

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	8MHz
Connectivity	SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	32
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s4414-8ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The AVR uses a Harvard architecture concept - with separate memories and buses for program and data. The program memory is executed with a two stage pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is in-system programmable Flash memory.

With the relative jump and call instructions, the whole 2K/4K address space is directly accessed. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The 16-bit stack pointer SP is read/write accessible in the I/O space.

The 256/512 bytes data SRAM can be easily accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

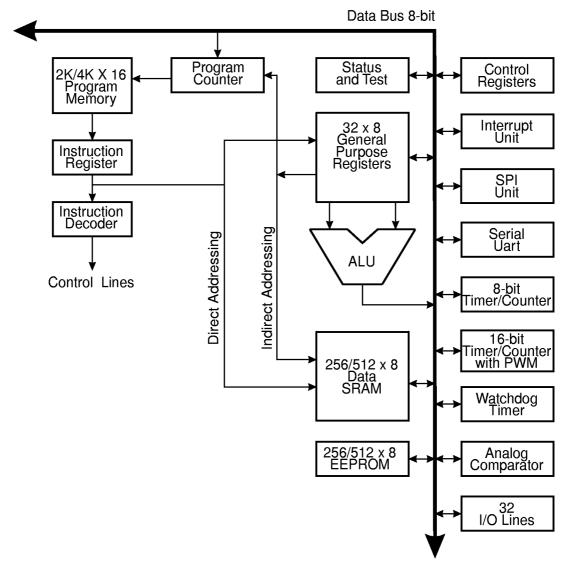
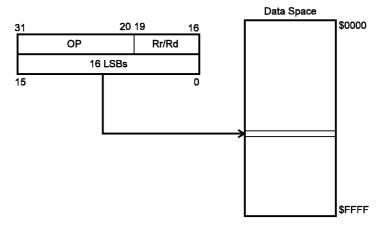
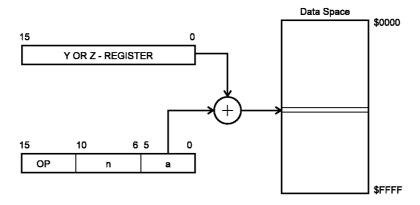



Figure 4. The AT90S4414/8515 AVR RISC Architecture

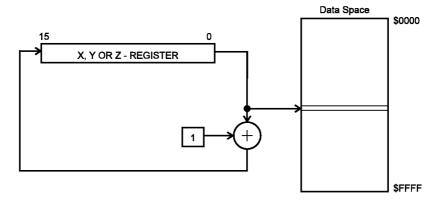
Data Direct


Figure 12. Direct Data Addressing

A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination or source register.

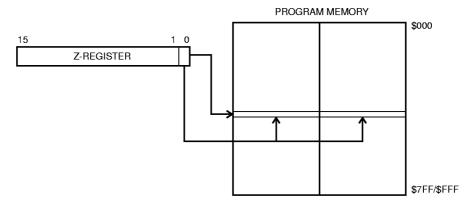
Data Indirect with Displacement

Figure 13. Data Indirect with Displacement



Operand address is the result of the Y or Z-register contents added to the address contained in 6 bits of the instruction word.

Data Indirect with Post-increment


Figure 16. Data Indirect Addressing with Post-increment

The X, Y or the Z-register is incremented after the operation. Operand address is the content of the X, Y or the Z-register prior to incrementing.

Constant Addressing Using the LPM Instruction

Figure 17. Code Memory Constant Addressing

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address (0 - 2K/4K), the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1).

Table 3. Reset and Interrupt Vectors

Vector No.	Program Address	Source	Interrupt Definition
1	\$000	RESET	External Reset, Power-on Reset and Watchdog Reset
2	\$001	INTO	External Interrupt Request 0
3	\$002	INT1	External Interrupt Request 1
4	\$003	TIMER1 CAPT	Timer/Counter1 Capture Event
5	\$004	TIMER1 COMPA	Timer/Counter1 Compare Match A
6	\$005	TIMER1 COMPB	Timer/Counter1 Compare Match B
7	\$006	TIMER1 OVF	Timer/Counter1 Overflow
8	\$007	TIMER0, OVF	Timer/Counter0 Overflow
9	\$008	SPI, STC	Serial Transfer Complete
10	\$009	UART, RX	UART, Rx Complete
11	\$00A	UART, UDRE	UART Data Register Empty
12	\$00B	UART, TX	UART, Tx Complete
13	\$00C	ANA_COMP	Analog Comparator

The most typical and general program setup for the Reset and Interrupt Vector Addresses are:

Address	Labels	Code		С	omments
\$000		rjmp	RESET	;	Reset Handler
\$001		rjmp	EXT_INTO	;	IRQ0 Handler
\$002		rjmp	EXT_INT1	;	IRQ1 Handler
\$003		rjmp	TIM1_CAPT	;	Timerl Capture Handler
\$004		rjmp	TIM1_COMPA	;	Timerl CompareA Handler
\$005		rjmp	TIM1_COMPB	;	Timerl CompareB Handler
\$006		rjmp	TIM1_OVF	;	Timer1 Overflow Handler
\$007		rjmp	TIM0_OVF	;	Timer0 Overflow Handler
\$008		rjmp	SPI_STC	;	SPI Transfer Complete Handler
\$009		rjmp	UART_RXC	;	UART RX Complete Handler
\$00a		rjmp	UART_DRE	;	UDR Empty Handler
\$00b		rjmp	UART_TXC	;	UART TX Complete Handler
\$00c		rjmp	ANA_COMP	;	Analog Comparator Handler
;					
\$00d	MAIN:	ldi r16	,high(RAMEN	D)	; Main program start
\$00e		out SPH	,r16		
\$00f		ldi r16	,low(RAMEND)	
\$010		out SPI	,r16		
\$011		<instr></instr>	XXX		

...

