

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	20MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	30
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-TQFP
Supplier Device Package	32-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at89lp428-20au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Block Diagram

4. Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 4-1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect. User software should not write to these unlisted locations, since they may be used in future products to invoke new features.

	8	9	Α	В	С	D	E	F	
0F8H									0FFH
0F0H	B 0000 0000								0F7H
0E8H	SPSR 000x x000	SPCR 0000 0000	SPDR xxxx xxxx						0EFH
0E0H	ACC 0000 0000								0E7H
0D8H									0DFH
0D0H	PSW 0000 0000	T2CCA 0000 0000	T2CCL 0000 0000	T2CCH 0000 0000	T2CCC 0000 0000	T2CCF 0000 0000			0D7H
0C8H	T2CON 0000 0000	T2MOD 0000 0000	RCAP2L 0000 000	RCAP2H 0000 0000	TL2 0000 000	TH2 0000 0000			0CFH
0C0H	P4 xx11 1111		P1M0 ⁽²⁾	P1M1 0000 0000	P2M0 ⁽²⁾	P2M1 0000 0000	P3M0 ⁽²⁾	P3M1 0000 0000	0C7H
0B8H	IP 0000 0000	SADEN 0000 0000					P4M0 ⁽²⁾	P4M1 xx00 0000	0BFH
0B0H	P3 1111 1111				IE2 xxxx x000	IP2 xxxx x000	IP2H xxxx x000	IPH 0000 0000	0B7H
0A8H	IE 0000 0000	SADDR 0000 0000						AREF 0000 0000	0AFH
0A0H	P2 1111 1111		DPCF 0000 00x0				WDTRST (write-only)	WDTCON 0000 x000	0A7H
98H	SCON 0000 0000	SBUF xxxx xxxx	GPMOD 0000 0000	GPLS 0000 0000	GPIEN 0000 0000	GPIF 0000 0000		ACSRB 1100 0000	9FH
90H	P1 1111 1111	TCONB 0010 0100	RL0 0000 0000	RL1 0000 0000	RH0 0000 0000	RH1 0000 0000	MEMCON 0000 00xx	ACSRA 0000 0000	97H
88H	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000		CLKREG 0000 x000	8FH
80H		SP 0000 0111	DP0L 0000 0000	DP0H 0000 0000	DP1L 0000 0000	DP1H 0000 0000	PAGE xxxx xxx0	PCON 0000 0000	87H
	0	1	2	3	4	5	6	7	1

Table 4-1. AT89LP428/828 SFR Map and Reset Values

Notes: 1. All SFRs in the left-most column are bit-addressable.

2. Reset value is 1111 1111B when Tristate-port Fuse is enabled and 0000 0000B when disabled.

Figure 5-3. Two-cycle ALU Operation (Example: ADD A, #data)

5.1 Enhanced Dual Data Pointers

The AT89LP428/828 provides two 16-bit data pointers: DPTR0 formed by the register pair DPOL and DPOH (82H an 83H), and DPTR1 formed by the register pair DP1L and DP1H (84H and 85H). The data pointers are used by several instructions to access the program or data memories. The Data Pointer Configuration Register (DPCF) controls operation of the dual data pointers (Table 5-4). The DPS bit in DPCF selects which data pointer is currently referenced by instructions including the DPTR operand. Each data pointer may be accessed at its respective SFR addresses regardless of the DPS value. The AT89LP428/828 provides two methods for fast context switching of the data pointers:

• Bit 2 of DPCF is hard-wired as a logic 0. The DPS bit may be toggled (to switch data pointers) simply by incrementing the DPCF register, without altering other bits in the register unintentionally. This is the preferred method when only a single data pointer will be used at one time.

EX: INC DPCF ; Toggle DPS

 In some cases, both data pointers must be used simultaneously. To prevent frequent toggling of DPS, the AT89LP428/828 supports a prefix notation for selecting the opposite data pointer per instruction. All DPTR instructions, with the exception of JMP @A+DPTR, when prefixed with an 0A5H opcode will use the inverse value of DPS (DPS) to select the data pointer. Some assemblers may support this operation by using the /DPTR operand. For example, the following code performs a block copy within EDATA:

	MOV	DPCF, #00H	;	DPS = 0
	MOV	DPTR, #SRC	;	load source address to dptr0
	MOV	/DPTR, #DST	;	load destination address to dptr1
	MOV	R7, #BLKSIZE	;	number of bytes to copy
COPY:	MOVX	A, @DPTR	;	read source (dptr0)
	INC	DPTR	;	next src (dptr0+1)
	MOVX	@/DPTR, A	;	write destination (dptr1)
	INC	/DPTR	;	next dst (dptr1+1)
	DJNZ	R7, COPY		

