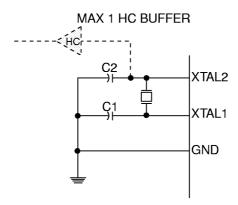


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

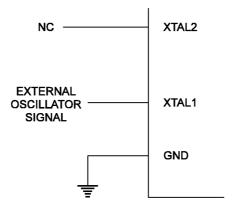

DetailsProduct StatusObsoleteCore ProcessorAVRCore Size8-BitSpeed4MHzConnectivitySPI, UART/USARTPeripheralsPWM, WDTNumber of I/O32Program Memory Size4KB (2K x 16)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 6VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°CMounting TypeThrough HolePackage / Case40-DIP (0.600", 15.24mm)Purchase URLhttps://www.e-xfl.com/product-detail/microchip-technology/at90s4414-4pi		
Core Processor AVR Core Size 8-Bit Speed 4MHz Connectivity SPI, UART/USART Peripherals PWM, WDT Number of I/O 32 Program Memory Size 4KB (2K x 16) Program Memory Type FLASH EEPROM Size 256 x 8 RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Details	
Core Size 8-Bit Speed 4MHz Connectivity SPI, UART/USART Peripherals PWM, WDT Number of I/O 32 Program Memory Size 4KB (2K x 16) Program Memory Type FLASH EEPROM Size 256 x 8 RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Product Status	Obsolete
Speed 4MHz Connectivity SPI, UART/USART Peripherals PWM, WDT Number of I/O 32 Program Memory Size 4KB (2K x 16) Program Memory Type FLASH EEPROM Size 256 x 8 RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Core Processor	AVR
Connectivity SPI, UART/USART Peripherals PWM, WDT Number of I/O 32 Program Memory Size 4KB (2K x 16) Program Memory Type FLASH EEPROM Size 256 x 8 RAM Size 256 x 8 RAM Size 256 x 8 RAM Size 270 x 6V Data Converters - Oscillator Type Internal Operating Temperature 40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Core Size	8-Bit
Peripherals PWM, WDT Number of I/O 32 Program Memory Size 4KB (2K x 16) Program Memory Type FLASH EEPROM Size 256 x 8 RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Speed	4MHz
Number of I/O 32 Program Memory Size 4KB (2K x 16) Program Memory Type FLASH EEPROM Size 256 x 8 RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-PDIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Connectivity	SPI, UART/USART
Program Memory Size 4KB (2K x 16) Program Memory Type FLASH EEPROM Size 256 x 8 RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Peripherals	PWM, WDT
Program Memory Type FLASH EEPROM Size 256 x 8 RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Number of I/O	32
EEPROM Size 256 x 8 RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Program Memory Size	4KB (2K x 16)
RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd) 2.7V ~ 6V Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	EEPROM Size	256 x 8
Data Converters - Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	RAM Size	256 x 8
Oscillator Type Internal Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Operating Temperature -40°C ~ 85°C Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Data Converters	-
Mounting Type Through Hole Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Oscillator Type	Internal
Package / Case 40-DIP (0.600", 15.24mm) Supplier Device Package 40-PDIP	Operating Temperature	-40°C ~ 85°C
Supplier Device Package 40-PDIP	Mounting Type	Through Hole
	Package / Case	40-DIP (0.600", 15.24mm)
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at90s4414-4pi	Supplier Device Package	40-PDIP
	Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s4414-4pi

Figure 2. Oscillator Connections

Note: When using the MCU Oscillator as a clock for an external device, an HC buffer should be connected as indicated in the figure.

Figure 3. External Clock Drive Configuration

Architectural Overview

The fast-access register file concept contains 32×8 -bit general purpose working registers with a single clock cycle access time. This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file - in one clock cycle.

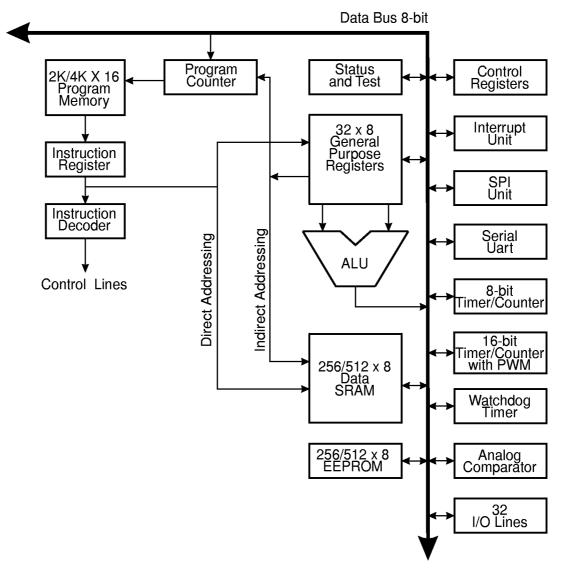
Six of the 32 registers can be used as three 16-bits indirect address register pointers for Data Space addressing - enabling efficient address calculations. One of the three address pointers is also used as the address pointer for the constant table look up function. These added function registers are the 16-bits X-register, Y-register and Z-register.

