

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I²C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-WFLGA
Supplier Device Package	25-LGA (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10e8aala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					(2/2)					
Item	1	25-pin	32-pin	48-pin	64-pin					
		R5F10E8x	R5F10EBx	R5F10EGx	R5F10ELx					
Clock output/buzzer	r output	1	2	2	2					
		 2.44 kHz, 4.88 kHz, 9.7 2.5 MHz, 5 MHz, 10 MI (Main system clock: fm/) 	76 kHz, 1.25 MHz, Hz an = 20 MHz operation)	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 						
8/12-bit resolution A	VD converter	13 channels	18 channels	24 channels	28 channels					
Serial interface	<u>.</u>	[25-pin products]	[25-pin products]							
		 CSI: 1 channel/simpli CSI: 1 channel/simpli [32-pin products] CSI: 1 channel/simpli 	 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel [32-pin products] CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel 							
		 CSI: 1 channel/simpli CSI: 1 channel/simpli [48-pin products] 	 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel [48-pin products] 							
		 CSI: 2 channels/simpl CSI: 1 channel/simpl CSI: 2 channels/simpl [64-pin products] 	 CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] 							
		 CSI: 2 channels/simp CSI: 2 channels/simp CSI: 2 channels/simp 	olified I ² C: 2 channels/UA olified I ² C: 2 channels/UA olified I ² C: 2 channels/UA	.RT: 1 channel .RT: 1 channel .RT (UART supporting LIN	N-bus): 1 channel					
I	I ² C bus	1 channel	1 channel	1 channel	1 channel					
Multiplier and divider/multiply-accu	umulator	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 								
DMA controller		2 channels								
Vectored interrupt I	Internal	24	27	27	27					
sources f	External	6	6	10	13					
Key interrupt		0 ch (4 ch) ^{Note 1}	1 ch (6 ch) ^{Note 1}	6 ch	10 ch					
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 								
Power-on-reset circ	uit	Power-on-reset: 1.5 Power-down-reset: 1.5	51 V (TYP.) 50 V (TYP.)							
Voltage detector		Rising edge : 1 Falling edge : 1	• Rising edge : 1.67 V to 3.14 V (12 stages) • Falling edge : 1.63 V to 3.06 V (12 stages)							
On-chip debug func	tion	Provided								
Power supply voltaç	ge	V _{DD} = 1.6 to 3.6 V								
Operating ambient t	temperature	T _A = -40 to +85°C (A: C	onsumer application), TA	= -40 to +105°C (G: Indu	strial application)					

Notes 1. Can be used by the Peripheral I/O redirection register (PIOR).

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1.0		20.0	MHz
		$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. See AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- <R> Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		–40 to –20 °C	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	-1.5		+1.5	%
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

(T _A = -40 to +85°C	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V} $ (1)											
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit					
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$			-10.0 ^{Note 2}	mA					
		Total of P00 to P04, P40 to P43, P120,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			-10.0	mA					
		P130, P140, P141	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA					
		(when duty $\leq 70\%$	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA					
		Total of P05, P06, P10 to P16, P30, P31, P50, P51, P70 to P77,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			-19.0	mA					
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA					
		(when duty $\leq 70\%$	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-5.0	mA					
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$			-29.0	mA					
	Іон2	Per pin for P20 to P27, P150 to P154	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			-0.1 ^{Note 2}	mA					
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$1.6 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			-1.3	mA					

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and I_OH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Caution P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}C$, 1.6 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = $EV_{SS0} = 0$ V)