 Table 6-2.
 CLKREG – Clock Control Register

CLKRE	G = 8FH							Reset Value =	= 0000 0000B						
Not Bit A	Addressable														
	TPS3	TPS	2 Т	PS1	TPS0	CDV2	CDV1	CDV0	COE						
Bit	7	6		5	4	3	2	1	0						
Symbol	Function														
TPS [3 - 0]	Timer Pres The presc value store cycle (TPS should be	imer Prescaler. The Timer Prescaler selects the time base for Timer 0, Timer 1, Timer 2 and the Watchdog Timer. The prescaler is implemented as a 4-bit binary down counter. When the counter reaches zero it is reloaded with the value stored in the TPS bits to give a division ratio between 1 and 16. By default the timers will count every clock cycle (TPS = 0000B). To configure the timers to count at a standard 8051 rate of once every 12 clock cycles, TPS should be set to 1011B.													
	System Clock Division. Determines the frequency of the system clock relative to the oscillator clock source.														
	CDIV2	CDIV1	CDIV0	System	n Clock Frequ	lency									
	0	0	0	f _{OSC} /1											
	0	0	1	f _{OSC} /2											
	0	1	0	f _{OSC} /4											
CDV [2 - 0]	0	1	1	f _{OSC} /8											
	1	0	0	f _{OSC} /16	i										
	1	0	1	f _{OSC} /32											
	1	1	0	reserve	ed				reserved						
				reserved											

7. Reset

During reset, all I/O Registers are set to their initial values, the port pins are tristated, and the program starts execution from the Reset Vector, 0000H. The AT89LP428/828 has five sources of reset: power-on reset, brown-out reset, external reset, watchdog reset, and software reset.

7.1 Power-on Reset

A Power-on Reset (POR) is generated by an on-chip detection circuit. The detection level V_{POR} is nominally 1.4V. The POR is activated whenever V_{CC} is below the detection level. The POR circuit can be used to trigger the start-up reset or to detect a supply voltage failure in devices without a brown-out detector. The POR circuit ensures that the device is reset from power-on. A power-on sequence is shown in Figure 7-1 on page 24. When V_{CC} reaches the Power-on Reset threshold voltage V_{POR} , an initialization sequence lasting t_{POR} is started. When the initialization sequence completes, the start-up timer determines how long the device is kept in POR after V_{CC} rise. The POR signal is activated again, without any delay, when V_{CC} falls below the POR threshold level. A Power-on Reset (i.e. a cold reset) will set the POF flag in PCON. The internally generated reset can be extended beyond the power-on period by holding the RST pin low longer than the time-out.

The Timer 0 and Timer 1 Interrupts are generated by TF0 and TF1, which are set by a rollover in their respective Timer/Counter registers (except for Timer 0 in Mode 3). When a timer interrupt is generated, the on-chip hardware clears the flag that generated it when the service routine is vectored to. The Timer 2 Interrupt is generated by a logic OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the CPU vectors to the service routine. The service routine normally must determine whether TF2 or EXF2 generated the interrupt and that bit must be cleared by software.

The Serial Port Interrupt is generated by the logic OR of RI and TI in SCON. Neither of these flags is cleared by hardware when the CPU vectors to the service routine. The service routine normally must determine whether RI or TI generated the interrupt and that bit must be cleared by software. The Serial Peripheral Interface Interrupt is generated by the logic OR of SPIF, MODF and TXE in SPSR. None of these flags is cleared by hardware when the CPU vectors to the service routine. The service routine normally must determine which bit generated the interrupt and that bit must be cleared by software.

A logic OR of all eight flags in the GPIF register causes the GPI. None of these flags is cleared by hardware when the service routine is vectored to. The service routine must determine which bit generated the interrupt and that bit must be cleared in software. If the interrupt was level activated, then the external requesting source must de-assert the interrupt before the flag may be cleared by software.

The CFA and CFB bits in ACSRA and ACSRB respectively generate the Comparator Interrupt. The service routine must normally determine whether CFA or CFB generated the interrupt, and the bit must be cleared by software.

A logic OR of the four least significant bits in the T2CCF register causes the Compare/Capture Array Interrupt. None of these flags is cleared by hardware when the service routine is vectored to. The service routine must determine which bit generated the interrupt and that bit must be cleared in software.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though they had been set or cleared by hardware. That is, interrupts can be generated and pending interrupts can be canceled in software.