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register operations are also executed in the ALU. Figure 4 shows the AT90S4414/8515 AVR RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be used on the register file as well. This is enabled by the fact that the register file is assigned the 32 lowermost Data Space addresses (\$00 - \$1F), allowing them to be accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, A/D-converters, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the register file, \$20 - \$5F.

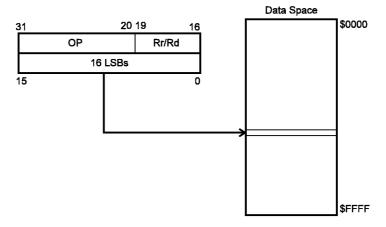
The AVR uses a Harvard architecture concept - with separate memories and buses for program and data. The program memory is executed with a two stage pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is in-system programmable Flash memory.


With the relative jump and call instructions, the whole 2K/4K address space is directly accessed. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

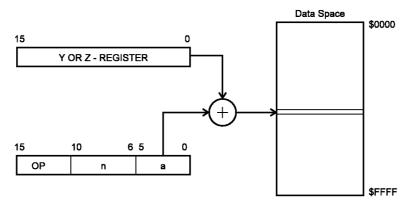
During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The 16-bit stack pointer SP is read/write accessible in the I/O space.

The 256/512 bytes data SRAM can be easily accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.


Figure 4. The AT90S4414/8515 AVR RISC Architecture

Data Direct


Figure 12. Direct Data Addressing

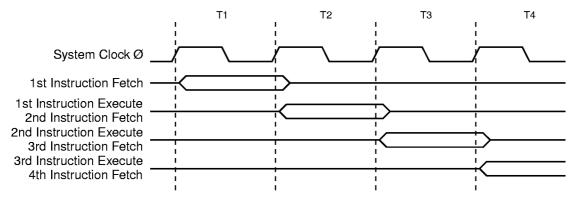
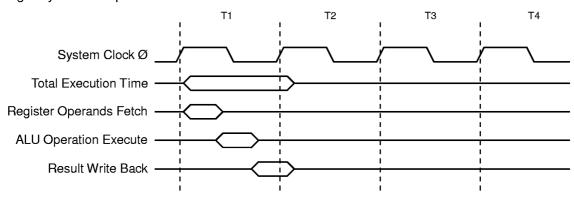
A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination or source register.

Data Indirect with Displacement

Figure 13. Data Indirect with Displacement

Operand address is the result of the Y or Z-register contents added to the address contained in 6 bits of the instruction word.

Figure 20. The Parallel Instruction Fetches and Instruction Executions

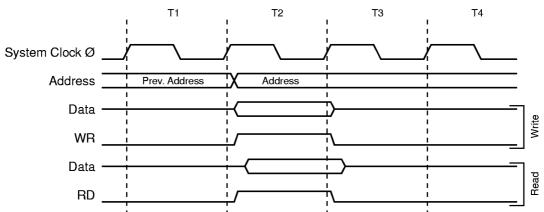

Figure 21 shows the internal timing concept for the register file. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register.

Figure 21. Single Cycle ALU Operation

The internal data SRAM access is performed in two System Clock cycles as described in Figure 22.

Figure 22. On-chip Data SRAM Access Cycles

See "Interface to External SRAM" on page 53 for a description of the access to the external SRAM.

I/O Memory

The I/O space definition of the AT90S4414/8515 is shown in the following table:

Table 2. AT90S4414/8515 I/O Space

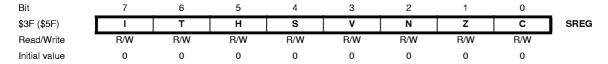
Address Hex	Name	Function
\$3F (\$5F)	SREG	Status Register
\$3E (\$5E)	SPH	Stack Pointer High
\$3D (\$5D)	SPL	Stack Pointer Low
\$3B (\$5B)	GIMSK	General Interrupt Mask register
\$3A (\$5A)	GIFR	General Interrupt Flag Register
\$39 (\$59)	TIMSK	Timer/Counter Interrupt Mask register
\$38 (\$58)	TIFR	Timer/Counter Interrupt Flag register
\$35 (\$55)	MCUCR	MCU general Control Register
\$33 (\$53)	TCCR0	Timer/Counter0 Control Register
\$32 (\$52)	TCNT0	Timer/Counter0 (8-bit)
\$2F (\$4F)	TCCR1A	Timer/Counter1 Control Register A
\$2E (\$4E)	TCCR1B	Timer/Counter1 Control Register B
\$2D (\$4D)	TCNT1H	Timer/Counter1 High Byte
\$2C (\$4C)	TCNT1L	Timer/Counter1 Low Byte
\$2B (\$4B)	OCR1AH	Timer/Counter1 Output Compare Register A High Byte
\$2A (\$4A)	OCR1AL	Timer/Counter1 Output Compare Register A Low Byte
\$29 (\$49)	OCR1BH	Timer/Counter1 Output Compare Register B High Byte
\$28 (\$48)	OCR1BL	Timer/Counter1 Output Compare Register B Low Byte
\$25 (\$45)	ICR1H	T/C 1 Input Capture Register High Byte
\$24 (\$44)	ICR1L	T/C 1 Input Capture Register Low Byte
\$21 (\$41)	WDTCR	Watchdog Timer Control Register
\$1F (\$3E)	EEARH	EEPROM Address Register High Byte (AT90S8515)
\$1E (\$3E)	EEARL	EEPROM Address Register Low Byte
\$1D (\$3D)	EEDR	EEPROM Data Register
\$1C (\$3C)	EECR	EEPROM Control Register
\$1B (\$3B)	PORTA	Data Register, Port A
\$1A (\$3A)	DDRA	Data Direction Register, Port A
\$19 (\$39)	PINA	Input Pins, Port A
\$18 (\$38)	PORTB	Data Register, Port B
\$17 (\$37)	DDRB	Data Direction Register, Port B
\$16 (\$36)	PINB	Input Pins, Port B
\$15 (\$35)	PORTC	Data Register, Port C
\$14 (\$34)	DDRC	Data Direction Register, Port C
\$13 (\$33)	PINC	Input Pins, Port C