Interrupt Handling

The AT90S4414/8515 has two 8-bit Interrupt Mask control registers; GIMSK - General Interrupt Mask register and TIMSK - Timer/Counter Interrupt Mask register.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all interrupts are disabled. The user software can set (one) the I-bit to enable nested interrupts. The I-bit is set (one) when a Return from Interrupt instruction - RETI - is executed.

For Interrupts triggered by events that can remain static (e.g. the Output Compare register1 matching the value of Timer/Counter1) the interrupt flag is set when the event occurs. If the interrupt flag is cleared and the interrupt condition persists, the flag will not be set until the event occurs the next time.

When the Program Counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine, hardware clears the corresponding flag that generated the interrupt. Some of the interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared.

If an interrupt condition occurs when the corresponding interrupt enable bit is cleared (zero), the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software.

If one or more interrupt conditions occur when the global interrupt enable bit is cleared (zero), the corresponding interrupt flag(s) will be set and remembered until the global interrupt enable bit is set (one), and will be executed by order of priority.

Note that external level interrupt does not have a flag, and will only be remembered for as long as the interrupt condition is active.

General Interrupt Mask Register - GIMSK

Bit	7	6	5	4	3	2	1	0	_
\$3B (\$5B)	INT1	INTO	-	-	-	-	-	-	GIMSK
Read/Write	R/W	R/W	R	R	R	R	R	R	•
Initial value	0	0	0	0	0	0	0	0	

• Bit 7 - INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU general Control Register (MCUCR) defines whether the external interrupt is activated on rising or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an interrupt request even if INT1 is configured as an output. The corresponding interrupt of External Interrupt Request 1 is executed from program memory address \$002. See also "External Interrupt".

• Bit 6 - INTO: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU general Control Register (MCUCR) defines whether the external interrupt is activated on rising or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is executed from program memory address \$001. See also "External Interrupts."

• Bits 5..0 - Res: Reserved bits

These bits are reserved bits in the AT90S4414/8515 and always read as zero.

General Interrupt Flag Register - GIFR

Bit	7	6	5	4	3	2	1	0	
\$3A (\$5A)	INTF1	INTF0	-	-	-	-	-	-	GIFR
Read/Write	R/W	R/W	R	R	R	R	R	R	-
Initial value	0	0	0	0	0	0	0	0	

• Bit 7 - INTF1: External Interrupt Flag1

When an event on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in SREG and the INT1 bit in GIMSK are set (one), the MCU will jump to the interrupt vector at address \$002. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

Bit 6 - OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1A - Output Compare Register 1A. OCF1A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1A is cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE1A (Timer/Counter1 Compare match InterruptA Enable), and the OCF1A are set (one), the Timer/Counter1 Compare A match Interrupt is executed.

Bit 5 - OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1B - Output Compare Register 1B. OCF1B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1B is cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE1B (Timer/Counter1 Compare match InterruptB Enable), and the OCF1B are set (one), the Timer/Counter1 Compare B match Interrupt is executed. • Bit 4 - Res: Reserved bit

This bit is a reserved bit in the AT90S4414/8515 and always reads zero.

• Bit 3 - ICF1: - Input Capture Flag 1

The ICF1 bit is set (one) to flag an input capture event, indicating that the Timer/Counter1 value has been transferred to the input capture register - ICR1. ICF1 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ICF1 is cleared by writing a logic one to the flag. When the SREG I-bit, and TICIE1 (Timer/Counter1 Input Capture Interrupt Enable), and ICF1 are set (one), the Timer/Counter1 Capture Interrupt is executed.

• Bit 2 - Res: Reserved bit

This bit is a reserved bit in the AT90S4414/8515 and always reads zero.

• Bit 1 - TOV: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logic one to the flag. When the SREG Ibit, and TOIE0 (Timer/Counter0 Overflow Interrupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed.

• Bit 0 - Res: Reserved bit

This bit is a reserved bit in the AT90S4414/8515 and always reads zero.