Interrupt	Source	Vector Address
System Reset	RST or POR or BOD	0000H
External Interrupt 0	IEO	0003H
Timer 0 Overflow	TF0	000BH
External Interrupt 1	IE1	0013H
Timer 1 Overflow	TF1	001BH
Serial Port Interrupt	RI or TI	0023H
Timer 2 Interrupt	TF2 or EXF2	002BH
Analog Comparator Interrupt	CFA or CFB	0033H
General-purpose Interrupt	GPIF ₇₋₀	003BH
Compare/Capture Array Interrupt	T2CCF ₃₋₀	0043H
Serial Peripheral Interface Interrupt	SPIF or MODF or TXE	004BH

 Table 9-1.
 Interrupt Vector Addresses

	(F

	T ett eetingalaalett	Tegletere
Port	Port Data	Port Configuration
1	P1 (90H)	P1M0 (C2H), P1M1 (C3H)
2	P2 (A0H)	P2M0 (C4H), P2M1 (C5H)
3	P3 (B0H)	P3M0 (C6H), P3M1 (C7H)
4	P4 (C0H)	P4M0 (BEH), P4M1 (BFH)

Table 10-3. Port Configuration Registers

10.1.1 Quasi-bidirectional Output

Port pins in quasi-bidirectional output mode function similar to standard 8051 port pins. A Quasibidirectional port can be used both as an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin is driven low, it is driven strongly and able to sink a large current. There are three pull-up transistors in the quasi-bidirectional output that serve different purposes.

One of these pull-ups, called the "very weak" pull-up, is turned on whenever the port latch for the pin contains a logic "1". This very weak pull-up sources a very small current that will pull the pin high if it is left floating.

A second pull-up, called the "weak" pull-up, is turned on when the port latch for the pin contains a logic "1" and the pin itself is also at a logic "1" level. This pull-up provides the primary source current for a quasi-bidirectional pin that is outputting a "1". If this pin is pulled low by an external device, this weak pull-up turns off, and only the very weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the weak pull-up and pull the port pin below its input threshold voltage.

The third pull-up is referred to as the "strong" pull-up. This pull-up is used to speed up low-tohigh transitions on a quasi-bidirectional port pin when the port latch changes from a logic "0" to a logic "1". When this occurs, the strong pull-up turns on for two CPU clocks quickly pulling the port pin high. The quasi-bidirectional port configuration is shown in Figure 10-1.

10.3 Port Read-Modify-Write

A read from a port will read either the state of the pins or the state of the port register depending on which instruction is used. Simple read instructions will always access the port pins directly. Read-modify-write instructions, which read a value, possibly modify it, and then write it back, will always access the port register. This includes bit write instructions such as CLR or SETB as they actually read the entire port, modify a single bit, then write the data back to the entire port. See Table 10-4 for a complete list of Read-modify-write instructions which may access the ports.

Mnemonic	Instruction	Example
ANL	Logical AND	ANL P1, A
ORL	Logical OR	ORL P1, A
XRL	Logical EX-OR	XRL P1, A
JBC	Jump if bit set and clear bit	JBC P3.0, LABEL
CPL	Complement bit	CPL P3.1
INC	Increment	INC P1
DEC	Decrement	DEC P3
DJNZ	Decrement and jump if not zero	DJNZ P3, LABEL
MOV PX.Y, C	Move carry to bit Y of Port X	MOV P1.0, C
CLR PX.Y	Clear bit Y of Port X	CLR P1.1
SETB PX.Y	Set bit Y of Port X	SETB P3.2

 Table 10-4.
 Port Read-Modify-Write Instructions

10.4 Port Alternate Functions

Most general-purpose digital I/O pins of the AT89LP428/828 share functionality with the various I/Os needed for the peripheral units. Table 10-6 lists the alternate functions of the port pins. Alternate functions are connected to the pins in a logic AND fashion. In order to enable the alternate function on a port pin, that pin must have a "1" in its corresponding port register bit, otherwise the input/output will always be "0". However, alternate functions may be temporarily forced to "0" by clearing the associated port bit, provided that the pin is not in input-only mode. Furthermore, each pin must be configured for the correct input/output mode as required by its peripheral before it may be used as such. Table 10-5 shows how to configure a generic pin for use with an alternate function.

PxM0.y	PxM1.y	Px.y	I/O Mode							
0	0	1	Bidirectional (internal pull-up)							
0	1	1	Output							
1	0	х	Input							
1	1	1	Bidirectional (external pull-up)							

 Table 10-5.
 Alternate Function Configurations for Pin y of Port x

12. Enhanced Timer 2

The AT89LP428/828 includes a 16-bit Timer/Counter 2 with the following features:

- 16-bit timer/counter with one 16-bit reload/capture register
- One external reload/capture input
- Up/Down counting mode with external direction control
- UART baud rate generation
- Output-pin toggle on timer overflow
- Dual slope symmetric operating modes

Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit $C/\overline{12}$ in the SFR T2CON. Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON and T2MOD, as shown in Table 12-3. Timer 2 also serves as the time base for the Compare/Capture Array (see "Compare/Capture Array" on page 61).

Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the register is incremented every clock cycle. Since a clock cycle consists of one oscillator period, the count rate is equal to the oscillator frequency. The timer rate can be prescaled by a value between 1 and 16 using the Timer Prescaler (see Table 6-2 on page 23).

In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled every clock cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during the cycle following the one in which the transition was detected. Since two clock cycles are required to recognize a 1-to-0 transition, the maximum count rate is 1/2 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full clock cycle.

RCLK + TCLK	CP/RL2	DCEN	T2OE	TR2	Mode
0	0	0	0	1	16-bit Auto-reload
0	0	1	0	1	16-bit Auto-reload Up-down
0	1	Х	0	1	16-bit Capture
1	Х	Х	Х	1	Baud Rate Generator
х	Х	Х	1	1	Frequency Generator
х	Х	Х	Х	0	(Off)

Table 12-1.Timer 2 Operating Modes

The following definitions for Timer 2 are used in the subsequent paragraphs:

Table 12-2. Timer 2 Definitions

Symbol	Definition
MIN	0000H
MAX	FFFFH
BOTTOM	16-bit value of {RCAP2H,RCAP2L} (standard modes)
ТОР	16-bit value of {RCAP2H,RCAP2L} (enhanced modes)

Table 12-4. T2MOD – Timer 2 Mode Control Register

T2MOD	Address = 00	C9H							Reset Value	= 0000 0000B	
Not Bit A	ddressable										
	PHSD	PHS2	Pł	IS1	PHS0	T2C	M1	T2CM0	T2OE	DCEN	
Bit	7	6		5	4	Э		2	1	0	
Symbol	Function										
PHSD	CCA Phas through. F	se Direction PHSD also c	. For phase letermines	e modes the initia	with 3 or 4 cha al phase relatio	nnels, F nship fo	HSD de r 2 pha	etermines the c se modes.	direction that th	e channels are	cycled
	PHSD	PHSD Direction									
	0	$A \rightarrow B \rightarrow A \rightarrow B$ or $A \rightarrow B \rightarrow C \rightarrow A \rightarrow B \rightarrow C$ or $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A \rightarrow B \rightarrow C \rightarrow D$									
	1	B→A→ł	∃→A or	C→B	→A →C →B →A	or	D →	C →B →A →D –	»С⊸В⊸А		
PHS [2 - 0]	CCA Phas any one p	se Mode. P\ eriod. The F	VM channe PHS [2 - 0]	els may bits may	be grouped by 2 y only be writter	2, 3 or 4 1 when	such the time	hat only one ch er is not active,	annel in a grou i.e. TR2 = 0.	ip produces a p	ulse in
	PHS2	PHS1	PHS0	Phase	e Mode						
	0	0	0	Disab	ed, all channels	s active					
	0	0	1	2-pha	se output on ch	annels	A & B				
	0	1	0	3-pha	se output on ch	annels	A, B & (C			
	0	1	1	4-pha	se output on ch	annels	A, B, C	& D			
	1	0	0	Dual 2	2-phase output	on char	nels A	& B and C & D			
	1	0	1	reserv	red						
	1	1	0	reserv	eserved						
	1	1	1	reserv	red						
T2CM	Timer 2 C	ount Mode.									
[1 - 0]	T2CM1	T2CM0	Count Mo	de							
	0	0	Standard	Timer 2	(up count: BO	TTOM	→MAX)			
	0	1	Clear on	RCAP c	ompare (up cou	unt: MI	N →TOF	>)			
	1	0	Dual-slop	e with s	ingle update (u	o-down	count:	$MIN \to TOP -$	→MIN)		
	1	1	Dual-slop	e with d	ouble update (u	ıp-dowr	count:	$MIN \to TOP$	→MIN)		
T2OE	Timer 2 O	utput Enabl	e. When T	20E = 1	and $C/\overline{T}2 = 0$,	the T2 p	oin will	toggle after eve	ery Timer 2 ove	erflow.	
DCEN	Timer 2 D Timer 2 to	own Count count up o	Enable. Wi r down dep	nen Tim Dending	er 2 operates ir on the state of	i Auto-re T2EX.	eload m	node and EXEN	I2 = 1, setting I	DCEN = 1 will o	ause

Figure 12-6. Timer 2 Waveform: Dual Slope Modes

12.4 Baud Rate Generator

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 12-3 on page 53). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 12-7.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in UART modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation.