Table 2. AT90S4414/8515 I/O Space (Continued)

Address Hex	Name	Function
\$12 (\$32)	PORTD	Data Register, Port D
\$11 (\$31)	DDRD	Data Direction Register, Port D
\$10 (\$30)	PIND	Input Pins, Port D
\$0F (\$2F)	SPDR	SPI I/O Data Register
\$0E (\$2E)	SPSR	SPI Status Register
\$0D (\$2D)	SPCR	SPI Control Register
\$0C (\$2C)	UDR	UART I/O Data Register
\$0B (\$2B)	USR	UART Status Register
\$0A (\$2A)	UCR	UART Control Register
\$09 (\$29)	UBRR	UART Baud Rate Register
\$08 (\$28)	ACSR	Analog Comparator Control and Status Register

Note: Reserved and unused locations are not shown in the table

All AT90S4414/8515 I/Os and peripherals are placed in the I/O space. The I/O locations are accessed by the IN and OUT instructions transferring data between the 32 general purpose working registers and the I/O space. I/O registers within the address range \$00 - \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set chapter for more details. When using the I/O specific commands IN, OUT the I/O addresses \$00 - \$3F must be used. When addressing I/O registers as SRAM, \$20 must be added to this address. All I/O register addresses throughout this document are shown with the SRAM address in parentheses.


For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

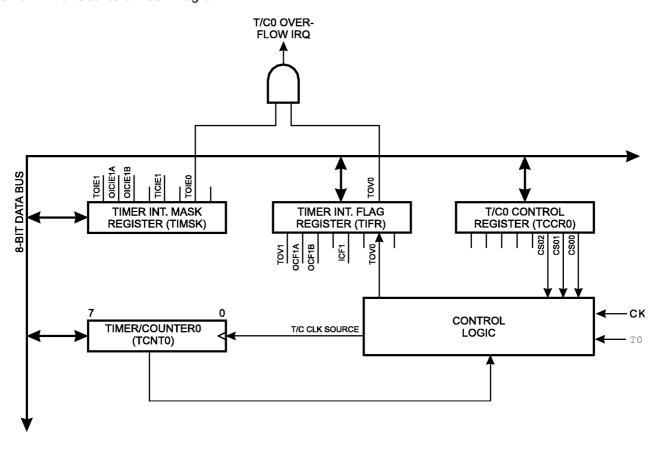
Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

The I/O and peripherals control registers are explained in the following chapters.

Status Register - SREG

The AVR status register - SREG - at I/O space location \$3F (\$5F) is defined as:

• Bit 7 - I: Global Interrupt Enable


The global interrupt enable bit must be set (one) for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the global interrupt enable bit is cleared (zero), none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts.

• Bit 6 - T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T bit as source and destination for the operated bit. A bit from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the register file by the BLD instruction.

Figure 29. Timer/Counter0 Block Diagram

Timer/Counter0 Control Register - TCCR0

Bit	7	6	5	4	3	2	1	0	_
\$33 (\$53)	-	-	-	-	-	CS02	CS01	CS00	TCCR0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial value	0	0	0	О	0	0	0	О	

• Bits 7..3 - Res: Reserved bits

These bits are reserved bits in the AT90S4414/8515 and always read as zero.

• Bits 2,1,0 - CS02, CS01, CS00: Clock Select0, bit 2,1 and 0

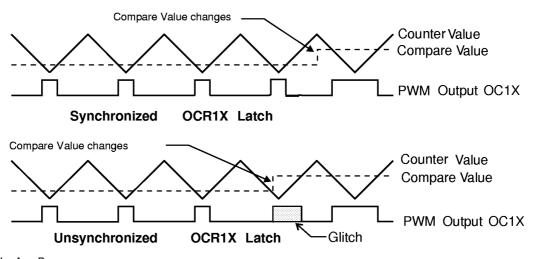

The Clock Select0 bits 2,1 and 0 define the prescaling source of Timer/Counter0.