External Interrupts

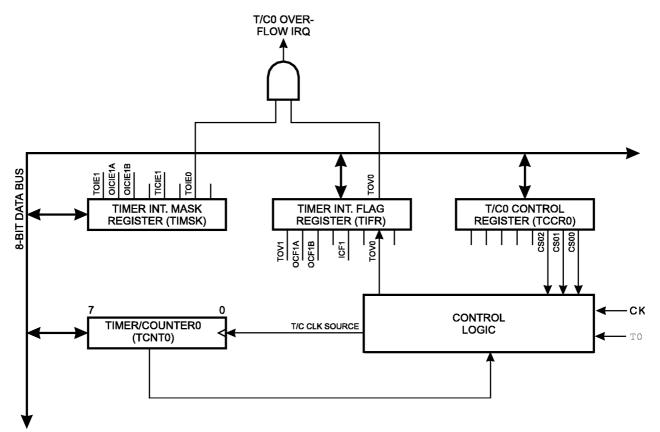
The external interrupts are triggered by the INT1 and INT0 pins. Observe that, if enabled, the interrupts will trigger even if the INT0/INT1 pins are configured as outputs. This feature provides a way of generating a software interrupt. The external interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification for the MCU Control Register - MCUCR. When the external interrupt is enabled and is configured as level triggered, the interrupt will trigger as long as the pin is held low.

The external interrupts are set up as described in the specification for the MCU Control Register - MCUCR.

Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is 4 clock cycles minimum. 4 clock cycles after the interrupt flag has been set, the program vector address for the actual interrupt handling routine is executed. During this 4 clock cycle period, the Program Counter (2 bytes) is pushed onto the Stack, and the Stack Pointer is decremented by 2. The vector is normally a relative jump to the interrupt routine, and this jump takes 2 clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served.

A return from an interrupt handling routine (same as for a subroutine call routine) takes 4 clock cycles. During these 4 clock cycles, the Program Counter (2 bytes) is popped back from the Stack, the Stack Pointer is incremented by 2, and the I flag in SREG is set. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served.


Note that the Status Register - SREG - is not handled by the AVR hardware, neither for interrupts nor for subroutines. For the interrupt handling routines requiring a storage of the SREG, this must be performed by user software.

For Interrupts triggered by events that can remain static (E.g. the Output Compare Register1 A matching the value of Timer/Counter1) the interrupt flag is set when the event occurs. If the interrupt flag is cleared and the interrupt condition persists, the flag will not be set until the event occurs the next time. Note that an external level interrupt will only be remembered for as long as the interrupt condition is active.

AT90S4414/8515

Figure 29. Timer/Counter0 Block Diagram

Timer/Counter0 Control Register - TCCR0

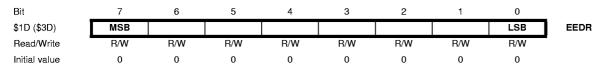
Bit	7	6	5	4	3	2	1	0	_
\$33 (\$53)	-	-	-	-	-	CS02	CS01	CS00	TCCR0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	•
Initial value	0	0	0	0	0	0	0	0	

• Bits 7..3 - Res: Reserved bits

These bits are reserved bits in the AT90S4414/8515 and always read as zero.

• Bits 2,1,0 - CS02, CS01, CS00: Clock Select0, bit 2,1 and 0

The Clock Select0 bits 2,1 and 0 define the prescaling source of Timer/Counter0.


Table 8. Clock 0 Prescale Select

CS02	CS01	CS00	Description
0	0	0	Stop, the Timer/Counter0 is stopped.
0	0	1	СК
0	1	0	CK/8
0	1	1	CK/64
1	0	0	CK/256
1	0	1	CK/1024
1	1	0	External Pin T0, falling edge
1	1	1	External Pin T0, rising edge

AT90S4414/8515

EEPROM Data Register - EEDR

• Bits 7..0 - EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR register contains the data to be written to the EEPROM in the address given by the EEAR register. For the EEPROM read operation, the EEDR contains the data read out from the EEPROM at the address given by EEAR.

EEPROM Control Register - EECR

Bit	7	6	5	4	3	2	1	0	_
\$1C (\$3C)	-	-	-	-	-	EEMWE	EEWE	EERE	EECR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	-
Initial value	0	0	0	0	0	0	0	0	

• Bit 7..3 - Res: Reserved bits

These bits are reserved bits in the AT90S4414/8515 and will always read as zero.

Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When EEMWE is set(one) setting EEWE will write data to the EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has been set (one) by software, hardware clears the bit to zero after four clock cycles. See the description of the EEWE bit for a EEPROM write procedure.

• Bit 1 - EEWE: EEPROM Write Enable

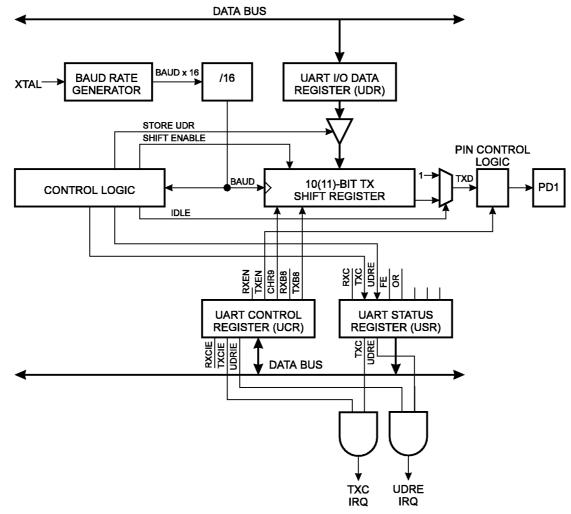
The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data are correctly set up, the EEWE bit must be set to write the value into the EEPROM. The EEMWE bit must be set when the logical one is written to EEWE, otherwise no EEPROM write takes place. The following procedure should be followed when writing the EEPROM (the order of steps 2 and 3 is unessential):