Modes 1 and 3 Baud Rates =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

The Timer can be configured for either timer or counter operation. In most applications, it is configured for timer operation ($CP/\overline{T2} = 0$). The baud rate formulas are given below

$$T2CM = 00B \qquad \begin{array}{l} Modes \ 1, \ 3 \\ Baud \ Rate \end{array} = \frac{Oscillator \ Frequency}{16 \times (TPS + 1) \times [65536 - (RCAP2H, RCAP2L)]} \\ T2CM = 01B \qquad \begin{array}{l} Modes \ 1, \ 3 \\ Baud \ Rate \end{array} = \frac{Oscillator \ Frequency}{16 \times (TPS + 1) \times [(RCAP2H, RCAP2L) + 1]} \end{array}$$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Table 13-5. T2CCF - Timer/Counter 2 Compare/Capture Flags

T2CC	F Address = 0	Address = 0D5HReset Value = XXXX 0000B											
Not Bi	Not Bit Addressable												
	_	_	_	-	CCFD	CCFC	CCFB	CCFA					
Bit	7	6	5	4	3	2	1	0					
Symb	ol Funct	ion											
0055	Chanr	Channel D Compare/Capture Interrupt Flag. Set by a compare/capture event on channel D. Must be cleared by software											

CCFD	CCFD will generate an interrupt when CIEND = 1 and ECC = 1.
CCFC	Channel C Compare/Capture Interrupt Flag. Set by a compare/capture event on channel C. Must be cleared by software. CCFC will generate an interrupt when CIENC = 1 and ECC = 1.
CCFB	Channel B Compare/Capture Interrupt Flag. Set by a compare/capture event on channel B. Must be cleared by software. CCFB will generate an interrupt when CIENB = 1 and ECC = 1.
CCFA	Channel A Compare/Capture Interrupt Flag. Set by a compare/capture event on channel A. Must be cleared by software. CCFA will generate an interrupt when CIENA = 1 and ECC = 1.

13.2 Input Capture Mode

The Compare/Capture Array provides a variety of capture modes suitable for time-stamping events or performing measurements of pulse width, frequency, slope, etc. The CCA channels are configured for capture mode by clearing the CCM*x* bit in the associated CCC*x* register to 0. Each time a capture event occurs, the contents of Timer 2 (TH2 and TL2) are transferred to the 16-bit data register of the corresponding channel, and the channel's interrupt flag CCF*x* is set in T2CCF. Optionally, the capture event may also clear Timer 2 to 0000H by setting the CTC*x* bit in CCC*x*. The capture event is defined by the C*x*M₂₋₀ bits in CCC*x* and may be either externally or internally generated. A diagram of a CCA channel in capture mode is shown in Figure 13-2.

13.3.1 Waveform Generation

Each CCA channel has an associated external compare output pin: CCA (P2.0), CCB (P2.1), CCC (P2.2) and CCD (P2.3). The CxM_{2-0} bits in CCCx determine what action is taken when a compare event occurs. The output pin may be set to 1, cleared to 0 or toggled. Output actions take place even if the interrupt is disabled; however, the associated I/O pin must be set to the desired output mode before the compare event occurs. The state of the compare outputs are initialized to 1 by reset.

Multiple compare events per channel can occur within a single time period, provided that the software has time to update the compare value before the timer reaches the next compare point. In this case other interrupts should be disabled or the CCA interrupt given a higher priority in order to ensure that the interrupt is serviced in time.

A wide range of waveform generation configurations are possible using the various operating modes of Timer 2 and the CCA. Some example configurations are detailed below. Pulse width modulation is a special case of output compare. See "Pulse Width Modulation Mode" on page 68 for more details of PWM operation.

13.3.1.1 Normal Mode

The simplest waveform mode is when $CP/\overline{RL2} = 0$ and $T2CM\overline{1-0} = 01B$. In this mode the frequency of the output is determined by the TOP value stored in RCAP2L and RCAP2H and output edges occur at fractions of the timer period. Figure 13-4 shows an example of outputting two waveforms of the same frequency but different phase by using the toggle on match action. More complex waveforms are achieved by changing the TOP value and the compare values more frequently.

13.3.1.2 Clear-Timer-on-Compare Mode

Clear-Timer-on-Compare (CTC) mode occurs when the CTC*x* bit of a compare channel is set to one. CTC mode works best when Timer 2 is in capture mode ($CP/\overline{RL2} = 1$) to allow the full range of compare values. In CTC mode, the compare value defines the interval between output events because the timer is cleared after every compare match. Figure 13-5 shows an example waveform using the toggle on match action in CTC mode.