Table 8. Clock 0 Prescale Select

CS02	CS01	CS00	Description
0	0	0	Stop, the Timer/Counter0 is stopped.
0	0	1	СК
0	1	0	CK/8
0	1	1	CK/64
1	0	0	CK/256
1	0	1	CK/1024
1	1	0	External Pin T0, falling edge
1	1	1	External Pin T0, rising edge

Note that in the PWM mode, the 10 least significant OCR1A/OCR1B bits, when written, are transferred to a temporary location. They are latched when Timer/Counter1 reaches the value TOP. This prevents the occurrence of odd-length PWM pulses (glitches) in the event of an unsynchronized OCR1A/OCR1B write. See Figure 32 for an example.

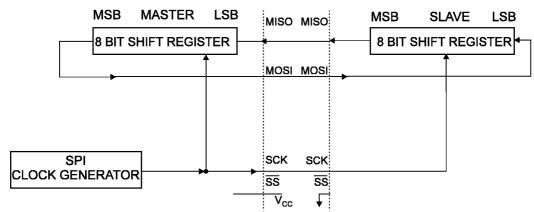
Figure 32. Effects on Unsynchronized OCR1 Latching

Note: X = A or B

During the time between the write and the latch operation, a read from OCR1A or OCR1B will read the contents of the temporary location. This means that the most recently written value always will read out of OCR1A/B

When the OCR1 contains \$0000 or TOP, the output OC1A/OC1B is updated to low or high on the next compare match according to the settings of COM1A1/COM1A0 or COM1B1/COM1B0. This is shown in Table .

Table 14. PWM Outputs OCR1X = \$0000 or TOP


COM1X1	COM1X0	OCR1X	Output OC1X
1	0	\$0000	L
1	0	TOP	Н
1	1	\$0000	Н
1	1	TOP	L

Note: X = A or B

In PWM mode, the Timer Overflow Flag1, TOV1, is set when the counter advances from \$0000. Timer Overflow Interrupt1 operates exactly as in normal Timer/Counter mode, i.e. it is executed when TOV1 is set provided that Timer Overflow Interrupt1 and global interrupts are enabled. This does also apply to the Timer Output Compare1 flags and interrupts.

Figure 35. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When receiving data, however, a received byte must be read from the SPI Data Register before the next byte has been completely shifted in. Otherwise, the first byte is lost.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK and \overline{SS} pins is overridden according to the following table:

Table 16. SPI Pin Overrides

Pin	Direction, Master SPI	Direction, Slave SPI
MOSI	User Defined	Input
MISO	Input	User Defined
SCK	User Defined	Input
SS	User Defined	Input

Note: See "Alternate Functions of PortB" on page 58 for a detailed description of how to define the direction of the user defined SPI pins.

SS Pin Functionality

When the SPI is configured as a master (MSTR in SPCR is set), the user can determine the direction of the \overline{SS} pin. If \overline{SS} is configured as an output, the pin is a general output pin which does not affect the SPI system. If \overline{SS} is configured as an input, it must be hold high to ensure Master SPI operation. If the \overline{SS} pin is driven low by peripheral circuitry when the SPI is configured as master with the \overline{SS} pin defined as an input, the SPI system interprets this as another master selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the SPI system takes the following actions:

- 1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a result of the SPI becoming a slave, the MOSI and SCK pins become inputs.
- 2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled and the I-bit in SREG are set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmittal is used in master mode, and there exists a possibility that \overline{SS} is driven low, the interrupt should always check that the MSTR bit is still set. Once the MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI master mode.

When the SPI is configured as a slave, the \overline{SS} pin is always input. When \overline{SS} is held low, the SPI is activated and MISO becomes an output if configured so by the user. All other pins are inputs. When \overline{SS} is driven high, all pins are inputs, and the SPI is passive, which means that it will not receive incoming data. Note that the SPI logic will be reset once the \overline{SS} pin is brought high. If the \overline{SS} pin is brought high during a transmission, the SPI will stop sending and receiving immediately and both data received and data sent must be considered as lost.

UART

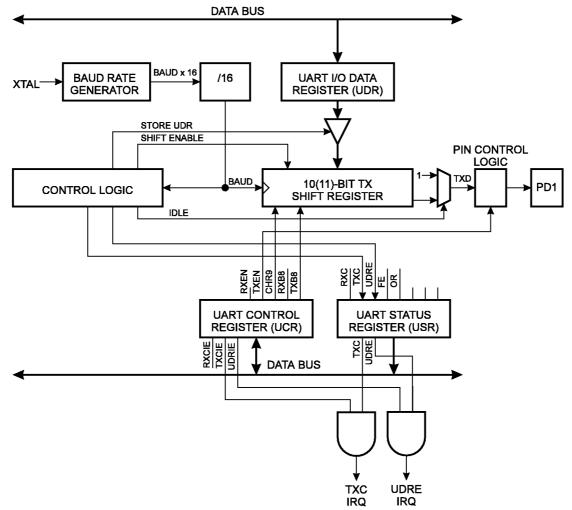
The AT90S4414/8515 features a full duplex (separate receive and transmit registers) Universal Asynchronous Receiver and Transmitter (UART). The main features are:

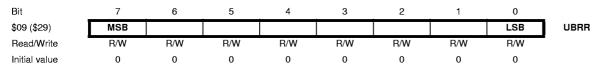
- Baud rate generator that can generate a large number of baud rates (bps)
- · High baud rates at low XTAL frequencies
- · 8 or 9 bits data
- · Noise filtering
- · Overrun detection
- · Framing Error detection
- · False Start Bit detection
- Three separate interrupts on TX Complete, TX Data Register Empty and RX Complete

Data Transmission

A block schematic of the UART transmitter is shown in Figure 38.

