

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

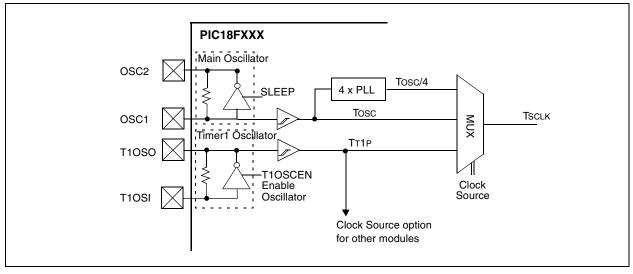
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf452t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number		Pin	Buffer	Description
Pin Name	DIP	SOIC	Туре	Туре	Description
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0	21	21			
RB0			I/O	TTL	Digital I/O.
INT0			I	ST	External Interrupt 0.
RB1/INT1	22	22			
RB1			I/O	TTL	_
INT1			I	ST	External Interrupt 1.
RB2/INT2	23	23			
RB2 INT2			I/O	TTL ST	Digital I/O.
			I	51	External Interrupt 2.
RB3/CCP2 RB3	24	24	I/O	TTL	Digital I/O.
CCP2			1/O	ST	Capture2 input, Compare2 output, PWM2 output.
RB4	25	25	1/O	TTL	Digital I/O.
ND4	25	25	1/0	116	Interrupt-on-change pin.
RB5/PGM	26	26			
RB5	20	20	I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGM			I/O	ST	Low Voltage ICSP programming enable pin.
RB6/PGC	27	27			
RB6			I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGC			I/O	ST	In-Circuit Debugger and ICSP programming clock pin.
RB7/PGD	28	28			
RB7			I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGD			I/O	ST	In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL	compati	ble inpu	t		CMOS = CMOS compatible input or output

TABLE 1-2:PIC18F2X2 PINOUT	O DESCRIPTIONS (CONTINUED)
----------------------------	----------------------------


ST = Schmitt Trigger input with CMOS levels O = Output

OD = Open Drain (no P diode to VDD)

I = Input P = Power

2.6 Oscillator Switching Feature

The PIC18FXX2 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low frequency clock source. For the PIC18FXX2 devices, this alternate clock source is the Timer1 oscillator. If a low frequency crystal (32 kHz, for example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has been enabled, the device can switch to a Low Power Execution mode. Figure 2-7 shows a block diagram of the system clock sources. The clock switching feature is enabled <u>by programming the Oscillator Switching</u> Enable (OSCSEN) bit in Configuration Register1H to a '0'. Clock switching is disabled in an erased device. See Section 11.0 for further details of the Timer1 oscillator. See Section 19.0 for Configuration Register details.

FIGURE 2-7: DEVICE CLOCK SOURCES

PIC18FXX2

						MCLR Resets		
Register	Applicable Devices				Power-on Reset, Brown-out Reset	WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
TOSU	OSU 242 442 252 4520 0000		0 0000	0 uuuu (3)				
TOSH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu ⁽³⁾	
TOSL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (3)	
STKPTR	242	442	252	452	00-0 0000	uu-0 0000	uu-u uuuu (3)	
PCLATU	242	442	252	452	0 0000	0 0000	u uuuu	
PCLATH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
PCL	242	442	252	452	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	242	442	252	452	00 0000	00 0000	uu uuuu	
TBLPTRH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
TBLPTRL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
TABLAT	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
PRODH	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu	
PRODL	242	442	252	452	xxxx xxxx	սսսս սսսս	սսսս սսսս	
INTCON	242	442	252	452	0000 000x	0000 000u	uuuu uuuu (1)	
INTCON2	242	442	252	452	1111 -1-1	1111 -1-1	uuuu -u-u (1)	
INTCON3	242	442	252	452	11-0 0-00	11-0 0-00	uu-u u-uu (1)	
INDF0	242	442	252	452	N/A	N/A	N/A	
POSTINC0	242	442	252	452	N/A	N/A	N/A	
POSTDEC0	242	442	252	452	N/A	N/A	N/A	
PREINC0	242	442	252	452	N/A	N/A	N/A	
PLUSW0	242	442	252	452	N/A	N/A	N/A	
FSR0H	242	442	252	452	xxxx	uuuu	uuuu	
FSR0L	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս	
WREG	242	442	252	452	xxxx xxxx	uuuu uuuu	սսսս սսսս	
INDF1	242	442	252	452	N/A	N/A	N/A	
POSTINC1	242	442	252	452	N/A	N/A	N/A	
POSTDEC1	242	442	252	452	N/A	N/A	N/A	
PREINC1	242	442	252	452	N/A	N/A	N/A	
PLUSW1	242	442	252	452	N/A	N/A	N/A	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 4: See Table 3-2 for RESET value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.
- 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

