                                                                                                                                       |                                                                                                                                                    |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Syntax:                    | [label] C                                                                                                                                                               | [label] CPFSEQ f[,a]                                                                                                                                                                                  |                                                                                                                                                    |  |  |  |
| Operands:                  | 0 ≤ f ≤ 255<br>a ∈ [0,1]                                                                                                                                                | 5                                                                                                                                                                                                     |                                                                                                                                                    |  |  |  |
| Operation:                 | (f) – (W),<br>skip if (f) =<br>(unsigned                                                                                                                                | = (W)<br>comparison)                                                                                                                                                                                  |                                                                                                                                                    |  |  |  |
| Status Affected:           | None                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                    |  |  |  |
| Encoding:                  | 0110                                                                                                                                                                    | 001a fff                                                                                                                                                                                              | f ffff                                                                                                                                             |  |  |  |
| Description:               | Compares<br>memory lo<br>of W by pe<br>subtraction<br>If 'f' = W, t<br>tion is disc<br>cuted inste<br>cycle inste<br>Access Ba<br>riding the<br>the bank v<br>BSR value | the contents<br>bocation 'f' to tl<br>erforming an<br>n.<br>hen the fetch<br>carded and a<br>ead, making '<br>uction. If 'a' is<br>ank will be se<br>BSR value. If<br>vill be selecte<br>e (default). | s of data<br>he contents<br>unsigned<br>ned instruc-<br>NOP is exe-<br>this a two-<br>s 0, the<br>elected, over-<br>ta' = 1, then<br>ed as per the |  |  |  |
| Words <sup>.</sup>         | 1                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                    |  |  |  |
| Cycles:<br>Q Cycle Activit | 1(2)<br>Note: 3 o<br>by<br>y:                                                                                                                                           | cycles if skip<br>a 2-word ins                                                                                                                                                                        | and followed<br>truction.                                                                                                                          |  |  |  |
| Q1                         | Q2                                                                                                                                                                      | Q3                                                                                                                                                                                                    | Q4                                                                                                                                                 |  |  |  |
| Decode                     | Read<br>register 'f'                                                                                                                                                    | Process<br>Data                                                                                                                                                                                       | No<br>operation                                                                                                                                    |  |  |  |
| lf skip:                   |                                                                                                                                                                         | l                                                                                                                                                                                                     |                                                                                                                                                    |  |  |  |
| Q1                         | Q2                                                                                                                                                                      | Q3                                                                                                                                                                                                    | Q4                                                                                                                                                 |  |  |  |
| No                         | No                                                                                                                                                                      | No                                                                                                                                                                                                    | No                                                                                                                                                 |  |  |  |
| If ckip and follo          | operation                                                                                                                                                               | d instruction                                                                                                                                                                                         | operation                                                                                                                                          |  |  |  |
| Q1                         | 02 Neu by 2-wor                                                                                                                                                         | Q3                                                                                                                                                                                                    | Q4                                                                                                                                                 |  |  |  |
| No                         | No                                                                                                                                                                      | No                                                                                                                                                                                                    | No                                                                                                                                                 |  |  |  |
| operation                  | operation                                                                                                                                                               | operation                                                                                                                                                                                             | operation                                                                                                                                          |  |  |  |
| No<br>operation            | No<br>operation                                                                                                                                                         | No<br>operation                                                                                                                                                                                       | No<br>operation                                                                                                                                    |  |  |  |
| Example:                   | HERE<br>NEQUAL<br>EQUAL                                                                                                                                                 | CPFSEQ REG<br>:                                                                                                                                                                                       | e, 0                                                                                                                                               |  |  |  |
| PC Add<br>W                | lress = HE<br>= ?                                                                                                                                                       | RE                                                                                                                                                                                                    |                                                                                                                                                    |  |  |  |
| REG                        | = ?                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                    |  |  |  |
| After Instru               | ction                                                                                                                                                                   |                                                                                                                                                                                                       |                                                                                                                                                    |  |  |  |
| lf REG                     | = W;<br>= Ad                                                                                                                                                            | dress (FOID)                                                                                                                                                                                          | r.)                                                                                                                                                |  |  |  |
| If REG                     | , = Au<br>≠ W;                                                                                                                                                          |                                                                                                                                                                                                       | u,                                                                                                                                                 |  |  |  |
| PC                         | 2 = Ad                                                                                                                                                                  | dress (NEQUA                                                                                                                                                                                          | AL)                                                                                                                                                |  |  |  |
|                            |                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                    |  |  |  |