Parameter	Symbol	C	Conditior	าร	HS'	Note 1	LS⁵	lote 2	LV	lote 3	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 4}	t ксү2	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq$	≦ 3.6 V	16 MHz < fмск	8/fмск		-		-		ns
				fмск ≤ 16 MHz	6/fмск		6/ f мск		6/fмск		ns
		$2.4 \text{ V} \leq EV_{\text{DD0}} \leq$	≦ 3.6 V		6/fмск		6/fмск		6/fмск		ns
					and 500ps		and 500ps		and 500ps		
		1.8 V < EVDD0 <	3.6 V		6/fмск		6/fмск		6/fмск		ns
					and		and		and		
					750ns		750ns		750ns		
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≦ 3.6 V		6/fмск		6/fмск		6/fмск		ns
					and 1500ns		and 1500ns		and 1500ns		
		1.6 V ≤ EV _{DD0} ≤	≤ 3.6 V		_		6/fмск		6/ f мск		ns
							and		and		
							1500ns		1500ns		
SCKp high-/low-level	tкн2,	$2.7 \text{ V} \leq EV_{DD} \leq$	3.6 V		tксү2/2		tксү2/2		tксү2/2		ns
width	UKL2		26V		-0		-0		-0		ne
			≤ 0.0 V		-18		-18		-18		115
		1.7 V ≤ EV _{DD0} ≤	≤ 3.6 V		tксү2/2		tксү2/2		tксү2/2		ns
					-66		-66		-66		
		$1.6 V \le EV_{DD0} \le$	≦ 3.6 V		-		tксү2/2		tксү2/2		ns
							-66		-66		
SIp setup time (to SCKp↑) ^{Note 5}	tsik2	2.7 V ≤ EV _{DD0} ≤	≤ 3.6 V		1/fмск +20		1/fмск +30		1/fмск +30		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≦ 3.6 V		1/fмск +30		1/fмск +30		1/fмск +30		ns
		1.7 V ≤ EV _{DD0} ≤	≤ 3.6 V		1/fмск		1/fмск		1/fмск		ns
					+40		+40		+40		
		$1.0 V \leq EVDD0 \leq$	≥ 3.0 V		_		т/тмск +40		1/імск +40		ns
SIp hold time	tĸsi2	1.8 V ≤ EV _{DD0} ≤	≤ 3.6 V		1/fмск		1/ f мск		1/fмск		ns
(from SCKp↑) ^{Note 5}					+31		+31		+31		
		1.7 V ≤ EV _{DD0} ≤	≦ 3.6 V		1/fмск+ 250		1/fмск+ 250		1/fмск+ 250		ns
		$1.6 V \le EV_{DD0} \le$	≤ 3.6 V		-		1/fмск+ 250		1/fмск+ 250		ns
Delav time from SCKp↓	tkso2	C = 30 pF ^{Note 7}	2.7 V	< EVDD0 < 3.6 V		2/fмск	200	2/fмск	200	2/fмск	ns
to SOp output ^{Note 6}						+44		+110		+110	
			2.4 V :	$\leq EV_{DD0} \leq 3.6 V$		2/fмск +75		2/fмск +110		2/fмск +110	ns
			1.8 V :	$\leq EV_{DD0} \leq 3.6 V$		2/fмск +110		2/fмск +110		2/fмск +110	ns
			1.7 V :	$\leq EV_{DD0} \leq 3.6 V$		2/fмск +220		2/fмск +220		2/fмск +220	ns
			1.6 V :	$\leq EV_{DD0} \leq 3.6 V$		_		2/fмск +220		2/fмск +220	ns

(Note, Caution and Remark are listed on the next page.)

Parameter	Symbol	Conditions	HS	Note 1	LS ^{Note 2}		LV ^{Note 3}		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	0	355	0	355	0	355	ns
		1.8 V ≤ EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} < 1.8 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{array}$	-	-	0	405	0	405	ns

