

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf452t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F242 PIC18F442
- PIC18F252 PIC18F452

These devices come in 28-pin and 40/44-pin packages. The 28-pin devices do not have a Parallel Slave Port (PSP) implemented and the number of Analog-to-Digital (A/D) converter input channels is reduced to 5. An overview of features is shown in Table 1-1.

TABLE 1-1: DEVICE FEATURES

Features **PIC18F242 PIC18F252** PIC18F442 PIC18F452 Operating Frequency DC - 40 MHz DC - 40 MHz DC - 40 MHz DC - 40 MHz Program Memory (Bytes) 16K 32K 16K 32K 16384 8192 16384 Program Memory (Instructions) 8192 Data Memory (Bytes) 768 1536 768 1536 Data EEPROM Memory (Bytes) 256 256 256 256 Interrupt Sources 17 17 18 18 I/O Ports Ports A, B, C Ports A, B, C Ports A, B, C, D, E Ports A, B, C, D, E Timers 4 4 4 4 Capture/Compare/PWM Modules 2 2 2 2 MSSP. MSSP. MSSP. MSSP. Serial Communications Addressable Addressable Addressable Addressable USART USART USART USART Parallel Communications PSP PSP 10-bit Analog-to-Digital Module 5 input channels 5 input channels 8 input channels 8 input channels POR. BOR. POR. BOR. POR. BOR. POR. BOR. RESET Instruction. RESET Instruction. RESET Instruction. RESET Instruction. RESETS (and Delays) Stack Full, Stack Full, Stack Full, Stack Full, Stack Underflow Stack Underflow Stack Underflow Stack Underflow (PWRT, OST) (PWRT, OST) (PWRT, OST) (PWRT, OST) Programmable Low Voltage Yes Yes Yes Yes Detect Yes Yes Yes Yes Programmable Brown-out Reset Instruction Set 75 Instructions 75 Instructions 75 Instructions 75 Instructions 40-pin DIP 40-pin DIP 28-pin DIP 28-pin DIP 44-pin PLCC 44-pin PLCC Packages 28-pin SOIC 28-pin SOIC 44-pin TQFP 44-pin TQFP

The following two figures are device block diagrams sorted by pin count: 28-pin for Figure 1-1 and 40/44-pin for Figure 1-2. The 28-pin and 40/44-pin pinouts are listed in Table 1-2 and Table 1-3, respectively.

TABLE 1-2: PIC18F2X2 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nome	Pin N	umber	Pin	Buffer	Description			
Pin Name	DIP SOIC		Туре	Туре	Description			
					PORTC is a bi-directional I/O port.			
RC0/T1OSO/T1CKI	11	11						
RC0			I/O	ST	Digital I/O.			
T1OSO			0	_	Timer1 oscillator output.			
T1CKI			I.	ST	Timer1/Timer3 external clock input.			
RC1/T1OSI/CCP2	12	12						
RC1			I/O	ST	Digital I/O.			
T1OSI			I.	CMOS	Timer1 oscillator input.			
CCP2			I/O	ST	Capture2 input, Compare2 output, PWM2 output.			
RC2/CCP1	13	13						
RC2			I/O	ST	Digital I/O.			
CCP1			I/O	ST	Capture1 input/Compare1 output/PWM1 output.			
RC3/SCK/SCL	14	14						
RC3			I/O	ST	Digital I/O.			
SCK			I/O	ST	Synchronous serial clock input/output for SPI mode.			
SCL			I/O	ST	Synchronous serial clock input/output for I ² C mode			
RC4/SDI/SDA	15	15						
RC4			I/O	ST	Digital I/O.			
SDI			I.	ST	SPI Data In.			
SDA			I/O	ST	I ² C Data I/O.			
RC5/SDO	16	16						
RC5		_	I/O	ST	Digital I/O.			
SDO			0	_	SPI Data Out.			
RC6/TX/CK	17	17						
RC6		-	I/O	ST	Digital I/O.			
ТХ			0	_	USART Asynchronous Transmit.			
СК			I/O	ST	USART Synchronous Clock (see related RX/DT).			
RC7/RX/DT	18	18						
RC7			I/O	ST	Digital I/O.			
RX			Ι	ST	USART Asynchronous Receive.			
DT			I/O	ST	USART Synchronous Data (see related TX/CK).			
Vss	8, 19	8, 19	Р	—	Ground reference for logic and I/O pins.			
Vdd	20	20	Р		Positive supply for logic and I/O pins.			
Legend: TTL = TTL o					CMOS = CMOS compatible input or output			