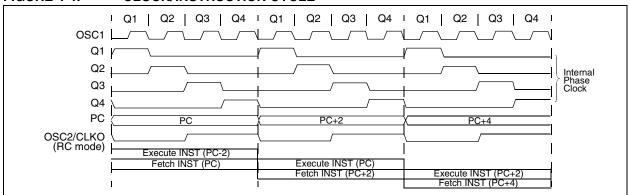
CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
• SUB1	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.


The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-4.

FIGURE 4-4:

CLOCK/INSTRUCTION CYCLE

5.2.2 TABLAT - TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch is used to hold 8-bit data during data transfers between program memory and data RAM.

5.2.3 TBLPTR - TABLE POINTER REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The table pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 5-1. These operations on the TBLPTR only affect the low order 21 bits.

5.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes, and erases of the FLASH program memory.

When a TBLRD is executed, all 22 bits of the Table Pointer determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the three LSbs of the Table Pointer (TBLPTR<2:0>) determine which of the eight program memory holding registers is written to. When the timed write to program memory (long write) begins, the 19 MSbs of the Table Pointer, TBLPTR (TBLPTR<21:3>), will determine which program memory block of 8 bytes is written to. For more detail, see Section 5.5 ("Writing to FLASH Program Memory").

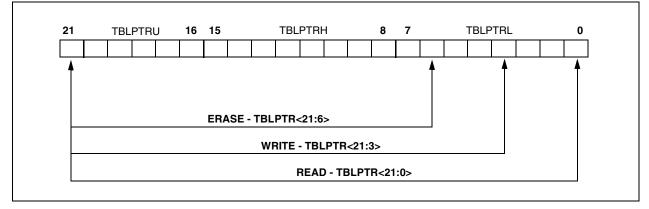

When an erase of program memory is executed, the 16 MSbs of the Table Pointer (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 5-3 describes the relevant boundaries of TBLPTR based on FLASH program memory operations.

TABLE 5-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 5-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

Name	Bit#	Buffer	Function
RB0/INT0	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input0. Internal software programmable weak pull-up.
RB1/INT1	bit1	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input1. Internal software programmable weak pull-up.
RB2/INT2	bit2	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input2. Internal software programmable weak pull-up.
RB3/CCP2 ⁽³⁾	bit3	TTL/ST ⁽⁴⁾	Input/output pin or Capture2 input/Compare2 output/PWM output when CCP2MX configuration bit is enabled. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5/PGM ⁽⁵⁾	bit5	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Low voltage ICSP enable pin.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 9-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: A device configuration bit selects which I/O pin the CCP2 pin is multiplexed on.

4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.

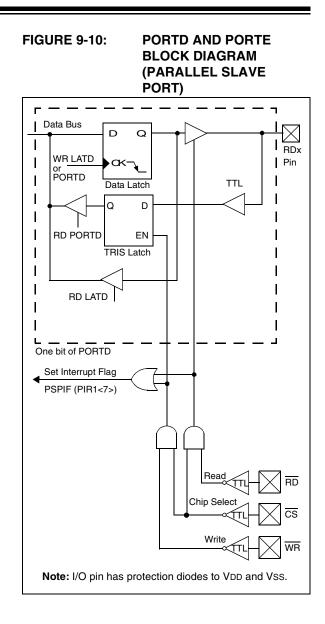
5: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB5 I/O function. LVP must be disabled to enable RB5 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

TABLE 9-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
------------	--

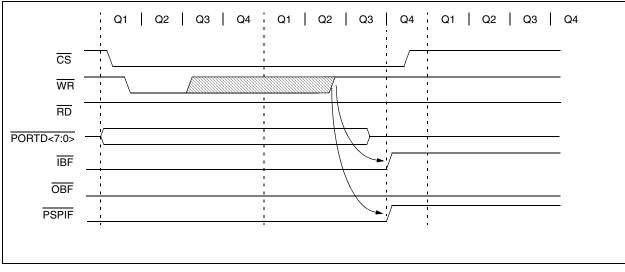
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Da	ata Output Re		xxxx xxxx	uuuu uuuu					
TRISB	PORTB	Data Directio	on Register						1111 1111	1111 1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	11-0 0-00

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

9.6 Parallel Slave Port


The Parallel Slave Port is implemented on the 40-pin devices only (PIC18F4X2).