(5) During communication at same potential (simplified I²C mode) (2/2) (T_A = -40 to +85°C, 1.6 V \leq EV_{DD} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. The value must also be fcLK/4 or lower.
 - 5. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (Vbb tolerance (When 25- to 48-pin products)/EVbb tolerance (When 64-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1), h: POM number (h = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number, mn = 00 to 03, 10, 11)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number , n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **3.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +85°C, 1.8 V ≤ EV_{DD0} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Conc	ditions	HS	Note 1	LS⁵	lote 2	L۷	lote 3	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 4}	t ксү2	$2.7 V \le EV_{DD0} \le 3.6 V$,	24 MHz < fмск	20/fмск		-		-		ns
		$2.3 V \le V_b \le 2.7 V$	20 MHz < fмск≤24 MHz	16/fмск		-		-		ns
			16 MHz < fмск≤20 MHz	14/ f мск		_		_		ns
			8 MHz < fмск≤ 16 MHz	12/fмск		-		-		ns
			4 MHz < fмск≤8 MHz	8/fмск		16/fмск		-		ns
			fмcк≤4 MHz	6/fмск		10/fмск		10/fмск		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{Note \ 5} \end{array}$	24 MHz < fмск	48/f мск		_		_		ns
			20 MHz < fмск≤24 MHz	36/f мск		-		-		ns
			16 MHz < fмск≤20 MHz	32/f мск		-		-		ns
			8 MHz < fмск≤ 16 MHz	26/fмск		-		-		ns
			4 MHz < fмск≤8 MHz	16/ f мск		16/fмск		-		ns
			fмck≤4 MHz	10/ f мск		10/fмск		10/fмск		ns
SCKp high-/low-level width	tкн2, t _{KL2}	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$, 2.3 V \leq V _b \leq 2.7 V	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V ≤ EV _{DD0} < 3.3 V ₅	, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note}}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 6}	tsık2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$, $2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ EV _{DD0} < 3.3 V ₅	, $1.6~V \le V_b \le 2.0~V^{\text{Note}}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 6}	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 7}	Delay time from SCKpJtkso2 $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V},$ to SOp output Note 7Cb = 30 pF, Rb = 2.7 ks		, 2.3 V ≤ V _b ≤ 2.7 V, Ω		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		1.8 V \leq EV _{DD0} < 3.3 V s, C _b = 30 pF, R _b = 5.5 k	$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- **3.** LV is condition of LV (low-voltage main) mode.
- **4.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
- **5.** Use it with $EV_{DD0} \ge V_b$.
- 6. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 7. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

<R>

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02, 10))
 - **4.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Conditions	Standard Mode ^{Note 1}				Unit		
			HS	Note 2	LS	lote 3	LV	lote 4	
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscl	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	100	0	100	0	100	kHz
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	0	100	0	100	0	100	
		$1.7~V \leq EV_{DD0} \leq 3.6~V$	0	100	0	100	0	100	
		$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$	-		0	100	0	100	
Setup time of restart condition	tsu:sta	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	4.7		4.7		4.7		
		$1.7~V \leq EV_{DD0} \leq 3.6~V$	4.7		4.7		4.7		
		$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$	-		4.7		4.7		
Hold time ^{Note 5}	thd:sta	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	4.0		4.0		4.0		μs
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	4.0		4.0		4.0		
		$1.7~V \leq EV_{DD0} \leq 3.6~V$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.0		4.0		
Hold time when SCLA0 = "L"	t LOW	$2.7~V \leq EV_{DD0} \leq 3.6~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	4.7		4.7		4.7		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.7		4.7		
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.0		4.0		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		ns
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		250		250		
Data hold time (transmission) ^{Note 6}	thd:dat	$2.7~V \leq EV_{DD0} \leq 3.6~V$	0	3.45	0	3.45	0	3.45	μs
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	3.45	0	3.45	0	3.45	
		$1.7~V \leq EV_{DD0} \leq 3.6~V$	0	3.45	0	3.45	0	3.45	
		$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$	-	-	0	3.45	0	3.45	
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{DD0} \leq 3.6~V$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.0		4.0		
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7~V \leq EV_{DD0} \leq 3.6~V$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.7		4.7		

(Note and Remark are listed on the next page.)