ST = Schmitt Trigger input with CMOS levels

I = Input P = Power

O = Output OD = Open Drain (no P diode to VDD)

NOTES:

13.2 Timer1 Oscillator

The Timer1 oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. The oscillator is a low power oscillator rated up to 200 KHz. See Section 11.0 for further details.

13.3 Timer3 Interrupt

The TMR3 Register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled/disabled by setting/clearing TMR3 interrupt enable bit, TMR3IE (PIE2<1>).

13.4 Resetting Timer3 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer3.

Note:	The special event triggers from the CCP
	module will not set interrupt flag bit,
	TMR3IF (PIR1<0>).

Timer3 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer3 is running in Asynchronous Counter mode, this RESET operation may not work. In the event that a write to Timer3 coincides with a special event trigger from CCP1, the write will take precedence. In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer3.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR2	—	_	_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	0 0000	0 0000
PIE2	—	_	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	0 0000	0 0000
IPR2	_	-	-	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	1 1111	1 1111
TMR3L	Holding F	legister for t	he Least Sig	gnificant Byt	e of the 16-b	it TMR3 Re	gister		xxxx xxxx	uuuu uuuu
TMR3H	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register								xxxx xxxx	uuuu uuuu
T1CON	RD16		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	u-uu uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

14.0 CAPTURE/COMPARE/PWM (CCP) MODULES

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit Capture register, as a 16-bit Compare register or as a PWM Master/Slave Duty Cycle register. Table 14-1 shows the timer resources of the CCP Module modes. The operation of CCP1 is identical to that of CCP2, with the exception of the special event trigger. Therefore, operation of a CCP module in the following sections is described with respect to CCP1.

Table 14-2 shows the interaction of the CCP modules.

REGISTER 14-1: CCP1CON REGISTER/CCP2CON REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0

Capture mode: Unused

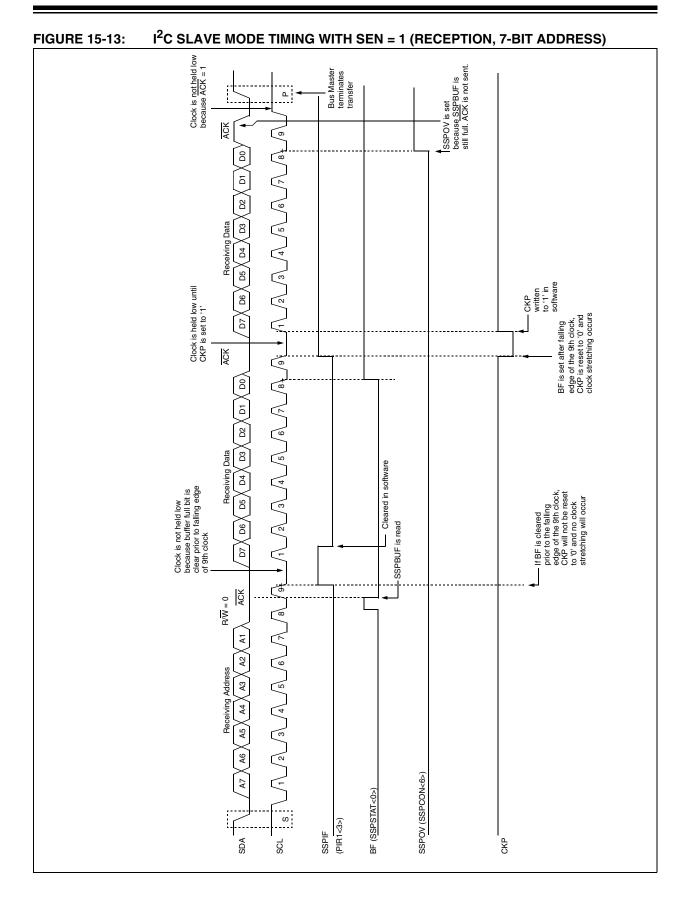
Compare mode: Unused

PWM mode:

These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits (DCx9:DCx2) of the duty cycle are found in CCPRxL.

bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits

- 0000 = Capture/Compare/PWM disabled (resets CCPx module)
- 0001 = Reserved
- 0010 = Compare mode, toggle output on match (CCPxIF bit is set)
- 0011 = Reserved
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode,


Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)

- 1001 = Compare mode,
 - Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)
- 1010 = Compare mode,
- Generate software interrupt on compare match (CCPIF bit is set, CCP pin is unaffected) 1011 = Compare mode,
 - Trigger special event (CCPIF bit is set)
- 11xx = PWM mode

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 15-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE		P	s	R/W	UA	BF
	bit 7	ONE	Birt	•	Ű	1011	0/1	bit 0
oit 7	In Master of	Rate Control		Standard Cn	and made (1 MU-)	
			enabled for H				i iviriz)	
oit 6	In Master of	us Select bi or Slave moo	de:					
		SMBus spe SMBus spe						
oit 5	D/A: Data/	Address bit						
	<u>In Master r</u> Reserved	<u>node:</u>						
	In Slave m	ode:						
			ast byte rece ast byte rece					
bit 4	P: STOP b		OP bit has b	oon dotocto	d last			
			letected last		u last			
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.		
oit 3		es that a sta	rt bit has bee detected las		last			
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.		
oit 2	R/W: Read	I/Write bit Int	formation (I ²	C mode only	/)			
	<u>In Slave m</u> 1 = Read 0 = Write	ode:						
	Note:		ls the R/W bi ne address m					
	<u>In Master r</u> 1 = Transm	<u>node:</u> nit is in progi	ress					
	0 = Transm	nit is not in p						
	Note:	ORing this I	bit with SEN, de.	RSEN, PE	N, RCEN, o	r ACKEN wil	l indicate if t	he MSSP is
bit 1	1 = Indicate	es that the u	10-bit Slave r ser needs to need to be up	update the	address in t	he SSPADD	register	
bit 0	BF: Buffer	Full Status b	oit					
		e complete,	SSPBUF is t ete, SSPBUF					
	In Receive	-	,	ie empty				
	1 = Data training 0 = Data training 1	ansmit in pro ansmit comp	ogress (does blete (does n	not include ot include th	th <u>e ACK</u> ar ne ACK and	d STOP bits STOP bits),), SSPBUF i SSPBUF is (s full empty
	Legend:							
	R = Reada	ble bit	W = Writab	le bit	U = Unimp	lemented bit	, read as '0'	
	- n = Value	at POR	'1' = Bit is s	et	'0' = Bit is	cleared	x = Bit is ur	nknown

TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc =	40 MHz	SPBRG	33	MHz	SPBRG	25	MHz	SPBRG	20 1	ИНz	SPBRG
RATE		%	value		%	value		%	value		%	value
(Kbps)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	162	2.40	+0.16	129
9.6	9.62	+0.16	64	9.55	-0.54	53	9.53	-0.76	40	9.47	-1.36	32
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	7	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3
96	89.29	-6.99	6	103.13	+7.42	4	97.66	+1.73	3	104.17	+8.51	2
300	312.50	+4.17	1	257.81	-14.06	1	NA	-	-	312.50	+4.17	0
500	625	+25.00	0	NA	-	-	NA	-	-	NA	-	-
HIGH	625	-	0	515.63	-	0	390.63	-	0	312.50	-	0
LOW	2.44	-	255	2.01	-	255	1.53	-	255	1.22	-	255
	_											
BAUD	FOSC =	16 MHz	SPBRG	101	MHz	SPBRG	7.1590	9 MHz	SPBRG	5.068	5 MHZ	SPBRG
RATE (Kbps)		%	value (decimal)		%	value (decimal)		%	value (decimal)		%	value (decimal)
(1000)	KBAUD	ERROR	(uconnai)	KBAUD	ERROR	(uconnul)	KBAUD	ERROR	(uconnul)	KBAUD	ERROR	(uconnui)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	83.33	+8.51	2	78.13	+1.73	1	111.86	+45.65	0	79.20	+3.13	0
96	83.33	-13.19	2	78.13	-18.62	1	NA	-	-	NA	-	-
300	250	-16.67	0	156.25	-47.92	0	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255
BAUD	Fosc :	= 4 MHz	SPBRG	3.5795	45 MHz	SPBRG	11	MHz	SPBRG	32.76	8 kHz	SPBRG
RATE		%	value		%	value		%	value		%	value
(Kbps)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	0.30	-0.16	207	0.30	+0.23	185	0.30	+0.16	51	0.26	-14.67	1
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	2.23	-6.99	6	NA	-	-
9.6	8.93	-6.99	6	9.32	-2.90	5	7.81	-18.62	1	NA	-	-
19.2	20.83	+8.51	2	18.64	-2.90	2	15.63	-18.62	0	NA	-	-
76.8	62.50	-18.62	0	55.93	-27.17	0	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	62.50	-	0	55.93	-	0	15.63	-	0	0.51	-	0
LOW	0.24	-	255	0.22	-	255	0.06	-	255	0.002	-	255

16.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
RCREG	USART Receive Register							0000 0000	0000 0000	
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

TABLE 16-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.

To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

EQUATION 17-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 17-2: A/D MINIMUM CHARGING TIME

Example 17-1 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

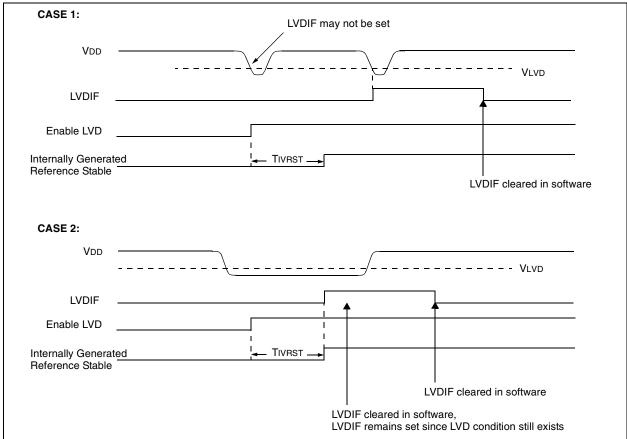
CHOLD	=	120 pF
-		0.510

- Rs = $2.5 \text{ k}\Omega$
- Conversion Error ≤ 1/2 LSb
- VDD = $5V \rightarrow Rss = 7 k\Omega$
- Temperature = 50° C (system max.)
- VHOLD = 0V @ time = 0

EXAMPLE 17-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ =	TAMP + TC + TCOFF
Temperatu	re coefficient is only required for temperatures $> 25^{\circ}$ C.
TACQ =	$2 \ \mu s + Tc + [(Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$
TC =	-Chold (Ric + Rss + Rs) $\ln(1/2048)$ -120 pF (1 k Ω + 7 k Ω + 2.5 k Ω) $\ln(0.0004883)$ -120 pF (10.5 k Ω) $\ln(0.0004883)$ -1.26 µs (-7.6246) 9.61 µs
TACQ =	2 μs + 9.61 μs + [(50°C – 25°C)(0.05 μs/°C)] 11.61 μs + 1.25 μs 12.86 μs

18.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register), which selects the desired LVD Trip Point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 18-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 18-4: LOW VOLTAGE DETECT WAVEFORMS