- 1. Wait until EEWE becomes zero.
- 2. Write new EEPROM address to EEARL and EEARH (optional)
- 3. Write new EEPROM data to EEDR (optional)
- 4. Write a logical one to the EEMWE bit in EECR
- 5. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

When the write access time (typically 2.5 ms at $V_{CC} = 5V$ or 4 ms at $V_{CC} = 2.7V$) has elapsed, the EEWE bit is cleared (zero) by hardware. The user software can poll this bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles before the next instruction is executed.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR or EEDR register will be modified, causing the interrupted EEPROM access to fail. It is recommended to have the global interrupt flag cleared during the 4 last steps to avoid these problems.

UART


The AT90S4414/8515 features a full duplex (separate receive and transmit registers) Universal Asynchronous Receiver and Transmitter (UART). The main features are:

- Baud rate generator that can generate a large number of baud rates (bps)
- · High baud rates at low XTAL frequencies
- 8 or 9 bits data
- Noise filtering
- Overrun detection
- · Framing Error detection
- · False Start Bit detection
- · Three separate interrupts on TX Complete, TX Data Register Empty and RX Complete

Data Transmission

A block schematic of the UART transmitter is shown in Figure 38.

Figure 38. UART Transmitter

• Bit 2 - ACIC: Analog Comparator Input Capture Enable

When set (one), this bit enables the Input Capture function in Timer/Counter1 to be triggered by the analog comparator. The comparator output is in this case directly connected to the Input Capture front-end logic, making the comparator utilize the noise canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When cleared (zero), no connection between the analog comparator and the Input Capture function is given. To make the comparator trigger the Timer/Counter1 Input Capture interrupt, the TICIE1 bit in the Timer Interrupt Mask Register (TIMSK) must be set (one). • Bits 1,0 - ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The different settings are shown in Table 19.

ACIS1	ACIS0	Interrupt Mode
0	0	Comparator Interrupt on Output Toggle
0	1	Reserved
1	0	Comparator Interrupt on Falling Output Edge
1	1	Comparator Interrupt on Rising Output Edge

Table 19. ACIS1/ACIS0 Settings

Note: When changing the ACIS1/ACIS0 bits, The Analog Comparator Interrupt must be disabled by clearing its Interrupt Enable bit in the ACSR register. Otherwise an interrupt can occur when the bits are changed.

Interface to External SRAM

The interface to the SRAM consists of:

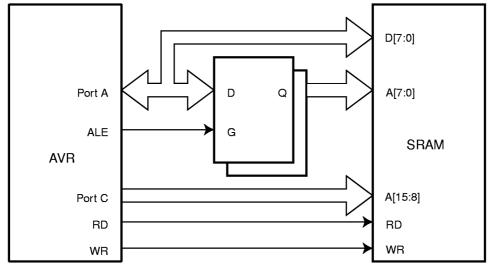
- · Port A: Multiplexed low-order address bus and data bus
- · Port C: High-order address bus
- · The ALE-pin: Address latch enable
- The \overline{RD} and \overline{WR} -pin: Read and write strobes.

The external data SRAM is enabled by setting the SRE - External SRAM enable bit of the MCUCR - MCU control register, and will override the setting of the data direction register DDRA. When the SRE bit is cleared (zero), the external data SRAM is disabled, and the normal pin and data direction settings are used. When SRE is cleared (zero), the address space above the internal SRAM boundary is not mapped into the internal SRAM, as in AVR parts not having interface to the external SRAM.

When ALE goes from high to low, there is a valid address on Port A. ALE is low during a data transfer. \overline{RD} and \overline{WR} are active when accessing the external SRAM only.

When the external SRAM is enabled, the ALE signal may have short pulses when accessing the internal RAM, but the ALE signal is stable when accessing the external SRAM.

Figure 42 sketches how to connect an external SRAM to the AVR using 8 latches which are transparent when G is high.


Default, the external SRAM access is a three-cycle scheme as depicted in Figure 43. When one extra wait state is needed in the access cycle, set the SRW bit (one) in the MCUCR register. The resulting access scheme is shown in Figure 44. In both cases, note that PORTA is data bus in one cycle only. As soon as the data access finishes, PORTA becomes a low order address bus again.

For details in the timing for the SRAM interface, please refer to Figure 68, Table 38, Table 39, Table 40, and Table 41 in section "Absolute Maximum Ratings*" on page 81.