Table 15-2. GPLS – General-purpose Interrupt Level Select Register

Not Bit Ac	- - - -									
	ddressable									
	GPLS7	GPLS6	GPLS5	GPLS4	GPLS3	GPLS2	GPLS1	GPLS0		
Bit	7	6	5	4	3	2	1	0		
	GPMOD.x	0 = detect low level or negative edge on P1.x								
		1 = detect high level or positive edge on P1.x								

Table 15-3. GPIEN – General-purpose Interrupt Enable Register

GPIEN	GPIEN = 9CH Reset Value = 0000 0000B										
Not Bit /	Not Bit Addressable										
	GPIEN7	GPIEN6	GPIEN5	GPIEN4	GPIEN3	GPIEN2	GPIEN1	GPIEN0			
Bit	7	6	5	4	3	2	1	0			
	GPIEN.x	0 = interrupt f	for P1.x disabl	ed							
	1 = interrupt for P1.x enabled										

Table 15-4. GPIF – General-purpose Interrupt Flag Register

GPIF =	= 9DH Reset Value = 0000 0000B									
Not Bit	Addressable									
	GPIF7	GPIF6	GPIF5	GPIF4	GPIF3	GPIF2	GPIF1	GPIF0		
Bit	7	6	5	4	3	2	1	0		
Bit	7	6	5	4	3	2	1	C		
	GPIF.x	GPIF.x 0 = interrupt on P1.x inactive								
		1 = interrupt on P1.x active. Must be cleared by software.								

interrupted by a data byte. An address byte, however, interrupts all slaves. Each slave can examine the received byte and see if it is being addressed. The addressed slave clears its SM2 bit and prepares to receive the data bytes that follows. The slaves that are not addressed set their SM2 bits and ignore the data bytes.

The SM2 bit can be used to check the validity of the stop bit in Mode 1. In a Mode 1 reception, if SM2 = 1, the receive interrupt is not activated unless a valid stop bit is received.

Table 16-1. SCON – Serial Port Control Register

SCO	N Ado	dress = 98H						Reset Value	= 0000 0000B		
Bit A	ddres	sable									
	S	SM0/FE	SM1	SM2	REN	TB8	RB8	T1	RI		
Bit		7	6	5	4	3	2	1	0		
	(SM	$OD0 = 0/1)^{(1)}$									
Sym	bol	Function									
FE		Framing err frames and regardless o	or bit. This b must be clea of the state o	t is set by the red by softwa f SMOD0.	receiver when a receiver when a re. The SMOD0	n invalid stop bi bit must be set	t is detected. T to enable acce	he FE bit is no ss to the FE bi	t cleared by vali t. FE will be set	d	
SM0		Serial Port I	Mode Bit 0, (SMOD0 must	= 0 to access bi	t SM0)					
		Serial Port I	Mode Bit 1								
		SM0	SM1	Mode	Description	Baud F					
		0	0	0	shift register	$f_{osc}/2 \text{ or } f_{osc}/4 \text{ or Timer } 1$					
SM1	SM1	0	1	1	8-bit UART	variable (Time	r 1 or Timer 2)				
		1	0	2	9-bit UART	f _{osc} /32 o	r f _{osc} /16				
		1	1	3	9-bit UART	variable (Timer 1 or Timer 2)					
SM2		Enables the 9th data bit 1 then RI wi In Mode 0, the clock idl	Automatic A (RB8) is 1, ir Il not be activ SM2 determi les high and	ddress Recog dicating an ac ated unless a nes the idle si when SM2 =	nition feature in ddress, and the r valid stop bit wa tate of the shift c I the clock idles	Modes 2 or 3. If eceived byte is s received, and lock such that th low.	SM2 = 1 then I a Given or Broa the received by he clock is the i	RI will not be se adcast Address /te is a Given o inverse of SM2	at unless the reco In Mode 1, if S Broadcast Add I, i.e. when SM2	eived M2 = Iress. = 0	
REN		Enables sei	rial reception	. Set by softwa	are to enable rec	eption. Clear by	y software to di	sable reception	۱.		
TB8		The 9th dat enables Tin	a bit that will ner 1 as the s	be transmitte hift clock gen	d in Modes 2 and erator.	d 3. Set or clear	by software as	s desired. In Mo	ode 0, setting TE	38	
RB8		In Modes 2 Mode 0, RE	and 3, the 9t 38 is not used	h data bit that I.	was received. In	n Mode 1, if SM	2 = 0, RB8 is tł	ne stop bit that	was received. Ir	n	
TI		Transmit int other mode	errupt flag. S s, in any seri	et by hardwai al transmissio	e at the end of the end of the clear	ne 8th bit time ir ed by software.	n Mode 0, or at	the beginning	of the stop bit in	1 the	
RI		Receive inte other mode	errupt flag. S s, in any seri	et by hardwar al reception (e	e at the end of th except see SM2)	e 8th bit time in . Must be cleare	Mode 0, or haled by software.	lfway through t	he stop bit time i	in the	
Notes:	1	SMOD0 is lo	cated at PCC)N.6.							