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit, PSPMODE (TRISE<4>) is set. It is asynchronously readable and writable by the external world through RD control input pin, RE0/RD and WR control input pin, RE1/WR.


It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, <u>RE1/WR</u> to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low.

The PORTE I/O pins become control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs), and the ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

FIGURE 9-11: PARALLEL SLAVE PORT WRITE WAVEFORMS

PIC18FXX2

NOTES:

15.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- · Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (IDLE state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the

SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 15-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable, and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP status register (SSPSTAT) indicates the various status conditions.

EXAMPLE 15-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BRA	SSPSTAT, BF LOOP SSPBUF, W	;Has data been received(transmit complete)? ;No ;WREG req = contents of SSPBUF
		RXDATA	;Save in user RAM, if data is meaningful
		TXDATA, W SSPBUF	;W reg = contents of TXDATA ;New data to xmit

REGISTER 15-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0					
	SMP	CKE		P	s	R/W	UA	BF					
	bit 7	ONE	Birt	•	Ű	1011	0/1	bit 0					
oit 7	In Master of	Rate Control		Standard Cn	and made (1 MU-)						
			enabled for H				i iviriz)						
oit 6	In Master of	us Select bi or Slave moo	de:										
		SMBus spe SMBus spe											
oit 5	D/A: Data/Address bit												
	<u>In Master r</u> Reserved	<u>node:</u>											
	In Slave m	ode:											
			ast byte rece ast byte rece										
bit 4	P: STOP b		OP bit has b	oon dotocto	d last								
			letected last		u last								
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.							
oit 3		es that a sta	rt bit has bee detected las		last								
	Note:	This bit is c	leared on RE	SET and w	hen SSPEN	is cleared.							
oit 2	R/W: Read	I/Write bit Int	formation (I ²	C mode only	/)								
	<u>In Slave m</u> 1 = Read 0 = Write	ode:											
	Note:		ls the R/W bi ne address m										
	<u>In Master r</u> 1 = Transm	<u>node:</u> nit is in progi	ress										
	0 = Transm	nit is not in p											
	Note:	ORing this I	bit with SEN, de.	RSEN, PE	N, RCEN, o	r ACKEN wil	l indicate if t	he MSSP is					
bit 1	1 = Indicate	es that the u	10-bit Slave r ser needs to need to be up	update the	address in t	he SSPADD	register						
bit 0	BF: Buffer	Full Status b	oit										
		e complete,	SSPBUF is t ete, SSPBUF										
	In Receive	-	,	ie empty									
	1 = Data training 0 = Data training 1	ansmit in pro ansmit comp	ogress (does blete (does n	not include ot include th	th <u>e ACK</u> ar ne ACK and	d STOP bits STOP bits),), SSPBUF i SSPBUF is (s full empty					
	Legend:												
	R = Reada	ble bit	W = Writab	le bit	U = Unimp	lemented bit	, read as '0'						
	- n = Value	at POR	'1' = Bit is s	et	'0' = Bit is	cleared	x = Bit is ur	nknown					


BAUD	Fosc = 40 MHz		SPBRG	33 MHz		SPBRG	25 MHz		SPBRG	20 MHz		SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	NA	-	-	NA	-	-
19.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
76.8	76.92	+0.16	129	77.10	+0.39	106	77.16	+0.47	80	76.92	+0.16	64
96	96.15	+0.16	103	95.93	-0.07	85	96.15	+0.16	64	96.15	+0.16	51
300	303.03	+1.01	32	294.64	-1.79	27	297.62	-0.79	20	294.12	-1.96	16
500	500	0	19	485.30	-2.94	16	480.77	-3.85	12	500	0	9
HIGH	10000	-	0	8250	-	0	6250	-	0	5000	-	0
LOW	39.06	-	255	32.23	-	255	24.41	-	255	19.53	-	255

