

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

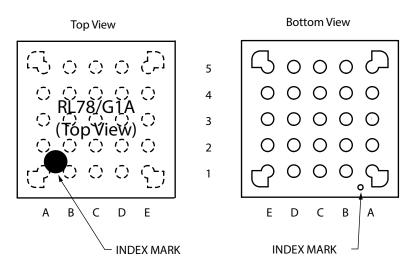
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-WFLGA
Supplier Device Package	25-LGA (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10e8dala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

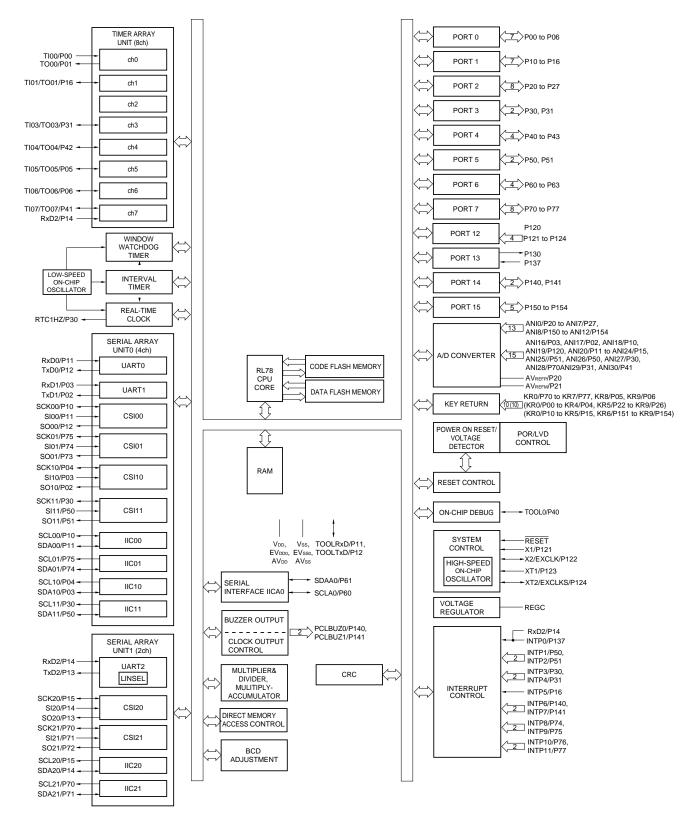
Flash ROM	Data flash	RAM		RL78	/G1A	
			25 pins	32 pins	48 pins	64 pins
64 KB	4 KB	4 KB ^{Note}	R5F10E8E	R5F10EBE	R5F10EGE	R5F10ELE
48 KB	4 KB	3 KB	R5F10E8D	R5F10EBD	R5F10EGD	R5F10ELD
32 KB	4 KB	2 KB	R5F10E8C	R5F10EBC	R5F10EGC	R5F10ELC
16 KB	4 KB	2 KB	R5F10E8A	R5F10EBA	R5F10EGA	_


Note This is about 3 KB when the self-programming function and data flash function are used. (For details, see
 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C))

1.3 Pin Configuration (Top View)

1.3.1 25-pin products

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)


	А	В	С	D	E	_
5	P40/TOOL0	RESET	P03/ANI16/ RxD1/TO00/ (KR1)	P23/ANI3/ (KR3)	AVss	5
4	P122/X2/ EXCLK	P137/INTP0	P02/ANI17/ TxD1/TI00/ (KR0)	P22/ANI2/ (KR2)	AVDD	4
3	P121/X1	VDD	P21/ANI1/ AVrefm	P11/ANI20/ SI00/SDA00/ RxD0/ TOOLRxD	P10/ANI18/ SCK00/SCL00	3
2	REGC	Vss	P30/ANI27/ SCK11/SCL11/ INTP3	P51/ANI25/ SO11/INTP2	P50/ANI26/ SI11/SDA11 INTP1	2
1	P60/SCLA0	P61/SDAA0	P31/ANI29/TI03/ TO03/PCLBUZ0 /INTP4	P12/ANI21/ SO00/TxD0/ TOOLTxD	P20/ANI0/ AV _{REFP}	1
	А	В	С	D	E	-