2.9 Dedicated Flash Memory Programmer Communication (UART)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit					
Transfer rate		During flash memory programming	115.2 k		1 M	bps					

(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 3.6 V, Vss = EVss0 = 0 V)

2.10 Timing Specs for Switching Flash Memory Programming Modes

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
	How long from when the TOOL0 pin is placed at the low level until a external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
<r></r>	How long the TOOL0 pin must be kept at the low level after an external reset ends (except flash firmware processing time)	tнD	POR and LVD reset must end before the external reset ends.	1			ms

<R>

<R>

- <1> The low level is input to the TOOL0 pin.
- <2> The pins reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - $t_{su:}$ How long from when the TOOL0 pin is placed at the low level until a external reset ends
- tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (except flash firmware processing time)

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (m = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10)
 - **4.** IIC01, IIC11, and IIC21 cannot communicate at different potential. Use IIC00, IIC10, or IIC20 for communication at different potential.

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Division of A/D Converter Characteristics

Reference voltag	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	Reference voltage (+) = AV _{DD} Reference voltage (-) = AV _{SS}	Reference voltage (+) = Internal refrence voltage
Input channel			Reference voltage (–) = AVss
High-accuracy channel; ANI0 to ANI12 (input buffer power supply: AV _{DD})	See 3.6.1 (1)	See 3.6.1 (2)	See 3.6.1 (5)
Standard channel; ANI16 to ANI30 (input buffer power supply: Vbb or EVbbo)	See 3.6.1 (3)	See 3.6.1 (4)	
Temperature sensor, internal reference voltage output	See 3.6.1 (3)	See 3.6.1 (4)	-

<R> (1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI12

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8.		12.	bit
Overall error ^{Note}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±6.0	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	3.375			μs
Zero-scale error ^{Note}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±4.5	LSB
Full-scale error ^{Note}	Efs	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±4.5	LSB
Integral linearity error ^{Note}	ILE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
Differential linearity error ^{Note}	DLE	12-bit resolution	$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$			±1.5	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error ($\pm 1/2$ LSB).

<R> (5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), target for conversion: ANI0 to ANI12, ANI16 to ANI30

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{EV}_{DD} \le \text{V}_{DD}, 2.4 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ V}, \text{Reference voltage (+) = Internal reference voltage, Reference voltage (-) = AV}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t CONV	8-bit resolution	16.0			μs
Zero-scale error ^{Note}	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error ^{Note}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note}	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AV _{REF(+)}	= Internal reference voltage (VBGR)	1.38	1.45	1.50	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error ($\pm 1/2$ LSB).

3.6.2 Temperature sensor, internal reference voltage output characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T_A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (high-speed main) mode)

3.6.3 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode or if the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset before V_{DD} rises to V_{POR} after having fallen below 0.7 V.

<R> 3.7 RAM Data Retention Characteristics

<R> (T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		3.6	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 years T _A = 25°C		1,000,000		
		Retained for 5 years T _A = 85°C	100,000			
		Retained for 20 years T _A = 85°C	10,000			

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

<R>

R01DS0151EJ0210 Rev.2.10 Nov 30, 2016

4.2 32-pin products

R5F10EBAANA, R5F10EBCANA, R5F10EBDANA, R5F10EBEANA R5F10EBAGNA, R5F10EBCGNA, R5F10EBDGNA, R5F10EBEGNA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

DETAIL OF (A) PART

C₂

A₁

Referance	Dimens	sion in Mil	limeters
Symbol	Min	Nom	Max
D	4.95	5.00	5.05
E	4.95	5.00	5.05
A			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х		—	0.05
у			0.05
Z _D		0.75	
Z _E	_	0.75	
c ₂	0.15	0.20	0.25
D2		3.50	
E ₂		3.50	

©2013 Renesas Electronics Corporation. All rights reserved.

4.4 64-pin products

R5F10ELCAFB, R5F10ELDAFB, R5F10ELEAFB R5F10ELCGFB, R5F10ELDGFB, R5F10ELEGFB

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

R5F10ELCABG, R5F10ELDABG, R5F10ELEABG

е

b

х

y

y1 ZD

ZE

0.40 0.25±0.05

0.05

0.20

0.60

0.60

y S

 \frown

е

S A B

φx Μ

ø b ⊕

- A1