NOTES:

TABLE 19-1:	CONFIGURATION BITS AND DEVICE IDS
-------------	-----------------------------------

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	_	_	OSCSEN	_	_	FOSC2	FOSC1	FOSC0	1111
300002h	CONFIG2L	_	_	_	_	BORV1	BORV0	BOREN	PWRTEN	1111
300003h	CONFIG2H	_		_		WDTPS2	WDTPS1	WDTPS0	WDTEN	1111
300005h	CONFIG3H	—	_	_	_	_	_	_	CCP2MX	1
300006h	CONFIG4L	DEBUG	_	_	_	_	LVP	_	STVREN	11-1
300008h	CONFIG5L	_	_	_	_	CP3	CP2	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	—	-	-	-	-	—	11
30000Ah	CONFIG6L	_	_	_	_	WRT3	WRT2	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	_	_	_	111
30000Ch	CONFIG7L	_	_	_	_	EBTR3	EBTR2	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	—	_	_	_	_	—	-1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	(1)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0100

 $\label{eq:Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. \\ Shaded cells are unimplemented, read as '0'.$

Note 1: See Register 19-12 for DEVID1 values.

REGISTER 19-1: CONFIGURATION REGISTER 1 HIGH (CONFIG1H: BYTE ADDRESS 300001h)

U-0	U-0	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
_	—	OSCSEN	_	—	FOSC2	FOSC1	FOSC0
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'							
bit 5	OSCSEN: Oscillator System Clock Switch Enable bit							
	 1 = Oscillator system clock switch option is disabled (main oscillator is source) 0 = Oscillator system clock switch option is enabled (oscillator switching is enabled) 							
bit 4-3	Unimplemented: Read as '0'							
bit 2-0	FOSC2:FOSC0: Oscillator Selection bits							
	111 = RC oscillator w/ OSC2 configured as RA6 110 = HS oscillator with PLL enabled/Clock frequency = (4 x Fosc) 101 = EC oscillator w/ OSC2 configured as RA6 100 = EC oscillator w/ OSC2 configured as divide-by-4 clock output 011 = RC oscillator 010 = HS oscillator 001 = XT oscillator 000 = LP oscillator							
	Legend:							
	R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0'							

MULLW	Multiply I	Literal with	N	М	JLWF	Multiply \	N with f	
Syntax:	[label]	MULLW k		Sy	ntax:	[label]	MULWF f	[,a]
Operands:	$0 \le k \le 25$	5		Op	erands:	$0 \le f \le 258$	5	
Operation:	(W) x k \rightarrow	PRODH:PF	ODL			a ∈ [0,1]		
Status Affected:	None			Op	eration:	(W) x (f) –	→ PRODH:P	RODL
Encoding:	0000	1101 kk	kk kkkk	Sta	tus Affected:	None		
Description:	An unsign	ed multiplica	tion is car-	En	coding:	0000	001a fff	ff ffff
	W and the 16-bit rest PRODH:F PRODH c W is unch None of th affected. Note that carry is po	ne status flag neither overf ossible in this ro result is po	k'. The in ter pair. high byte. Is are low nor s opera-	De	escription: An unsigned multiplication ried out between the conte W and the register file loca The 16-bit result is stored PRODH:PRODL register p PRODH contains the high Both W and 'f' are unchany None of the status flags ar affected. Note that neither overflow carry is possible in this op tion. A zero result is possible			ontents of location 'f'. red in the ter pair. high byte. hanged. gs are flow nor s opera-
Words:	1						ed. If 'a' is 0	<i>,</i>
Cycles:	1						ank will be se the BSR val	,
Q Cycle Activity:							en the bank v	
Q1	Q2	Q3	Q4				as per the BS	SR value
Decode	Read	Process	Write			(default).		
	literal 'k'	Data	registers PRODH:		ords:	1		
			PRODL	-	cles:	1		
				Q	Cycle Activity		0.0	.
Example:	MULLW	0xC4			Q1	Q2	Q3	Q4
Before Instru W PRODH PRODL		E2			Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL
After Instruct	=							
W	= 0x	E2		<u>Ex</u>	ample:	MULWF	REG, 1	
PRODH PRODL		AD 08			Before Instr W REG PRODH PRODL	= 0x = 0x	C4 B5	
					After Instruc	•		
							.	