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5.4 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Uni
Supply	DD2Note 2	HALT	HS (high-speed	fi⊩ = 32 MHz ^{Note 4}	V _{DD} = 3.0 V		0.54	1.63	mA
current ^{Note 1}		mode	main) mode ^{Note 7}	fill = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.44	1.28	mA
				fi⊩ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-speed	f⊮ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		270	530	μA
			main) mode ^{Note 7}		V _{DD} = 2.0 V		270	530	
			LV (Low-voltage	fı⊢ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		435	640	μA
			main) mode ^{Note 7}		V _{DD} = 2.0 V		435	640	
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		0.45	1.17	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	
			LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		145	380	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	
			Subsystem clock	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			mode	T _A = −40°C	Resonator connection		0.44	0.76	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.38	1.17	μA
				T _A = +50°C	Resonator connection		0.57	1.36	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.52	1.97	μA
				T _A = +70°C	Resonator connection		0.71	2.16	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μA
				T _A = +85°C	Resonator connection		1.16	3.56	
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.16	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.34	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	

 $40 t_{0} \pm 95\%$ $4 \in V < EV_{PP} < V_{PP} < 2 \in V / V_{PP} = EV_{PP} = 0 / V_{PP}$ /**т**

(Notes and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2)

Parameter	Symbol	Conditions	HS	Note 1	LS	Note 2	L۷	Note 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 4}	tsik1	$\begin{array}{l} 2.7 \; V \leq EV_{\text{DD0}} \leq 3.6 \; V, 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V, \\ C_{\text{b}} = 30 \; pF, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$	177		479		479		ns
		$ \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \\ {}^{6}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array} $	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksii	$\begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	19		19		19		ns
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \\ {}^{6}, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array} $	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso1	$\begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		195		195		195	ns
				483		483		483	ns
SIp setup time (to SCKp↓) ^{Note 5}	tsik1	$\begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	44		110		110		ns
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \\ {}^{6}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array} $	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 5}	tksi1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \\ {}^{6}, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array} $	19		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 5}	tkso1	$\begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		25		25		25	ns
		1.8 V \leq EV _{DD0} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note} 6, C _b = 30 pF, R _b = 5.5 kΩ		25		25		25	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Notes 1. HS is condition of HS (high-speed main) mode.

- **2.** LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 5. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 6. Use it with $EV_{DD0} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 25- to 48-pin products)/EV_{DD} tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

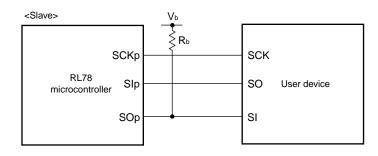
(Remarks are listed on the next page.)

<R>

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +85°C, 1.8 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = EVss0 = 0 V)

Parameter	Symbol	Cond	ditions	HS	Note 1	LS	lote 2	L۷	lote 3	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	l
SCKp cycle time ^{Note 4}	tксү2	$2.7~V \leq EV_{DD0} \leq 3.6~V,$	24 MHz < fмск	20/fмск		-		-		ns
		$2.3V{\leq}V_b{\leq}2.7V$	20 MHz < fмск≤24 MHz	16/ f мск		-		-		ns
			16 MHz < fмск≤20 MHz	14/ f мск		_		-		ns
			8 MHz < fмск≤ 16 MHz	12/fмск		-		-		ns
			4 MHz < fмck≤8 MHz	8/f мск		16/fмск		_		ns
			fмск≤4 MHz	6/fмск		10/f мск		10/f мск		ns
		$1.8 V \le EV_{DD0} < 3.3 V$,	24 MHz < fмск	48/f мск		_		_		ns
		$1.6 \ V \le V_b \le 2.0 \ V^{\text{Note 5}}$	20 MHz < fмск≤24 MHz	36/f мск		_		_		ns
			16 MHz < fмск≤20 MHz	32/f мск		-		-		ns
			8 MHz < fмск≤ 16 MHz	26/ f мск		_		_		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/ f мск		16/fмск		-		ns
			fмck ≤ 4 MHz	10/ f мск		10/fмск		10/f мск		ns
SCKp high-/low-level width	tкн2, t _{KL2}	$2.7~V \leq EV_{DD0} \leq 3.6~V$, 2.3 V \le Vb \le 2.7 V	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V ≤ EV _{DD0} < 3.3 V ₅	$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note}} \\ {}_{5} \end{array}$			tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 6}	tsıĸ2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$, 2.3 V \le Vb \le 2.7 V	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ EV _{DD0} < 3.3 V ₅	, 1.6 V \le V_b \le 2.0 V^{Note}	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Slp hold time (from SCKp↑) ^{Note 6}	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 7}	tkso2	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		1.8 V \leq EV _{DD0} < 3.3 V 5, C _b = 30 pF, R _b = 5.5 k	$V_{\rm b} \le V_{\rm b} \le 2.0 \ V^{\rm Note}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. HS is condition of HS (high-speed main) mode.