Figure 42. External SRAM Connected to the AVR

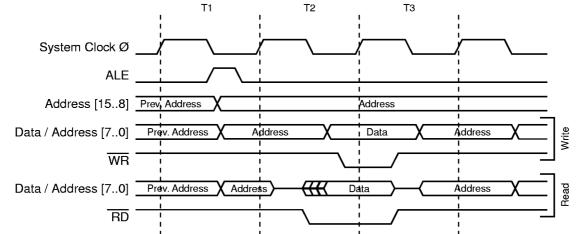
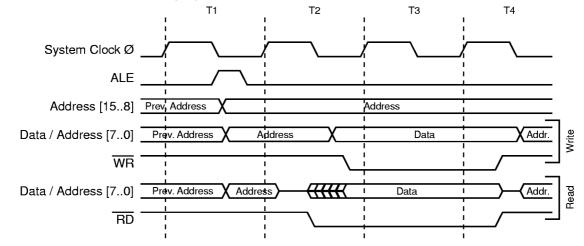



Figure 44. External Data SRAM Memory Cycles with Wait State

AT90S4414/8515

I/O-Ports

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions. The same applies for changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as input).

Port A

Port A is an 8-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port A, one each for the Data Register - PORTA, \$1B(\$3B), Data Direction Register - DDRA, \$1A(\$3A) and the Port A Input Pins - PINA, \$19(\$39). The Port A Input Pins address is read only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port A output buffers can sink 20 mA and thus drive LED displays directly. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port A pins have alternate functions related to the optional external data SRAM. Port A can be configured to be the multiplexed low-order address/data bus during accesses to the external data memory. In this mode, Port A has internal pull-up resistors.

When Port A is set to the alternate function by the SRE - External SRAM Enable - bit in the MCUCR - MCU Control Register, the alternate settings override the data direction register.

Bit	7	6	5	4	3	2	1	0				
\$1B (\$3B)	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA			
Read/Write	R/W											
Initial value	0	0	0	0	0	0	0	0				

Port A Data Register - PORTA

Port A Data Direction Register - DDRA

Bit	7	6	5	4	3	2	1	0	
\$1A (\$3A)	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
Read/Write	R/W	-							
Initial value	0	0	0	0	0	0	0	0	

Port A Input Pins Address - PINA

Bit	7	6	5	4	3	2	1	0	
\$19 (\$39)	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
Read/Write	R	R	R	R	R	R	R	R	-
Initial value	Hi-Z								

The Port A Input Pins address - PINA - is not a register, and this address enables access to the physical value on each Port A pin. When reading PORTA the Port A Data Latch is read, and when reading PINA, the logical values present on the pins are read.

Port A as General Digital I/O

All 8 pins in Port A have equal functionality when used as digital I/O pins.

PAn, General I/O pin: The DDAn bit in the DDRA register selects the direction of this pin, if DDAn is set (one), PAn is configured as an output pin. If DDAn is cleared (zero), PAn is configured as an input pin. If PORTAn is set (one) when the pin configured as an input pin, the MOS pull up resistor is activated. To switch the pull up resistor off, the PORTAn has to be cleared (zero) or the pin has to be configured as an output pin. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not active

Figure 56. Port D Schematic Diagram (Pin PD4)

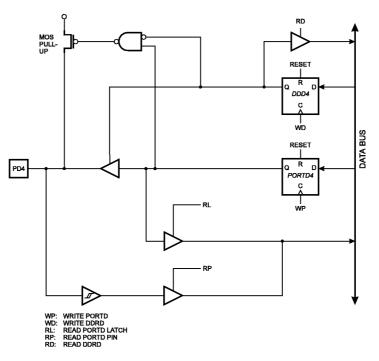
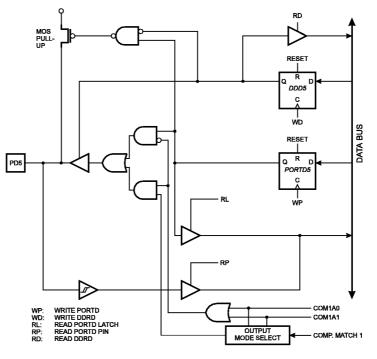
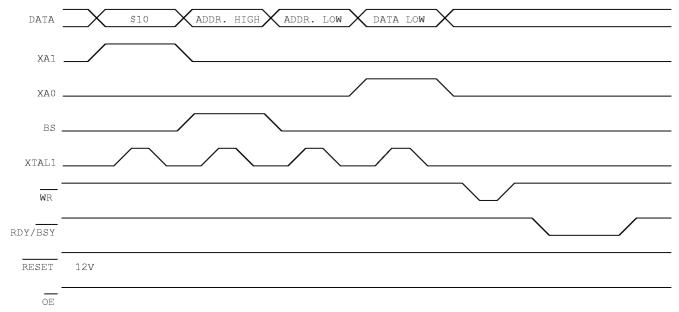



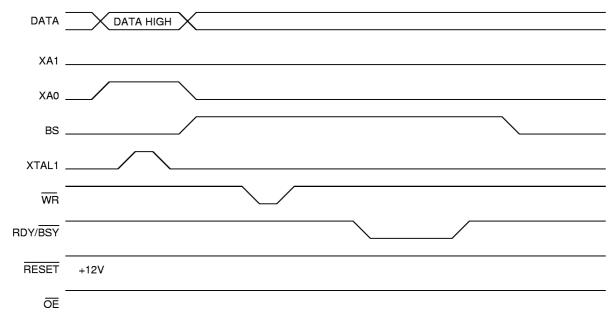
Figure 57. Port D Schematic Diagram (Pin PD5)

AT90S4414/8515

3. Wait until RDY/BSY goes high to program the next byte.


(See Figure 62 for signal waveforms.)