	TABLE 16-3:	BAUD RATES FOR SYNCHRONOUS MODE
--	-------------	---------------------------------

BAUD	Fosc =	16 MHz SPBRG 10		MHz SPBRG		7.1590	9 MHz	SPBRG	5.0688 MHz		SPBRG		
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-	
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-	
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-	
9.6	NA	-	-	NA	-	-	9.62	+0.23	185	9.60	0	131	
19.2	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92	19.20	0	65	
76.8	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22	74.54	-2.94	16	
96	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12	
300	307.70	+2.56	12	312.50	+4.17	7	298.35	-0.57	5	316.80	+5.60	3	
500	500	0	7	500	0	4	447.44	-10.51	3	422.40	-15.52	2	
HIGH	4000	-	0	2500	-	0	1789.80	-	0	1267.20	-	0	
LOW	15.63	-	255	9.77	-	255	6.99	-	255	4.95	-	255	

BAUD	Fosc =	4 MHz	SPBRG	3.5795	45 MHz	SPBRG	1 MHz		SPBRG	32.768 kHz		SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	0.30	+1.14	26
1.2	NA	-	-	NA	-	-	1.20	+0.16	207	1.17	-2.48	6
2.4	NA	-	-	NA	-	-	2.40	+0.16	103	2.73	+13.78	2
9.6	9.62	+0.16	103	9.62	+0.23	92	9.62	+0.16	25	8.20	-14.67	0
19.2	19.23	+0.16	51	19.04	-0.83	46	19.23	+0.16	12	NA	-	-
76.8	76.92	+0.16	12	74.57	-2.90	11	83.33	+8.51	2	NA	-	-
96	1000	+4.17	9	99.43	+3.57	8	83.33	-13.19	2	NA	-	-
300	333.33	+11.11	2	298.30	-0.57	2	250	-16.67	0	NA	-	-
500	500	0	1	447.44	-10.51	1	NA	-	-	NA	-	-
HIGH	1000	-	0	894.89	-	0	250	-	0	8.20	-	0
LOW	3.91	-	255	3.50	-	255	0.98	-	255	0.03	-	255

REGISTER 19-4: CONFIGURATION REGISTER 3 HIGH (CONFIG3H: BYTE ADDRESS 300005h)

bit 7-1 Unimplemented: Read as '0'

bit 0

CCP2MX: CCP2 Mux bit

1 = CCP2 input/output is multiplexed with RC1

0 = CCP2 input/output is multiplexed with RB3

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when de	vice is unprogrammed	u = Unchanged from programmed state

REGISTER 19-5: CONFIGURATION REGISTER 4 LOW (CONFIG4L: BYTE ADDRESS 300006h)

	R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1		
	BKBUG	—	—	—	—	LVP	—	STVREN		
	bit 7							bit 0		
bit 7	1 = Backg	Background D round Debug round Debug	ger disabled	d. RB6 and I	0	0		•		
bit 6-3	Unimplemented: Read as '0'									
bit 2	LVP: Low Voltage ICSP Enable bit									
	1 = Low Voltage ICSP enabled 0 = Low Voltage ICSP disabled									
bit 1	Unimplem	ented: Read	as '0'							
bit 0	STVREN:	Stack Full/Ur	derflow Re	set Enable b	pit					
		Full/Underflow								
	0 = Stack I	Full/Underflow	v will not ca	use RESET	•					
	Legend:									
	R = Reada	ble bit	C = Cleara	able bit	U = Unin	nplemented	d bit, read as	'0'		
	- n = Value	when device	is unprogra	ammed	u = Unch	nanged fror	n programme	ed state		

19.4 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 FLASH devices differs significantly from other PICmicro devices.

The user program memory is divided into five blocks. One of these is a boot block of 512 bytes. The remainder of the memory is divided into four blocks on binary boundaries. Each of the five blocks has three code protection bits associated with them. They are:

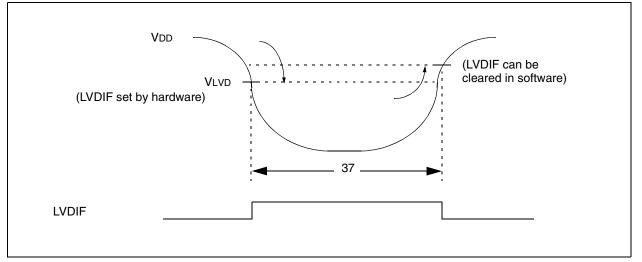
- Code Protect bit (CPn)
- Write Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 19-3 shows the program memory organization for 16- and 32-Kbyte devices, and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 19-3.