2. f_{osc} = oscillator frequency. The baud rate depends on SMOD1 (PCON.7).

Reception is initiated by the condition REN = 1 and R1 = 0. At the next clock cycle, the RX Control unit writes the bits 11111110 to the receive shift register and activates RECEIVE in the next clock phase. RECEIVE enables Shift Clock to alternate output function line of P3.1. As data bits come in from the right, "1"s shift out to the left. When the "0" that was initially loaded into the right-most position arrives at the left-most position in the shift register, it flags the RX Control block to do one last shift and load SBUF. Then RECEIVE is cleared and RI is set.

The relationship between the shift clock and data is determined by the combination of the SM2 and SMOD1 bits as listed in Table 16-5 and shown in Figure 16-2. The SM2 bit determines the idle state of the clock when not currently transmitting/receiving. The SMOD1 bit determines if the output data is stable for both edges of the clock, or just one.

SM2	SMOD1	Clock Idle	Data Changed	Data Sampled
0	0	High	While clock is high	Positive edge of clock
0	1	High	Negative edge of clock	Positive edge of clock
1	0	Low	While clock is low	Negative edge of clock
1	1	Low	Negative edge of clock	Positive edge of clock

 Table 16-5.
 Mode 0 Clock and Data Modes

17.3 Pin Configuration

When the SPI is enabled (SPE = 1), the data direction of the MOSI, MISO, SCK, and SS pins is automatically overridden according to the MSTR bit as shown in Table 17-1. The user doesn't need to reconfigure the pins when switching from master to slave or vice-versa. For more details on port configuration, refer to "Port Configuration" on page 35.

Pin	Mode	Master (MSTR = 1)	Slave (MSTR = 0)
	Quasi-bidirectional	Output	Input (Internal Pull-up)
0.01/	Push-pull Output	Output	Input (Tristate)
SCK	Input-only	No output (Tristated)	Input (Tristate)
	Open-drain Output	Output	Input (External Pull-up)
	Quasi-bidirectional	Output ⁽¹⁾	Input (Internal Pull-up)
MOOL	Push-pull Output	Output ⁽²⁾	Input (Tristate)
MOSI	Input-only	No output (Tristated)	Input (Tristate)
	Open-drain Output	Output ⁽¹⁾	Input (External Pull-up)
	Quasi-bidirectional	Input (Internal Pull-up)	Output ($\overline{SS} = 0$) Internal Pull-up ($\overline{SS} = 1$ or DISSO = 1)
MISO	Push-pull Output	Input (Tristate)	Output ($\overline{SS} = 0$) Tristated ($\overline{SS} = 1$ or DISSO = 1)
	Input-only	Input (Tristate)	No output (Tristated)
	Open-drain Output	Input (External Pull-up)	Output ($\overline{SS} = 0$) External Pull-up ($\overline{SS} = 1$ or DISSO = 1)

 Table 17-1.
 SPI Pin Configuration and Behavior when SPE = 1

Notes: 1. In these modes MOSI is active only during transfers. MOSI will be pulled high between transfers to allow other masters to control the line.

2. In Push-pull mode MOSI is active only during transfers, otherwise it is tristated to prevent line contention. A weak external pull-up may be required to prevent MOSI from floating.

AT89LP428/828

Table 18-2.	ACSRB – Analog	Comparator B	Control and	Status Register
	,			

Not Bit /								Reset value =	1100 0000B		
	Addressable	e									
	CSB1	CSI	30	CONB	CFB	CENB	CMB2	CMB1	CMB0]	
Bit	7	6		5	4	3	2	1	0		
Symbol	Function										
CSB	Comparate	or B Positiv	e Input Ch	annel Sele	ect ⁽¹⁾						
[1 - 0]	CSB1	CSB0	B+ Chan	nel							
	0 0 AIN0 (P2.4)										
	0 1 AIN1 (P2.5)										
	1 0 AIN2 (P2.6)										
	1 1 AIN3 (P2.7)										
CONB	Comparator B Input Connect. When $CONB = 1$, the analog input pins are connected to the comparator. When $CONB = 0$ the analog input pins are disconnected from the comparator. CONB must be cleared to 0 before changing $CSB [1 - 0]$ or RFB [1 - 0].										
CFB	Comparator B Interrupt Flag. Set when the comparator output meets the conditions specified by the CMB [2 - 0] bits and CENB is set. The flag must be cleared by software. The interrupt may be enabled/disabled by setting/clearing bit 6 of IE.										
CENB	Comparate prevent fur disabled if	or B Enable rther event they are c	e. Set this t s from setti onfigured ir	bit to enabl ng CFB. V n input-onl	e the compara /hen CENB = y mode.	ator. Clearing th 1, the analog in	nis bit will force nput pins, P2.4	the comparate - P2.7, have t	or output low a heir digital inpu	und uts	
СМВ	Comparator B Interrupt Mode										
[2 - 0]	CMB2	CMB1	СМВ0	Interrup	ot Mode						
	0	0	0	Negative	e (Low) level						
	0	0	1	Positive	edge						
	0	1	0	Toggle v	vith debouncir	ng ⁽²⁾					
	0	1	1	Positive	edge with del	oouncing ⁽²⁾					
	1	0	0	Negativ	e edge	-					
	1	0	1	Toggle	-						
	1	1	0	Negativ	e edge with de	ebouncing ⁽²⁾					
	1 1 1 Positive (High) level										