The loaded command and address are retained in the device during programming. For efficient programming, the following should be considered.


- The command needs only be loaded once when writing or reading multiple memory locations.
- Address high byte needs only be loaded before programming a new 256 word page in the Flash.
- Skip writing the data value \$FF, that is the contents of the entire Flash and EEPROM after a Chip Erase.

These considerations also applies to EEPROM programming, and Flash, EEPROM and Signature bytes reading.

Figure 61. Programming the Flash Waveforms

AT90S4414/8515

Programming the Lock Bits

The algorithm for programming the Lock bits is as follows (refer to Programming the Flash for details on Command and Data loading):

- 1. A: Load Command "0010 0000".
- 2. D: Load Data Low Byte. Bit n = '0' programs the Lock bit.
 - Bit 2 = Lock Bit2
 - Bit 1 = Lock Bit1

Bit 7-3,0 = "1". These bits are reserved and should be left unprogrammed ("1").

3. E: Write Data Low Byte.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock Bits

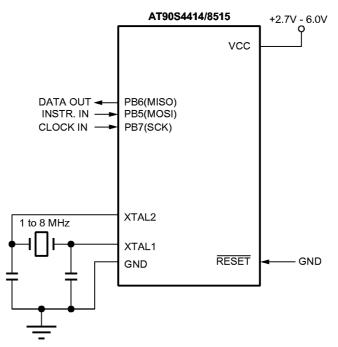
The algorithm for reading the Fuse and Lock bits is as follows (refer to Programming the Flash for details on Command loading):

- 1. A: Load Command "0000 0100".
- 2. Set $\overline{\mathsf{OE}}$ to "0", and BS to "1". The status of the Fuse and Lock bits can now be read at DATA ("0" means programmed).
 - Bit 7 = Lock Bit1
 - Bit 6 = Lock Bit2
 - Bit 5 = SPIEN Fuse bit
 - Bit 0 = FSTRT Fuse bit
- 3. Set OE to "1".

Observe that BS needs to be set to "1".

Reading the Signature Bytes

The algorithm for reading the Signature bytes is as follows (refer to Programming the Flash for details on Command and Address loading):


- 1. A: Load Command "0000 1000".
- C: Load Address Low Byte (\$00 \$02).
 Set OE to "0", and BS to "0". The selected Signature byte can now be read at DATA.
- 3. Set \overline{OE} to "1".

Serial Downloading

Both the Program and Data memory arrays can be programmed using the SPI bus while **RESET** is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (output), see Figure 64. After **RESET** is set low, the Programming Enable instruction needs to be executed first before program/erase instructions can be executed.

Figure 64. Serial Programming and Verify

For the EEPROM, an auto-erase cycle is provided within the self-timed write instruction and there is no need to first execute the Chip Erase instruction. The Chip Erase instruction turns the content of every memory location in both the Program and EEPROM arrays into \$FF.

The Program and EEPROM memory arrays have separate address spaces:

\$0000 to \$07FF/\$0FFF (AT90S4414/8515) for Program memory and \$0000 to \$00FF/\$01FF (AT90S4414/8515) for EEPROM memory.

Either an external clock is supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The minimum low and high periods for the serial clock (SCK) input are defined as follows:

Low: > 2 XTAL1 clock cycles

High: > 2 XTAL1 clock cycles

DC Characteristics

 $T_A = -40^{\circ}C$ to 85°C, $V_{CC} = 2.7V$ to 6.0V (unless otherwise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IL}	Input Low Voltage	(Except XTAL1)	-0.5		0.3 V _{CC} ⁽¹⁾	V
V _{IL1}	Input Low Voltage	(XTAL1)	-0.5		0.2 V _{CC} ⁽¹⁾	V
VIH	Input High Voltage	(Except XTAL1, RESET)	0.6 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH1}	Input High Voltage	(XTAL1)	0.8 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH2}	Input High Voltage	(RESET)	0.9 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{OL}	Output Low Voltage ⁽³⁾ (Ports A,B,C,D)	$I_{OL} = 20 \text{ mA}, V_{CC} = 5V$ $I_{OL} = 10 \text{ mA}, V_{CC} = 3V$			0.6 0.5	V V
V _{OH}	Output High Voltage ⁽⁴⁾ (Ports A,B,C,D)	$I_{OH} = -3 \text{ mA}, V_{CC} = 5V$ $I_{OH} = -1.5 \text{ mA}, V_{CC} = 3V$	4.2 2.3			V V
IL	Input Leakage Current I/O pin	Vcc = 6V, pin low (absolute value)			8.0	μA
I _{IH}	Input Leakage Current I/O pin	Vcc = 6V, pin high (absolute value)			980	nA
RRST	Reset Pull-Up Resistor		100		500	kΩ
R _{I/O}	I/O Pin Pull-Up Resistor		35		120	kΩ
I _{CC}	Davies Oversky Overset	Active Mode, V _{CC} = 3V, 4MHz			3.0	mA
	Power Supply Current	Idle Mode V _{CC} = 3V, 4MHz			1.2	mA
	Device Bever Made (5)	WDT enabled, $V_{CC} = 3V$		9	15.0	μ A
	Power Down Mode ⁽⁵⁾	WDT disabled, $V_{CC} = 3V$		<1	2.0	μA
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{\rm CC} = 5V$			40	mV
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50		50	nA
t _{ACPD}	Analog Comparator Propagation Delay	$V_{CC} = 2.7V$ $V_{CC} = 4.0V$		750 500		ns

Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low.