FIGURE 19-3: CODE PROTECTED PROGRAM MEMORY FOR PIC18F2XX/4XX

	MEMORY SI	ZE/DEVICE		Block Code Protection
	16 Kbytes (PIC18FX42)	32 Kbytes (PIC18FX52)	Address Range	Controlled By:
	Boot Block	Boot Block	000000h 0001FFh	CPB, WRTB, EBTRB
-	Block 0	Block 0	000200h 001FFFh	CP0, WRT0, EBTR0
	Block 1	Block 1	002000h 003FFFh	CP1, WRT1, EBTR1
	Unimplemented Read 0's	Block 2	004000h 005FFFh	CP2, WRT2, EBTR2
	Unimplemented Read 0's	Block 3	006000h 007FFFh	CP3, WRT3, EBTR3
	Unimplemented Read 0's	Unimplemented Read 0's	008000h	(Unimplemented Memory Space)
			1FFFFFh	

TABLE 19-3: SUMMARY OF CODE PROTECTION REGISTERS


File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	—	—			CP3	CP2	CP1	CP0
300009h	CONFIG5H	CPD	CPB	_	_	—	—	—	_
30000Ah	CONFIG6L	—	—	_	_	WRT3	WRT2	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	—	—	—	
30000Ch	CONFIG7L	_	—	_	_	EBTR3	EBTR2	EBTR1	EBTR0
30000Dh	CONFIG7H		EBTRB	_	_	—	_	—	

Legend: Shaded cells are unimplemented.

INCFSZ	Incremen	t f, skip if 0					
Syntax:	[label]	NCFSZ f[,d [,a]				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5					
Operation:	(f) + 1 \rightarrow c skip if resu						
Status Affected:	None						
Encoding:	0011	11da ff:	ff ffff				
Description: The contents of register 'f' are incremented. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed back in register 'f'. (default) If the result is 0, the next instruc- tion, which is already fetched, is discarded, and a NOP is executed instead, making it a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).							
Words:	1						
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.							
Q Cycle Activity:	- ,						
Q1	Q2	Q3	Q4				
Decode	Read	Process	Write to				
lf alvia:	register 'f'	Data	destination				
lf skip: Q1	Q2	Q3	04				
No	No	No	Q4 No				
operation	operation	operation	operation				
If skip and follow	ed by 2-wor	d instruction:					
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
No operation	No operation	No operation	No operation				
Example:	HERE I NZERO ZERO	HERE INCFSZ CNT, 1, 0 NZERO :					
Before Instru		(הממקת)					
10	= Address	6 (HERE)					
CNT If CNT PC	If $CNT = 0;$						
If CNT PC	≠ 0; = Address	(NZERO)					
		,					

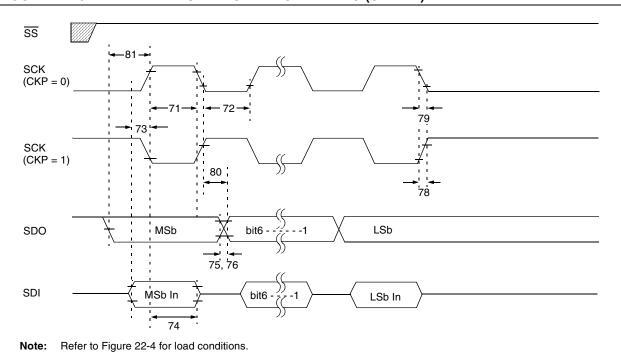
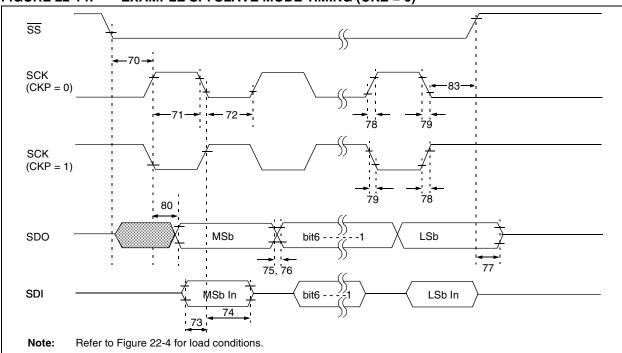