- 2. LS is condition of LS (low-speed main) mode.
- **3.** LV is condition of LV (low-voltage main) mode.
- **4.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
- **5.** Use it with $EV_{DD0} \ge V_b$.
- 6. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 7. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

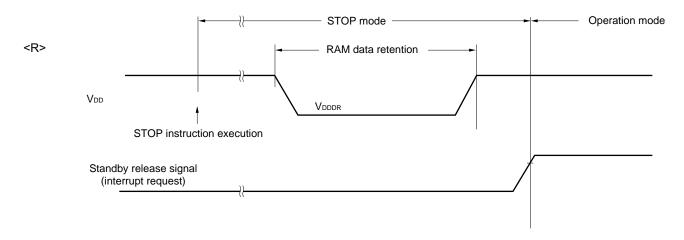
Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

<R>

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02, 10))
 - **4.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.



<R> 2.7 RAM Data Retention Characteristics

<R> (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		3.6	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

<R> 2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclк	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2}	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 3}$	1,000			Times
Number of data flash rewrites ^{Notes 1, 2}		Retained for 1 years T _A = $25^{\circ}C^{Note 3}$		1,000,000		
		Retained for 5 years $T_A = 85^{\circ}C^{Note 3}$	100,000			
		Retained for 20 years $T_A = 85^{\circ}C^{Note 3}$	10,000			

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le V_{DD} \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

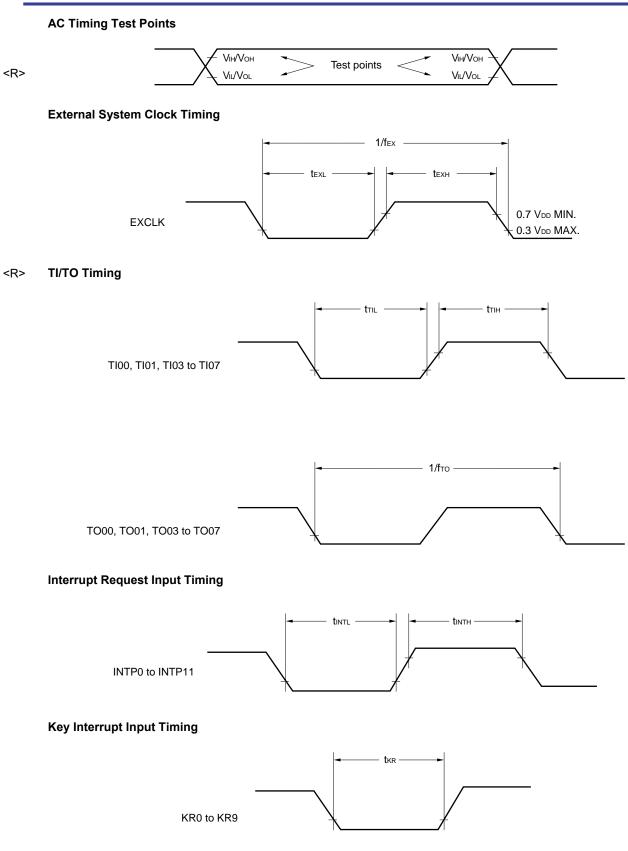
$(I_A = -40 \text{ to } +10)$	<u>)5°C, 2.4 V</u>	\leq AVDD \leq VDD \leq 3.6 V, 2.4 V \leq I		$0 \le 3.6 \text{ V}, \text{ Vss} =$	EVsso =	0 V)		(5/
Items	Symbol	Conditio	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ісінт	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P140, P141	VI = EVDD0				1	μA
	ILIH2	P137, RESET	$V_{I} = V_{DD}$				1	μA
	І∟інз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	Ілн4	P20 to P27, P150 to P154	$V_I = AV_{DD}$				1	μA
Input leakage current, low	luu1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P67, P70 to P77, P120, P140, P141	VI = EVSSO	VI = EVsso			-1	μA
	ILIL2	P137, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P20 to P27, P150 to P154	VI = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	VI = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and data flash rewriting.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). Not including the current flowing into the RTC, 12-bit interval timer and watchdog timer
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $V_{DD} = 2.7 V \text{ to } 3.6 V@1 \text{ MHz to } 32 \text{ MHz}$ $V_{DD} = 2.4 V \text{ to } 3.6 V@1 \text{ MHz to } 16 \text{ MHz}$