ner instruction		
W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

XORWF Exclusive OR W with f							
Syntax: [label] XORWF f[,d[,a]							
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5					
Operation:	(W) .XOR	. (f) \rightarrow de	st				
Status Affected	l: N, Z						
Encoding:	0001	10da	ffff	ffff			
Description: Exclusive OR the contents of W with register 'f'. If 'd' is 0, the resu is stored in W. If 'd' is 1, the resu stored back in the register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).							
Words:	1						
Cycles:	1						
Q Cycle Activi	ty:						
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proces Data		/rite to stination			
Example: XORWF REG, 1, 0							
Before Ins REG W	truction = 0xAF = 0xB5						
After Instru REG W	uction = 0x1A = 0xB5						

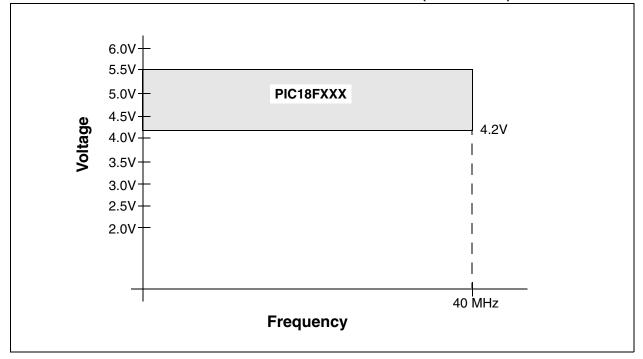
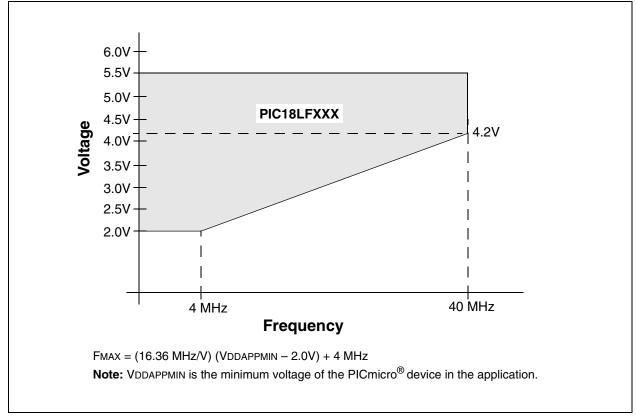
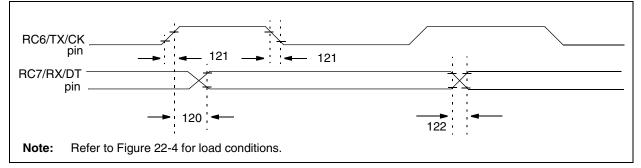




FIGURE 22-2: PIC18LFXX2 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

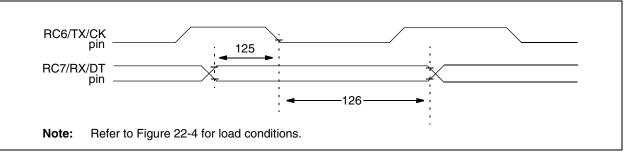

FIGURE 22-20: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 22-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