# PIC18FXX2

| SLEEP                  | Enter SL                                  | EEP mode        |                | SUBFWB             | B Subtract f from W with |                                                        | ith borrow        |  |  |
|------------------------|-------------------------------------------|-----------------|----------------|--------------------|--------------------------|--------------------------------------------------------|-------------------|--|--|
| Syntax:                | [ label ]                                 | SLEEP           |                | Syntax:            | [ label ]                | [label] SUBFWB                                         |                   |  |  |
| Operands:              | None                                      |                 | ds: None O     |                    | Operands:                | $0 \le f \le 25$                                       | $0 \le f \le 255$ |  |  |
| Operation:             | $00h \rightarrow W$                       | /DT,            |                |                    | d ∈ [0,1]                | d ∈ [0,1]                                              |                   |  |  |
|                        | $0 \rightarrow WD^{-1}$                   | T postscaler,   |                | Operation:         | a ∈ [0,1]                | $\left(\frac{\overline{C}}{C}\right) \rightarrow doct$ | ŀ                 |  |  |
|                        | $1 \rightarrow 10,$<br>$0 \rightarrow PD$ |                 |                | Operation.         | (I) – (V)<br>            | $-(C) \rightarrow uesi$                                | L                 |  |  |
| Status Affected:       | TO, PD                                    |                 |                |                    |                          | , DC, Z                                                |                   |  |  |
| Encodina:              | 0000                                      | 0000 000        | 0 0011         | Encoding:          | 0101<br>Subtract         | Ulda II                                                |                   |  |  |
| Description:           | The powe                                  | er-down statu   | ıs bit (PD) is | Description:       | (borrow)                 | from W (2's c                                          | omplement         |  |  |
|                        | cleared.                                  | The time-out    | status bit     |                    | method).                 | If 'd' is 0, the                                       | result is         |  |  |
|                        | (TO) is se                                | et. Watchdog    | Timer and      |                    | stored in                | W. If 'd' is 1, t                                      | the result is     |  |  |
|                        | The proc                                  | essor is put i  | nto SLEEP      |                    | 0, the Ac                | cess Bank will                                         | be selected,      |  |  |
|                        | mode wit                                  | h the oscillat  | or stopped.    |                    | overriding               | g the BSR val                                          | ue. If 'a' is 1,  |  |  |
| Words:                 | 1                                         |                 |                |                    | then the l               | bank will be s<br>SB value (de                         | elected as        |  |  |
| Cycles:                | 1                                         |                 |                | Words:             | 1                        |                                                        | iauny.            |  |  |
| Q Cycle Activity:      |                                           |                 |                | Cycles:            | 1                        |                                                        |                   |  |  |
| Q1                     | Q2                                        | Q3              | Q4             | O Cycle Activ      | itv.                     |                                                        |                   |  |  |
| Decode                 | No<br>operation                           | Process<br>Data | Go to<br>sleep | Q1                 | Q2                       | Q3                                                     | Q4                |  |  |
|                        |                                           |                 |                | Decode             | Read                     | Process                                                | Write to          |  |  |
| Example:               | SLEEP                                     |                 |                |                    | register 'f'             | Data                                                   | destination       |  |  |
| Befo <u>re I</u> nstru | iction                                    |                 |                | Example 1:         | SUBFWB                   | REG, 1, 0                                              | )                 |  |  |
| <u>TO</u> =<br>PD =    | ?<br>?                                    |                 |                | Before Ins         | struction                |                                                        |                   |  |  |
| After Instruct         | tion                                      |                 |                | REG<br>W           | = 3<br>= 2               |                                                        |                   |  |  |
| <u>TO</u> =<br>PD =    | 1†<br>0                                   |                 |                | C                  | = 1                      |                                                        |                   |  |  |
| + If WDT caused        | e wake-up tł                              | hie hit ie cloa | red            | After Instr        | uction                   |                                                        |                   |  |  |
|                        | s wake-up, ii                             |                 | ieu.           | W                  | = 2                      |                                                        |                   |  |  |
|                        |                                           |                 |                | C<br>Z             | = 0<br>= 0               |                                                        |                   |  |  |
|                        |                                           |                 |                | Ν                  | = 1 ; re                 | esult is negativ                                       | е                 |  |  |
|                        |                                           |                 |                | Example 2:         | SUBFWB                   | REG, 0, 0                                              | )                 |  |  |
|                        |                                           |                 |                | Before Ins         | struction                |                                                        |                   |  |  |
|                        |                                           |                 |                | W                  | = 2<br>= 5               |                                                        |                   |  |  |
|                        |                                           |                 |                | C                  | = 1                      |                                                        |                   |  |  |
|                        |                                           |                 |                | Alter Instr<br>REG | = 2                      |                                                        |                   |  |  |
|                        |                                           |                 |                | W                  | = 3                      |                                                        |                   |  |  |
|                        |                                           |                 |                | Z                  | = 1 = 0                  |                                                        |                   |  |  |
|                        |                                           |                 |                | N                  | = 0 ; re                 | esult is positive                                      | •                 |  |  |
|                        |                                           |                 |                | Example 3:         | SUBFWB                   | REG, 1, 0                                              | )                 |  |  |
|                        |                                           |                 |                | Before Ins<br>REG  | struction<br>= 1         |                                                        |                   |  |  |