Figure 38. UART Transmitter




Table 18. UBRR Settings at Various Crystal Frequencies

Baud Rate	1	MHz	%Error	1.8432	MHz	%Error	2	2 MHz	%Error	2.4576	MHz	%Error
2400	UBRR=	25	0.2	UBRR=	47	0.0	UBRR=	51	0.2	UBRR=	63	0.0
4800	UBRR=	12	0.2	UBRR=	23	0.0	UBRR=	25	0.2	UBRR=	31	0.0
9600	UBRR=	6	7.5	UBRR=	11	0.0	UBRR=	12	0.2	UBRR=	15	0.0
14400	UBRR=	3	7.8	UBRR=	7	0.0	UBRR=	8	3.7	UBRR=	10	3.1
19200	UBRR=	2	7.8	UBRR=	5	0.0	UBRR=	6	7.5	UBRR=	7	0.0
28800	UBRR=	1	7.8	UBRR=	3	0.0	UBRR=	3	7.8	UBRR=	4	6.3
38400	UBRR=	1	22.9	UBRR=	2	0.0	UBRR=	2	7.8	UBRR=	3	0.0
57600	UBRR=	0	7.8	UBRR=	1	0.0	UBRR=	1	7.8	UBRR=	2	12.5
76800	UBRR=	0	22.9	UBRR=	1	33.3	UBRR=	1	22.9	UBRR=	1	0.0
115200	UBRR=	0	84.3	UBRR=	0	0.0	UBRR=	0	7.8	UBRR=	0	25.0

Baud Rate	3.2768	MHz	%Error	3.6864	MHz	%Error	4	MHz	%Error	4.608	MHz	%Error
2400	UBRR=	84	0.4	UBRR=	95	0.0	UBRR=	103	0.2	UBRR=	119	0.0
4800	UBRR=	42	0.8	UBRR=	47	0.0	UBRR=	51	0.2	UBRR=	59	0.0
9600	UBRR=	20	1.6	UBRR=	23	0.0	UBRR=	25	0.2	UBRR=	29	0.0
14400	UBRR=	13	1.6	UBRR=	15	0.0	UBRR=	16	2.1	UBRR=	19	0.0
19200	UBRR=	10	3.1	UBRR=	11	0.0	UBRR=	12	0.2	UBRR=	14	0.0
28800	UBRR=	6	1.6	UBRR=	7	0.0	UBRR=	8	3.7	UBRR=	9	0.0
38400	UBRR=	4	6.3	UBRR=	5	0.0	UBRR=	6	7.5	UBRR=	7	6.7
57600	UBRR=	3	12.5	UBRR=	3	0.0	UBRR=	3	7.8	UBRR=	4	0.0
76800	UBRR=	2	12.5	UBRR=	2	0.0	UBRR=	2	7.8	UBRR=	3	6.7
115200	UBRR=	1	12.5	UBRR=	1	0.0	UBRR=	1	7.8	UBRR=	2	20.0

Baud Rate	7.3728	MHz	%Error	8	MHz	%Error	9.216	MHz	%Error	11.059	MHz	%Error
2400	UBRR=	191	0.0	UBRR=	207	0.2	UBRR=	239	0.0	UBRR=	287	-
4800	UBRR=	95	0.0	UBRR=	103	0.2	UBRR=	119	0.0	UBRR=	143	0.0
9600	UBRR=	47	0.0	UBRR=	51	0.2	UBRR=	59	0.0	UBRR=	71	0.0
14400	UBRR=	31	0.0	UBRR=	34	0.8	UBRR=	39	0.0	UBRR=	47	0.0
19200	UBRR=	23	0.0	UBRR=	25	0.2	UBRR=	29	0.0	UBRR=	35	0.0
28800	UBRR=	15	0.0	UBRR=	16	2.1	UBRR=	19	0.0	UBRR=	23	0.0
38400	UBRR=	11	0.0	UBRR=	12	0.2	UBRR=	14	0.0	UBRR=	17	0.0
57600	UBRR=	7	0.0	UBRR=	8	3.7	UBRR=	9	0.0	UBRR=	11	0.0
76800	UBRR=	5	0.0	UBRR=	6	7.5	UBRR=	7	6.7	UBRR=	8	0.0
115200	UBRR=	3	0.0	UBRR=	3	7.8	UBRR=	4	0.0	UBRR=	5	0.0

UART BAUD Rate Register - UBRR

The UBRR register is an 8-bit read/write register which specifies the UART Baud Rate according to the equation on the previous page.

I/O-Ports

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions. The same applies for changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as input).

Port A

Port A is an 8-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port A, one each for the Data Register - PORTA, \$1B(\$3B), Data Direction Register - DDRA, \$1A(\$3A) and the Port A Input Pins - PINA, \$19(\$39). The Port A Input Pins address is read only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port A output buffers can sink 20 mA and thus drive LED displays directly. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port A pins have alternate functions related to the optional external data SRAM. Port A can be configured to be the multiplexed low-order address/data bus during accesses to the external data memory. In this mode, Port A has internal pull-up resistors.