2. "Min" means the lowest value where the pin is guaranteed to be read as high.

3. Although each I/O port can sink more than the test conditions (20mA at Vcc = 5V, 10mA at Vcc = 3V) under steady state conditions (non-transient), the following must be observed:

1) The sum of all IOL, for all ports, should not exceed 200 mA.

2) The sum of all IOL, for ports B0-B7, D0-D7 and XTAL2, should not exceed 100 mA.

3) The sum of all IOL, for ports A0-A7, ALE, OC1B and C0-C7 should not exceed 100 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (3mA at Vcc = 5V, 1.5mA at Vcc = 3V) under steady state conditions (non-transient), the following must be observed:

1) The sum of all IOH, for all ports, should not exceed 200 mA.

2) The sum of all IOH, for ports B0-B7, D0-D7 and XTAL2, should not exceed 100 mA.

3) The sum of all IOH, for ports A0-A7, ALE, OC1B and C0-C7 should not exceed 100 mA.

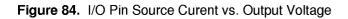
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. Minimum V_{CC} for Power Down is 2V.

			4 MHz C	Dscillator	Variable		
	Symbol	Parameter	Min	Max	Min	Мах	Unit
0	1/t _{CLCL}	Oscillator Frequency			0.0	4.0	MHz
1	t _{LHLL}	ALE Pulse Width	70.0		0.5t _{CLCL} -55.0 ⁽¹⁾		ns
2	t _{AVLL}	Address Valid A to ALE Low	60.0		0.5t _{CLCL} -65.0 ⁽¹⁾		ns
3a	t _{llax_st}	Address Hold After ALE Low, ST/STD/STS Instructions	130.0		0.5t _{CLCL} +5.0 ⁽²⁾		ns
3b	t _{LLAX_LD}	Address Hold after ALE Low, LD/LDD/LDS Instructions	15.0		15.0		ns
4	t _{AVLLC}	Address Valid C to ALE Low	60.0		0.5t _{CLCL} -65.0 ⁽¹⁾		ns
5	t _{AVRL}	Address Valid to RD Low	200.0		1.0t _{CLCL} -50.0		ns
6	t _{AVWL}	Address Valid to WR Low	325.0		1.5t _{CLCL} -50.0 ⁽¹⁾		ns
7	t _{LLWL}	ALE Low to WR Low	230.0	270.0	1.0t _{CLCL} -20.0	1.0t _{CLCL} +20.0	ns
8	t _{LLRL}	ALE Low to RD Low	105.0	145.0	0.5t _{CLCL} -20.0 ⁽²⁾	0.5t _{CLCL} +20.0 ⁽²⁾	ns
9	t _{DVRH}	Data Setup to RD High	95.0		95.0		ns
10	t _{RLDV}	Read Low to Data Valid		170.0		1.0t _{CLCL} -80.0	ns
11	t _{RHDX}	Data Hold After RD High	0.0		0.0		ns
12	t _{RLRH}	RD Pulse Width	230.0		1.0t _{CLCL} -20.0		ns
13	t _{DVWL}	Data Setup to WR Low	70.0		0.5t _{CLCL} -55.0 ⁽¹⁾		ns
14	t _{wHDX}	Data Hold After WR High	0.0		0.0		ns
15	t _{DVWH}	Data Valid to WR High	210.0		1.0t _{CLCL} -40.0		ns
16	t _{wLWH}	WR Pulse Width	105.0		0.5t _{CLCL} -20.0 ⁽²⁾		ns

Table 40. External Data Memory Characteristics, 2.7 - 4.0 Volts, No Wait State

Table 41. External Data Memory Characteristics, 2.7 - 4.0 Volts, 1 Cycle Wait State


			4 MHz Oscillator		Variable		
	Symbol	Parameter	Min	Max	Min	Max	Unit
0	1/t _{CLCL}	Oscillator Frequency			0.0	4.0	MHz
10	t _{RLDV}	Read Low to Data Valid		420.00		2.0t _{CLCL} -80.0	ns
12	t _{RLRH}	RD Pulse Width	480.0		2.0t _{CLCL} -20.0		ns
15	t _{DVWH}	Data Valid to WR High	460.0		2.0t _{CLCL} -40.0		ns
16	t _{wLWH}	WR Pulse Width	355.0		1.5t _{CLCL} -20.0 ⁽²⁾		ns

Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.

2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.