INFS	SNZ	Increment	t f, skip i	if not 0						
Synt	ax:	[label]	NFSNZ	f [,d [,a	a]					
Ope	rands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5							
Ope	ration:	(f) + 1 \rightarrow c skip if resu								
Statu	us Affected:	None								
Enco	oding:	0100	10da	ffff	ffff					
Description:The contents of register 'f' are incremented. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed back in register 'f' (default). If the result is not 0, the next instruction, which is already fetched, is discarded, and a NOP is executed instead, making it a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- 										
Word	· · ·									
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.										
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read	Proces	-	/rite to					
If al	din:	register 'f'	Data	des	stination					
lf sk	Q1	Q2	Q3		Q4					
1	No	No	No		No					
	operation	operation	operatio	on op	eration					
lf sk	kip and follow	ed by 2-word	d instruct	ion:						
	Q1	Q2	Q3		Q4					
	No	No	No		No					
	operation	operation	operatio	on op	eration					
	No operation	No operation	No operatio		No eration					
	operation	operation	operatio	n op	eration					
<u>Exar</u>	<u>mple</u> :	HERE] ZERO NZERO	INFSNZ	REG, 1	, 0					
	Before Instru									
	PC		(HERE)							
	After Instruct									
	REG If REG	= REG + ⁻ ≠ 0;	1							
	PC	= Address	(NZERC)						
	lf REG PC	= 0; = Address	(ZERO)							

FIGURE 22-3: LOW VOLTAGE DETECT CHARACTERISTICS

TABLE 22-1: LOW VOLTAGE DETECT CHARACTERISTICS

					-	erature ·	-40°C ≤ 1	a (unless otherwise stated) TA ≤ +85°C for industrial TA ≤ +125°C for extended
Param No.	Symbol	Character	istic	Min	Тур	Мах	Units	Conditions
D420	Vlvd	LVD Voltage on VDD	LVV = 0001	1.98	2.06	2.14	V	$T \ge 25^{\circ}C$
		transition high to	LVV = 0010	2.18	2.27	2.36	V	T ≥ 25°C
		IOW	LVV = 0011	2.37	2.47	2.57	V	T ≥ 25°C
		LVV = 0100	2.48	2.58	2.68	V		
		LVV = 0101	2.67	2.78	2.89	V		
			LVV = 0110	2.77	2.89	3.01	V	
			LVV = 0111	2.98	3.1	3.22	V	
			LVV = 1000	3.27	3.41	3.55	V	
			LVV = 1001	3.47	3.61	3.75	V	
			LVV = 1010	3.57	3.72	3.87	V	
			LVV = 1011	3.76	3.92	4.08	V	
			LVV = 1100	3.96	4.13	4.3	V	
			LVV = 1101	4.16	4.33	4.5	V	
			LVV = 1110	4.45	4.64	4.83	V	

FIGURE 22-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)


TABLE 22-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Characteristic		Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30	—	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	p time of SDI data input to SCK edge				
73A	Тв2в	Last clock edge of Byte1 to the 1st clo	1.5 TCY + 40		ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK e	lold time of SDI data input to SCK edge			ns	
75	TdoR	SDO data output rise time	PIC18FXXX	_	25	ns	
			PIC18 LF XXX	_	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXX	—	25	ns	
			PIC18 LF XXX	_	60	ns	VDD = 2V
78	TscR	SCK output rise time (Master mode)	PIC18FXXX	—	25	ns	
			PIC18 LF XXX	—	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXX	_	25	ns	
			PIC18 LF XXX	—	60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK	PIC18FXXX	_	50	ns	
	TscL2doV	edge	PIC18 LF XXX		150	ns	VDD = 2V
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge				ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

TABLE 22-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))