When Port A is set to the alternate function by the SRE - External SRAM Enable - bit in the MCUCR - MCU Control Register, the alternate settings override the data direction register.

Port A Data Register - PORTA

Bit	7	6	5	4	3	2	1	0	
\$1B (\$3B)	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA
Read/Write	R/W	•							
Initial value	0	0	0	0	0	0	0	0	

Port A Data Direction Register - DDRA

Bit	7	6	5	4	3	2	1	0	
\$1A (\$3A)	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
Read/Write	R/W	•							
Initial value	0	0	0	0	0	0	0	0	

Port A Input Pins Address - PINA

Bit	7	6	5	4	3	2	1	0	
\$19 (\$39)	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
Read/Write	R	R	R	R	R	R	R	R	
Initial value	Hi-Z								

The Port A Input Pins address - PINA - is not a register, and this address enables access to the physical value on each Port A pin. When reading PORTA the Port A Data Latch is read, and when reading PINA, the logical values present on the pins are read.

Port A as General Digital I/O

All 8 pins in Port A have equal functionality when used as digital I/O pins.

PAn, General I/O pin: The DDAn bit in the DDRA register selects the direction of this pin, if DDAn is set (one), PAn is configured as an output pin. If DDAn is cleared (zero), PAn is configured as an input pin. If PORTAn is set (one) when the pin configured as an input pin, the MOS pull up resistor is activated. To switch the pull up resistor off, the PORTAn has to be cleared (zero) or the pin has to be configured as an output pin. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not active

• INT1 - Port D, Bit 3

INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt source to the MCU. See the interrupt description for further details, and how to enable the source.

• INT0 - Port D, Bit 2

INTO, External Interrupt source 0: The PD2 pin can serve as an external interrupt source to the MCU. See the interrupt description for further details, and how to enable the source.

• TXD - Port D, Bit 1

Transmit Data (Data output pin for the UART). When the UART transmitter is enabled, this pin is configured as an output regardless of the value of DDRD1.


• RXD - Port D, Bit 0

Receive Data (Data input pin for the UART). When the UART receiver is enabled this pin is configured as an input regardless of the value of DDRD0. When the UART forces this pin to be an input, a logical one in PORTD0 will turn on the internal pull-up.

PortD Schematics

Note that all port pins are synchronized. The synchronization latches are however, not shown in the figures.

Figure 53. Port D Schematic Diagram (Pin PD0)

DC Characteristics

 $T_A = -40$ °C to 85°C, $V_{CC} = 2.7$ V to 6.0V (unless otherwise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IL}	Input Low Voltage	(Except XTAL1)	-0.5		0.3 V _{CC} ⁽¹⁾	٧
V _{IL1}	Input Low Voltage	(XTAL1)	-0.5		0.2 V _{CC} ⁽¹⁾	V
V _{IH}	Input High Voltage	(Except XTAL1, RESET)	0.6 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH1}	Input High Voltage	(XTAL1)	0.8 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH2}	Input High Voltage	(RESET)	0.9 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{OL}	Output Low Voltage ⁽³⁾ (Ports A,B,C,D)	I _{OL} = 20 mA, V _{CC} = 5V I _{OL} = 10 mA, V _{CC} = 3V			0.6 0.5	V V
V _{OH}	Output High Voltage ⁽⁴⁾ (Ports A,B,C,D)	I _{OH} = -3 mA, V _{CC} = 5V I _{OH} = -1.5 mA, V _{CC} = 3V	4.2 2.3			V V
I _{IL}	Input Leakage Current I/O pin	Vcc = 6V, pin low (absolute value)			8.0	μΑ
I _{IH}	Input Leakage Current I/O pin	Vcc = 6V, pin high (absolute value)			980	nA
RRST	Reset Pull-Up Resistor		100		500	kΩ
R _{I/O}	I/O Pin Pull-Up Resistor		35		120	kΩ
I _{CC}	Davies Complete Company	Active Mode, V _{CC} = 3V, 4MHz			3.0	mA
	Power Supply Current	Idle Mode V _{CC} = 3V, 4MHz			1.2	mA
	D D MI-(5)	WDT enabled, V _{CC} = 3V		9	15.0	μΑ
	Power Down Mode ⁽⁵⁾	WDT disabled, V _{CC} = 3V		<1	2.0	μА
V _{ACIO}	Analog Comparator Input Offset Voltage	V _{CC} = 5V			40	mV
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50		50	nA
t _{ACPD}	Analog Comparator Propagation Delay	V _{CC} = 2.7V V _{CC} = 4.0V		750 500		ns

- Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low.
 - 2. "Min" means the lowest value where the pin is guaranteed to be read as high.
 - 3. Although each I/O port can sink more than the test conditions (20mA at Vcc = 5V, 10mA at Vcc = 3V) under steady state conditions (non-transient), the following must be observed:
 - 1) The sum of all IOL, for all ports, should not exceed 200 mA.
 - 2) The sum of all IOL, for ports B0-B7, D0-D7 and XTAL2, should not exceed 100 mA.
 - 3) The sum of all IOL, for ports A0-A7, ALE, OC1B and C0-C7 should not exceed 100 mA.
 - If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
 - 4. Although each I/O port can source more than the test conditions (3mA at Vcc = 5V, 1.5mA at Vcc = 3V) under steady state conditions (non-transient), the following must be observed:
 - 1) The sum of all IOH, for all ports, should not exceed 200 mA.
 - 2) The sum of all IOH, for ports B0-B7, D0-D7 and XTAL2, should not exceed 100 mA.
 - 3) The sum of all IOH, for ports A0-A7, ALE, OC1B and C0-C7 should not exceed 100 mA.
 - If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.
 - Minimum V_{CC} for Power Down is 2V.

Typical Characteristics

The following charts show typical behavior. These data are characterized, but not tested. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. ICP pulled high externally. A sine wave generator with rail to rail output is used as clock source.

The power consumption in power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as $C_L^*V_{CC}^*f$ where C_L = load capacitance, V_{CC} = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power Down mode with Watchdog timer enabled and Power Down mode with Watchdog timer disabled represents the differential current drawn by the watchdog timer

Figure 69. Active Supply Current vs. Frequency

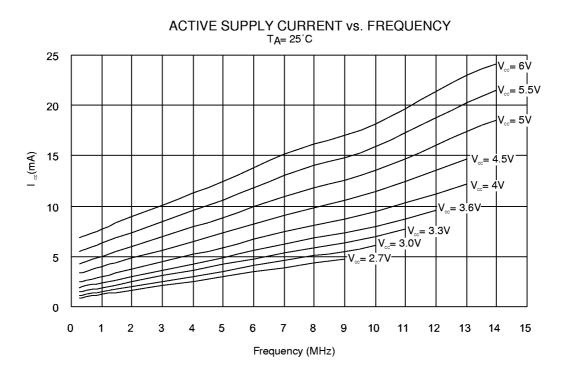


Figure 74. Power Down Supply Current vs. $V_{\rm CC}$

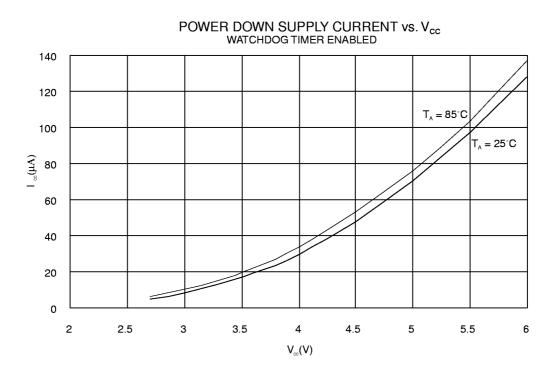


Figure 75. Analog Comparator Current vs. $V_{\rm CC}$

Figure 78. Analog Comparator Input Leakage Current

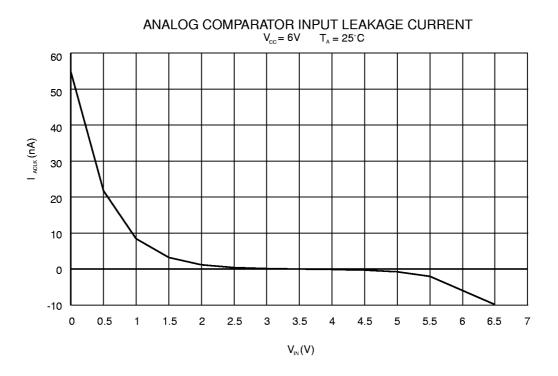
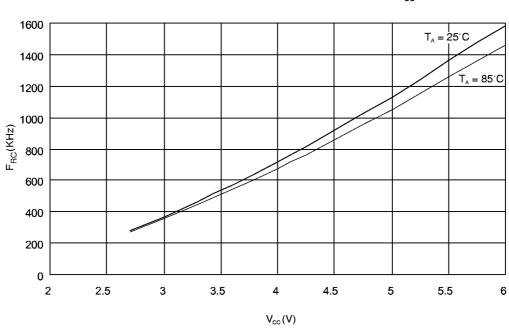