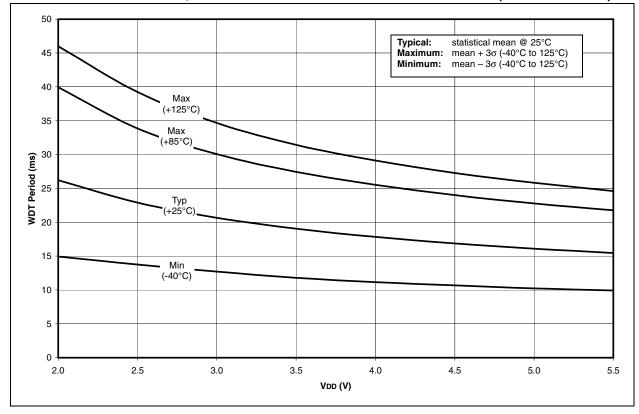
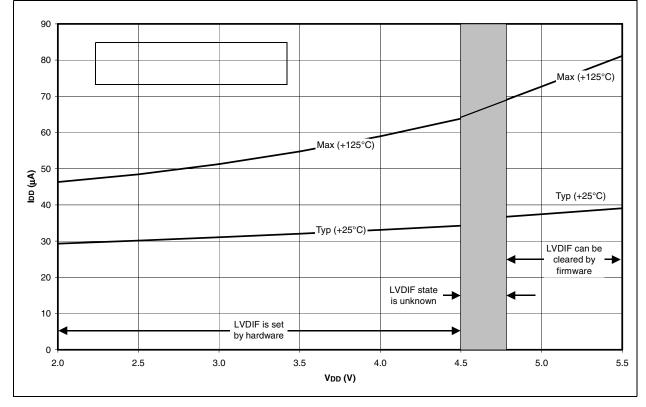
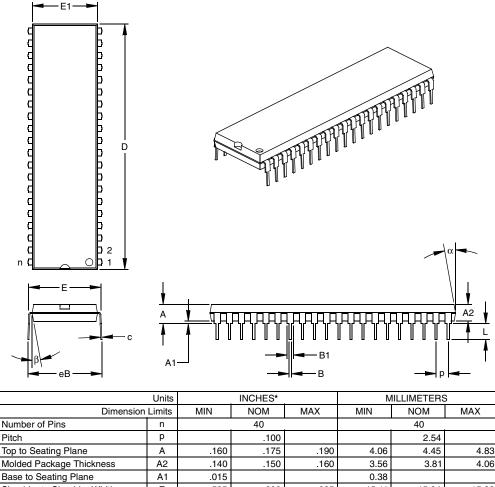

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
120	TckH2dtV	<u>SYNC XMIT (MASTER & SLAVE)</u> Clock high to data out valid	PIC18 F XXX	_	50	ns	
			PIC18LFXXX		150	ns	VDD = 2V
121	Tckr	Clock out rise time and fall time	PIC18FXXX	_	25	ns	
	(Master mode)		PIC18LFXXX	—	60	ns	VDD = 2V
122	Tdtr	Data out rise time and fall time	PIC18FXXX		25	ns	
			PIC18 LF XXX		60	ns	VDD = 2V

FIGURE 22-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING


TABLE 22-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
125	TdtV2ckl	<u>SYNC RCV (MASTER & SLAVE)</u> Data hold before CK \downarrow (DT hold time)	10		ns		
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	PIC18FXXX	15		ns	
			PIC18LFXXX	20		ns	VDD = 2V


FIGURE 23-19: TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)

40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

APPENDIX A: REVISION HISTORY

Revision A (June 2001)

Original data sheet for the PIC18FXX2 family.

Revision B (August 2002)

This revision includes the DC and AC Characteristics Graphs and Tables. The Electrical Specifications in Section 22.0 have been updated and there have been minor corrections to the data sheet text.

Revision C (October 2006)

Packaging diagrams updated.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Feature	PIC18F242	PIC18F252	PIC18F442	PIC18F452
Program Memory (Kbytes)	16	32	16	32
Data Memory (Bytes)	768	1536	768	1536
A/D Channels	5	5	8	8
Parallel Slave Port (PSP)	No	No	Yes	Yes
Package Types	28-pin DIP 28-pin SOIC	28-pin DIP 28-pin SOIC	40-pin DIP 44-pin PLCC 44-pin TQFP	40-pin DIP 44-pin PLCC 44-pin TQFP

TABLE B-1:DEVICE DIFFERENCES