Param. No.	Symbol	Characteristic	Characteristic		Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to $SCK \downarrow$ or $SCK \uparrow$ input	K↓ or SCK↑ input		—	ns	
71	TscH	SCK input high time (Slave mode)	Continuous	1.25 Tcy + 30		ns	
71A			Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time (Slave mode)	Continuous	1.25 TCY + 30	_	ns	
72A			Single Byte	40		ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK ec	up time of SDI data input to SCK edge		—	ns	
73A	Тв2в	Last clock edge of Byte1 to the first clock	ock edge of Byte1 to the first clock edge of Byte2		_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edg	100	—	ns		
75	TdoR	SDO data output rise time	PIC18FXXX	—	25	ns	
			PIC18LFXXX	—	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXX	—	25	ns	
			PIC18LFXXX	—	60	ns	VDD = 2V
77	TssH2doZ	SS↑ to SDO output hi-impedance	•	10	50	ns	
78	TscR	SCK output rise time (Master mode)	PIC18FXXX		25	ns	
			PIC18LFXXX	—	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXX		25	ns	
			PIC18LFXXX		60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK edge	PIC18FXXX	—	50	ns	
	TscL2doV		PIC18LFXXX	—	150	ns	VDD = 2V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5 Tcy + 40	_	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

PIC18FXX2

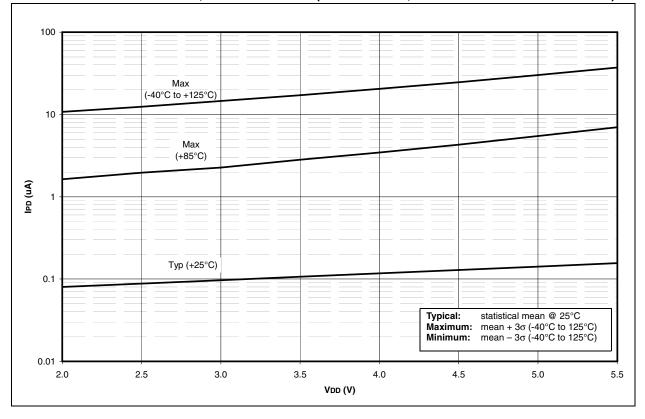
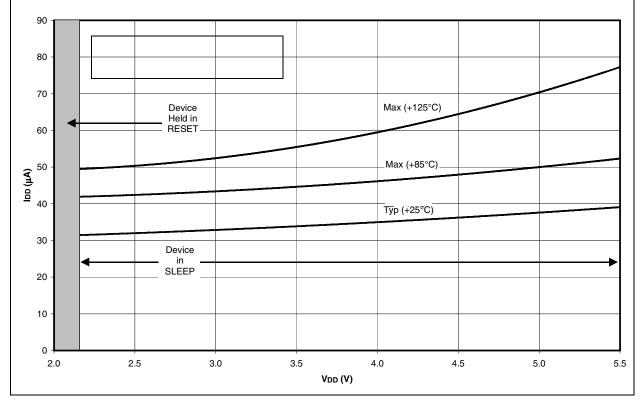
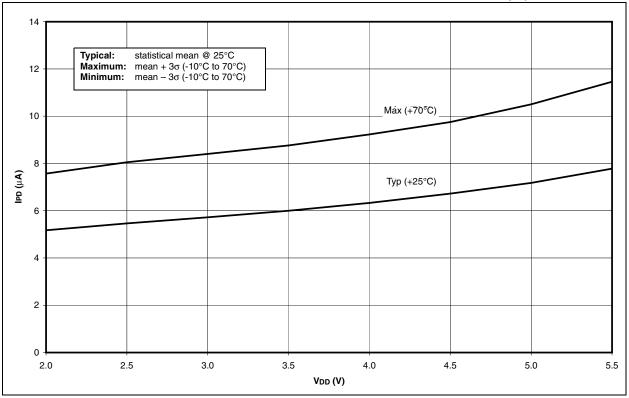




FIGURE 23-15: IPD vs. VDD, -40°C TO +125°C (SLEEP MODE, ALL PERIPHERALS DISABLED)

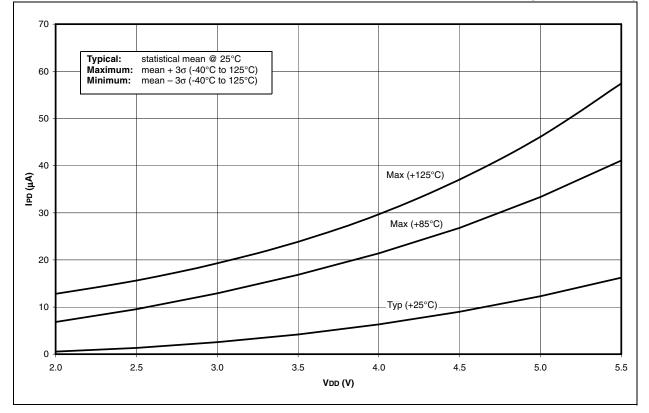


FIGURE 23-17: TYPICAL AND MAXIMUM \triangle ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C, TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)