W 2 = С = 0 After Instruction REG = 0 W = 2 C Z N = = 1 1 ; result is zero ò =

## 21.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

## 21.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

## 21.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft<sup>®</sup> Windows environment were chosen to best make these features available to you, the end user.

# 21.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.





| TABLE 22-15: | I <sup>2</sup> C BUS START/STOP | <b>BITS REQUIREMENTS</b> | (SLAVE MODE) |
|--------------|---------------------------------|--------------------------|--------------|
|--------------|---------------------------------|--------------------------|--------------|

| Param.<br>No. | Symbol  | Characteristic  |              | Min  | Max | Units | Conditions                   |
|---------------|---------|-----------------|--------------|------|-----|-------|------------------------------|
| 90            | TSU:STA | START condition | 100 kHz mode | 4700 | —   | ns    | Only relevant for Repeated   |
|               |         | Setup time      | 400 kHz mode | 600  |     |       | START condition              |
| 91            | THD:STA | START condition | 100 kHz mode | 4000 | _   | ns    | After this period, the first |
|               |         | Hold time       | 400 kHz mode | 600  |     |       | clock pulse is generated     |
| 92            | Tsu:sto | STOP condition  | 100 kHz mode | 4700 |     | ns    |                              |
|               |         | Setup time      | 400 kHz mode | 600  | _   |       |                              |
| 93            | THD:STO | STOP condition  | 100 kHz mode | 4000 | _   | ns    |                              |
|               |         | Hold time       | 400 kHz mode | 600  |     |       |                              |









FIGURE 23-28: A/D NON-LINEARITY vs. VREFH (VDD = VREFH, -40°C TO +125°C)



DS39564C-page 302

# 40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| wolded Package Thickness   | AZ | .140  | .150  | .160  | 3.50  | 3.01  | 4.00  |
|----------------------------|----|-------|-------|-------|-------|-------|-------|
| Base to Seating Plane      | A1 | .015  |       |       | 0.38  |       |       |
| Shoulder to Shoulder Width | Е  | .595  | .600  | .625  | 15.11 | 15.24 | 15.88 |
| Molded Package Width       | E1 | .530  | .545  | .560  | 13.46 | 13.84 | 14.22 |
| Overall Length             | D  | 2.045 | 2.058 | 2.065 | 51.94 | 52.26 | 52.45 |
| Tip to Seating Plane       | L  | .120  | .130  | .135  | 3.05  | 3.30  | 3.43  |
| Lead Thickness             | С  | .008  | .012  | .015  | 0.20  | 0.29  | 0.38  |
| Upper Lead Width           | B1 | .030  | .050  | .070  | 0.76  | 1.27  | 1.78  |
| Lower Lead Width           | В  | .014  | .018  | .022  | 0.36  | 0.46  | 0.56  |
| Overall Row Spacing §      | eB | .620  | .650  | .680  | 15.75 | 16.51 | 17.27 |
| Mold Draft Angle Top       | α  | 5     | 10    | 15    | 5     | 10    | 15    |
| Mold Draft Angle Bottom    | β  | 5     | 10    | 15    | 5     | 10    | 15    |

\* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

# 44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | Units INCHES* MILLIMETE |      |      | <b>IILLIMETERS</b> | ERS   |       |       |
|--------------------------|-------------------------|------|------|--------------------|-------|-------|-------|
| Dimensio                 | n Limits                | MIN  | NOM  | MAX                | MIN   | NOM   | MAX   |
| Number of Pins           | n                       |      | 44   |                    |       | 44    |       |
| Pitch                    | р                       |      | .050 |                    |       | 1.27  |       |
| Pins per Side            | n1                      |      | 11   |                    |       | 11    |       |
| Overall Height           | Α                       | .165 | .173 | .180               | 4.19  | 4.39  | 4.57  |
| Molded Package Thickness | A2                      | .145 | .153 | .160               | 3.68  | 3.87  | 4.06  |
| Standoff §               | A1                      | .020 | .028 | .035               | 0.51  | 0.71  | 0.89  |
| Side 1 Chamfer Height    | A3                      | .024 | .029 | .034               | 0.61  | 0.74  | 0.86  |
| Corner Chamfer 1         | CH1                     | .040 | .045 | .050               | 1.02  | 1.14  | 1.27  |
| Corner Chamfer (others)  | CH2                     | .000 | .005 | .010               | 0.00  | 0.13  | 0.25  |
| Overall Width            | Е                       | .685 | .690 | .695               | 17.40 | 17.53 | 17.65 |
| Overall Length           | D                       | .685 | .690 | .695               | 17.40 | 17.53 | 17.65 |
| Molded Package Width     | E1                      | .650 | .653 | .656               | 16.51 | 16.59 | 16.66 |
| Molded Package Length    | D1                      | .650 | .653 | .656               | 16.51 | 16.59 | 16.66 |
| Footprint Width          | E2                      | .590 | .620 | .630               | 14.99 | 15.75 | 16.00 |
| Footprint Length         | D2                      | .590 | .620 | .630               | 14.99 | 15.75 | 16.00 |
| Lead Thickness           | С                       | .008 | .011 | .013               | 0.20  | 0.27  | 0.33  |
| Upper Lead Width         | B1                      | .026 | .029 | .032               | 0.66  | 0.74  | 0.81  |
| Lower Lead Width         | В                       | .013 | .020 | .021               | 0.33  | 0.51  | 0.53  |
| Mold Draft Angle Top     | α                       | 0    | 5    | 10                 | 0     | 5     | 10    |
| Mold Draft Angle Bottom  | β                       | 0    | 5    | 10                 | 0     | 5     | 10    |

\* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-048

# APPENDIX A: REVISION HISTORY

# Revision A (June 2001)

Original data sheet for the PIC18FXX2 family.

## **Revision B (August 2002)**

This revision includes the DC and AC Characteristics Graphs and Tables. The Electrical Specifications in Section 22.0 have been updated and there have been minor corrections to the data sheet text.

## **Revision C (October 2006)**

Packaging diagrams updated.

## APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

| Feature                   | PIC18F242                 | PIC18F252                 | PIC18F442                                | PIC18F452                                |
|---------------------------|---------------------------|---------------------------|------------------------------------------|------------------------------------------|
| Program Memory (Kbytes)   | 16                        | 32                        | 16                                       | 32                                       |
| Data Memory (Bytes)       | 768                       | 1536                      | 768                                      | 1536                                     |
| A/D Channels              | 5                         | 5                         | 8                                        | 8                                        |
| Parallel Slave Port (PSP) | No                        | No                        | Yes                                      | Yes                                      |
| Package Types             | 28-pin DIP<br>28-pin SOIC | 28-pin DIP<br>28-pin SOIC | 40-pin DIP<br>44-pin PLCC<br>44-pin TQFP | 40-pin DIP<br>44-pin PLCC<br>44-pin TQFP |

#### TABLE B-1:DEVICE DIFFERENCES