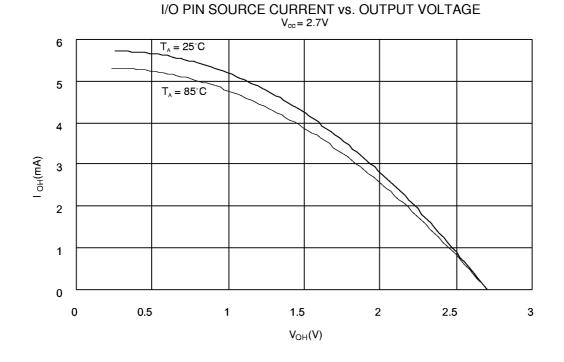
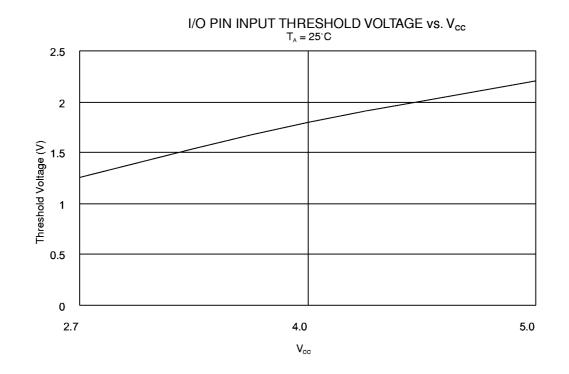



Figure 85. I/O Pin Input Threshold Voltage vs. V_{CC}

Register Summary

ddress	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
3F (\$5F)	SREG		Т	Н	S	V	N	Z	С	18
3E (\$5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	19
3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	19
3C (\$5C)	Reserved									
3B (\$5B)	GIMSK	INT1	INTO	-	-	-	-	-	-	24
3A (\$5A)	GIFR	INTF1	INTFO							24
\$39 (\$59)	TIMSK	TOIE1	OCIE1A	OCIE1B	÷	TICIE1	-	TOIE0	-	25
\$38 (\$58)	TIFR	TOV1	OCF1A	OCF1B	-	ICF1	-	TOV0	-	25
\$37 (\$57)	Reserved									
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR	SRE	SRW	SE	SM	ISC11	ISC10	ISC01	ISC00	27
\$34 (\$54)	Reserved									
\$33 (\$53)	TCCR0	-	-	-	-	-	CS02	CS01	CS00	30
\$32 (\$52)	TCNT0	Timer/Cour	nter0 (8 Bit)							31
	Reserved									
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	PWM11	PWM10	32
S2E (\$4E)	TCCR1B	ICNC1	ICES1	-	-	CTC1	CS12	CS11	CS10	33
S2D (\$4D)	TCNT1H	Timer/Cour	nter1 - Counter	Register High	Byte					34
S2C (\$4C)	TCNT1L		nter1 - Counter							34
S2B (\$4B)	OCR1AH	Timer/Cour	nter1 - Output 0	Compare Regis	ter A High Byte					35
S2A (\$4A)	OCR1AL	Timer/Cour	nter1 - Output (Compare Regis	ter A Low Byte					35
\$29 (\$49)	OCR1BH	Timer/Cour	nter1 - Output 0	Compare Regis	ter B High Byte					35
\$28 (\$48)	OCR1BL	Timer/Cour	nter1 - Output 0	Compare Regis	ter B Low Byte					35
	Reserved									
\$25 (\$45)	ICR1H	Timer/Cour	nter1 - Input Ca	pture Register	High Byte					36
\$24 (\$44)	ICR1L	Timer/Cour	nter1 - Input Ca	pture Register	Low Byte					36
	Reserved									
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	38
\$20 (\$40)	Reserved									
\$1F (\$3F)	EEARH ¹	-	-	-	-	-	-	-	EEAR8	39
61E (\$3E)	EEARL	EEPROM A	Address Regist	er Low Byte		La deserva de la companya de la comp			•	39
S1D (\$3D)	EEDR		Data Register							40
51C (\$3C)	EECR	-	-	-	-	-	EEMWE	EEWE	EERE	40
61B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	55
61A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	55
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	55
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	57
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	57
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	57
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	62
\$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	62
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	62
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	64
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	64
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	64
\$0F (\$2F)	SPDR	SPI Data R	1							45
0E (\$2E)	SPSR	SPIF	WCOL	_	-	_	<u>_</u>	<u>_</u>		45
0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	44
0D (\$2D) 0C (\$2C)	UDR		Data Register		I WOTH					44
00 (\$20) 00 (\$20)	USR	RXC	TXC	UDRE	FE	OR	-	-	1	40
	USR	RXCIE	TXCIE		RXEN					
			d Rate Registe	UDRIE	I NAEN	TXEN	CHR9	RXB8	TXB8	49
60A (\$2A)			n Rate Register						I	51
60A (\$2A) \$09 (\$29)	UBRR				4.01		1010	Agiat	10102	
60A (\$2A)	UBRR ACSR Reserved	ACD	-	ACO	ACI	ACIE	ACIC	ACIS1	ACISO	52

Notes: 1. EEARH only present for AT90S8515

- 2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.