Figure 79. Watchdog Oscillator Frequency vs. V_{CC}

WATCHDOG OSCILLATOR FREQUENCY vs. V_{cc}

Register Summary

	l									_
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG	0045	T	H	S	V	N	Z	C	18
\$3E (\$5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	19
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	19
\$3C (\$5C)	Reserved	INIT4	INT0	T .	_		-	-	1	
\$3B (\$5B)	GIMSK GIFR	INT1 INTF1	INTF0	-	-	-	-	-	¥	24
\$3A (\$5A) \$39 (\$59)	TIMSK	TOIE1	OCIE1A	OCIE1B		TICIE1		TOIE0		24 25
\$38 (\$58)	TIFR	TOV1	OCF1A	OCF1B		ICF1	-	TOV0		25
\$37 (\$57)	Reserved	1001	I COLIA	1 OGI IB	I	101 1	l	1000	I	
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR	SRE	SRW	SE	SM	ISC11	ISC10	ISC01	ISC00	27
\$34 (\$54)	Reserved	One	J GHW	J GE) Sivi	10011	10010	10001	1 10000	
\$33 (\$53)	TCCR0			T -	I -		CS02	CS01	CS00	30
\$32 (\$52)	TCNT0	Timer/Cour	nter0 (8 Bit)	· k	1	K	0002	0001	0000	31
	Reserved	111110111000	noro (o Bily							
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0			PWM11	PWM10	32
\$2E (\$4E)	TCCR1B	ICNC1	ICES1		- 3311123	CTC1	CS12	CS11	CS10	33
\$2D (\$4D)	TCNT1H	+		Register High	Byte					34
\$2C (\$4C)	TCNT1L			Register Low E						34
\$2B (\$4B)	OCR1AH			Compare Regis		!				35
\$2A (\$4A)	OCR1AL			Compare Regis						35
\$29 (\$49)	OCR1BH			Compare Regis						35
\$28 (\$48)	OCR1BL			Compare Regis						35
	Reserved				,					
\$25 (\$45)	ICR1H	Timer/Cour	nter1 - Input Ca	apture Register	High Byte					36
\$24 (\$44)	ICR1L		Timer/Counter1 - Input Capture Register Low Byte						36	
	Reserved									
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	38
\$20 (\$40)	Reserved									
\$1F (\$3F)	EEARH ¹	-	-	-	-	-	-	-	EEAR8	39
\$1E (\$3E)	EEARL	EEPROM A	Address Regist	ter Low Byte						39
\$1D (\$3D)	EEDR	EEPROM [Data Register							40
\$1C (\$3C)	EECR	-	-	-	-		EEMWE	EEWE	EERE	40
\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	55
\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	55
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	55
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	57
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	57
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	57
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	62
\$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	62
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	62
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	64
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	64
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	64
\$0F (\$2F)	SPDR	SPI Data R		E0000000000000000000000000000000000000	100000000000000000000000000000000000000					45
\$0E (\$2E)	SPSR	SPIF	WCOL	DODD	Meto	CPO	CDUA	edd1	- CDD0	45
\$0D (\$2D) \$0C (\$2C)	SPCR	SPIE	SPE Seta Bagistar	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	44
\$0C (\$2C) \$0B (\$2B)	UDR	RXC	Data Register TXC	UDRE	FE	l op	_		-	48 49
		RXCIE	TXCIE			OR		DVDo		49
\$0A (\$2A)	UCR UBRR			UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	
ውስር / ውሳሳ	UDNK		d Rate Registe	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	51 52
\$09 (\$29)	I ACED						i Atalla	i ALISI		
\$09 (\$29) \$08 (\$28)	ACSR Reserved	ACD	-	1 ACC	1 401	I AOIL	7,010	1 700	710100	

- Notes: 1. EEARH only present for AT90S8515
 - 2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
 - 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AN	D LOGIC INSTRUC	CTIONS	<u> </u>		
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	Rd ← Rd ⊕ Rr	Z,N,V	1
COM	Rd	One's Complement	Rd ← \$FF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (\$FF - K)	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
BRANCH INSTRU	JCTIONS		·	•	
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRSH	k	Branch if Same or Higher	if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N ⊕ V= 1) then PC ← PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(T = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
		<u>.</u>	if (V = 0) then PC ← PC + k + 1	None	1/2
BRVC	l k	Branch if Overflow Flag is Cleared			
BRVC BRIE	k	Branch if Interrupt Enabled	if $(I = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7 - 6.0V	AT90S4414-4AC	44A	Commercial
		AT90S4414-4JC	44J	(0°C to 70°C)
		AT90S4414-4PC	40P6	
		AT90S4414-4AI	44A	Industrial
		AT90S4414-4JI	44J	(-40°C to 85°C)
		AT90S4414-4PI	40P6	
8	4.0 - 6.0V	AT90S4414-8AC	44A	Commercial
		AT90S4414-8JC	44J	(0°C to 70°C)
		AT90S4414-8PC	40P6	
		AT90S4414-8AI	44A	Industrial
		AT90S4414-8JI	44J	(-40°C to 85°C)
		AT90S4414-8PI	40P6	

Note: Order AT904414A-XXX for devices with the FSTRT Fuse programmed.

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7 - 6.0V	AT90S8515-4AC	44A	Commercial
		AT90S8515-4JC	44J	(0°C to 70°C)
		AT90S8515-4PC	40P6	
		AT90S8515-4AI	44A	Industrial
		AT90S8515-4JI	44J	(-40°C to 85°C)
		AT90S8515-4PI	40P6	
8	4.0 - 6.0V	AT90S8515-8AC	44A	Commercial
		AT90S8515-8JC	44J	(0°C to 70°C)
		AT90S8515-8PC	40P6	
		AT90S8515-8AI	44A	Industrial
		AT90S8515-8JI	44J	(-40°C to 85°C)
		AT90S8515-8PI	40P6	

Note: Order AT90S8515A-XXX for devices with the FSTRT Fuse programmed.

Package Type				
44 A	44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)			
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)			
40 P 6	40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)			