2. Debouncing modes require the use of Timer 1 to generate the sampling delay.

Table 18-3.	ABEE – Analog Comparator Reference Control Register

AREF =	= AFH						Reset Value =	: 0000 0000B				
Not Bit	Addressable)										
	CBC1	CB	C0 RFB1	RFB0	CAC1	CAC0	RFA1	RFA0				
Bit	7	6	6 5	4	3	2	1	0				
Symbol	Function											
CSC	Comparate	or B Clock	Select									
[1 - 0]	CBC1	CBC0	Clock Source									
	0	0	System Clock	System Clock								
	0	0	Timer 0 Overflow	ïmer 0 Overflow								
	0	1	Timer 1 Overflow	imer 1 Overflow								
	0	1	Timer 2 Overflow	Timer 2 Overflow								
RFB	Comparator B Negative Input Channel Select ⁽¹⁾											
[1 - 0]	CRF1	RFB0	B-channel									
	0	0	AIN2 (P2.6)	AIN2 (P2.6)								
	0	0	Internal $V_{AREF-\Delta}$ (~1.2V)									
	0	1	Internal V _{AREF} (~1.3V)									
	0	1	Internal V _{AREF+Δ} (~1.4V)									
CAC	Comparator A Clock Select											
[1 - 0]	CAC1	CAC0	Clock Source									
	0	0	System Clock									
	0	0	Timer 0 Overflow									
	0	1	Timer 1 Overflow									
	0	1	Timer 2 Overflow									
RFB	Comparato	or A Negat	tive Input Channel Se	elect ⁽²⁾								
[1-0]	RFA1	RFA0	A-channel									
	0	0	AIN1 (P2.5)									
	0	0	Internal $V_{AREF-\Delta}$ (~1	I.2V)								
	0	1	Internal V _{AREF} (~1.3	3V)								
	0	1	Internal $V_{AREF+\Delta}$ (~	1.4V)								

Notes: 1. CONB (ACSRB.5) must be cleared to 0 before changing RFB [1 - 0].

2. CONA (ACSRA.5) must be cleared to 0 before changing RFA [1 - 0].

PSW	D0H	
RCAP2H	СВН	Section 12.1 on page 53
RCAP2L	САН	Section 12.1 on page 53
RH0	94H	Table 11-1 on page 41
RH1	95H	Table 11-1 on page 41
RL0	92H	Table 11-1 on page 41
RL1	93H	Table 11-1 on page 41
SADDR	A9H	Section 16.7 on page 90
SADEN	B9H	Section 16.7 on page 90
SBUF	99H	Section 16.3 on page 81
SCON	98H	Table 16-1 on page 78
SP	81H	
SPCR	E9H	Table 17-3 on page 97
SPDR	EAH	Table 17-2 on page 97
SPSR	E8H	Table 17-4 on page 98
T2CCA	D1H	Table 13-1 on page 63
T2CCC	D4H	Table 13-4 on page 64
T2CCF	D5H	Table 13-5 on page 65
T2CCH	D3H	Table 13-2 on page 63
T2CCL	D2H	Table 13-3 on page 63
T2CON	С8Н	Table 12-3 on page 53
T2MOD	С9Н	Table 12-4 on page 54
TCON	88H	Table 11-2 on page 45
TCONB	91H	Table 11-4 on page 47
тно	8CH	Table 11-1 on page 41
TH1	8DH	Table 11-1 on page 41
TH2	CDH	Section 12.1 on page 53
TL0	8AH	Table 11-1 on page 41
TL1	8BH	Table 11-1 on page 41
TL2	ССН	Section 12.1 on page 53
TMOD	89H	Table 11-3 on page 46
WDTCON	A7H	Table 19-2 on page 106
WDTRST	A6H	Table 19-3 on page 106

Table 21-1. Special Function Register Cross Reference (Continued)

26.4 32M1-A - MLF