FIGURE 23-18: TYPICAL AND MAXIMUM Alwdt vs. Vdd OVER TEMPERATURE (WDT ENABLED)

PORTE
Analog Port Pins
Associated Registers
LATE Register
PORTE Register97
PSP Mode Select (PSPMODE Bit)
RE0/RD/AN5 Pin
RE1/WR/AN6 Pin
RE2/CS/AN7 Pin
TRISE Register
Postscaler, WDT
Assignment (PSA Bit)
Rate Select (T0PS2:T0PS0 Bits)
Switching Between Timer0 and WDT
Power-down Mode. See SLEEP
Power-on Reset (POR)
Oscillator Start-up Timer (OST)
Power-up Timer (PWRT)
Prescaler, Capture
Prescaler, Timer0
Assignment (PSA Bit) 105
Rate Select (T0PS2:T0PS0 Bits)105
Switching Between Timer0 and WDT105
Prescaler, Timer2 122
PRO MATE II Universal Device Programmer
Product Identification System
Program Counter
PCL Register
PCLATH Register
PCLATU Register
Program Memory
Interrupt Vector
Map and Stack for PIC18F442/242
Map and Stack for PIC18F452/252
RESET Vector
Program Verification and Code Protection
Associated Registers
Programming, Device Instructions
PSP. See Parallel Slave Port.
Pulse Width Modulation. See PWM (CCP Module).
PUSH
PWM (CCP Module)
Associated Registers
CCPR1H:CCPR1L Registers
Duty Cycle
Example Frequencies/Resolutions
Period
Setup for PWM Operation
TMR2 to PR2 Match 111, 122
Q
-
Q Clock

R

RAM. See Data Memory	
RC Oscillator	
RCALL	
RCSTA Register	
SPEN Bit	
Register File	

Registers		
	N0 (A/D Control 0)	
	N1 (A/D Control 1)	182
	CON and CCP2CON	
	Capture/Compare/PWM Control)	
	IG1H (Configuration 1 High)	
	IG2H (Configuration 2 High) IG2L (Configuration 2 Low)	
CONF	IG3H (Configuration 3 High)	198
	IG4L (Configuration 4 Low)	
	IG5H (Configuration 5 High)	
	IG5L (Configuration 5 Low)	
	IG6H (Configuration 6 High)	
CONF	IG6L (Configuration 6 Low)	200
CONF	IG7H (Configuration 7 High)	201
	IG7L (Configuration 7 Low)	
DEVID	01 (Device ID Register 1)	202
	02 (Device ID Register 2)	
	N1 (Data EEPROM Control 1)	
	ummary	
	DN (Interrupt Control)	
	DN2 (Interrupt Control 2)	
	DN3 (Interrupt Control 3)	
	Peripheral Interrupt Priority 1)	
	ON (LVD Control)	
	ON (Oscillator Control)	
	Peripheral Interrupt Enable 1)	
	Peripheral Interrupt Enable 2)	
	(Peripheral Interrupt Request 1)	
	Peripheral Interrupt Request 2)	
	I (Register Control)	
RCON	I (RESET Control)	53
	A (Receive Status and Control)	167
	ON1 (MSSP Control 1)	
	² C Mode	
	SPI Mode	127
	ON2 (MSSP Control 2)	
	² C Mode	137
	TAT (MSSP Status)	105
	² C Mode	
	SPI Mode US	
	TR (Stack Pointer)	
TOCO	N (Timer0 Control)	103
	N (Timer 1 Control)	
	N (Timer 2 Control)	
T3CO	N (Timer3 Control)	113
TXST	A (Transmit Status and Control)	166
	CON (Watchdog Timer Control)	
	-out Reset (BOR)	
	Reset (During SLEEP)	
	Reset (Normal Operation)	
	ator Start-up Timer (OST)	
	r-on Reset (POR)	
	r-up Timer (PWRT)	
-	ammable Brown-out Reset (BOR)	
	T Instruction Full Reset	
	Underflow Reset	
	dog Timer (WDT) Reset	
Traton		