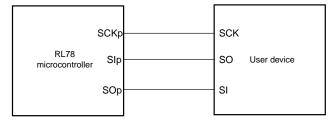
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C



Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	_{FIL} Note 1				0.20		μA
RTC operating current	_{RTC} Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	ITNotes 1, 2, 4				0.02		μA
Watchdog timer operating current	_{WDT} Notes 1, 2, 5	f⊩ = 15 kHz			0.22		μA
A/D converter operating current	ADC ^{Notes 6, 7}	AV _{DD} = 3.0 V, W	$V_{DD} = 3.0 \text{ V}$, When conversion at maximum speed			720	μA
AV _{REF(+)} current	AVREFNote 8	AV _{DD} = 3.0 V, A	DREFP1 = 0, ADREFP0 = 0 ^{Note 7}		14.0	25.0	μA
		AV _{REFP} = 3.0 V, /	$ADREFP1 = 0, ADREFP0 = 1^{Note 10}$		14.0	25.0	μA
		ADREFP1 = 1, A	$\Delta DREFP0 = 0^{Note 1}$		14.0	25.0	μA
A/D converter reference voltage current	ADREF ^{Notes 1, 9}	V _{DD} = 3.0 V			75.0		μA
Temperature sensor operating current	I _{TMPS} Note 1	V _{DD} = 3.0 V			75.0		μA
LVD operating current	ILVD ^{Notes 1, 11}				0.08		μA
BGO operating current	BGO ^{Notes 1, 12}				2.5	12.2	mA
Self-programming operating current	FSP ^{Notes 1, 13}				2.5	12.2	mA
SNOOZE operating	Isnoz	A/D converter	The mode is performed ^{Notes 1, 14}		0.50	1.10	mA
current		operation	During A/D conversion ^{Note 1}		0.60	1.34	mA
		(AV _{DD} = 3.0 V)	During A/D conversion ^{Note 7}		420	720	μA
		CSI/UART opera	CSI/UART operation ^{Note 1}			1.54	mA

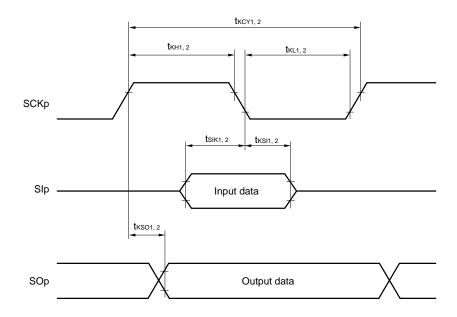
(**T** EV/a - - - -

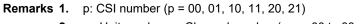
(Notes and Remarks are listed on the next page.)


(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +105°C, 2.4 V ≤ EV_{DD0} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
SCKp cycle time	tkcy1	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	tĸcyı ≥ 4/fc∟ĸ	250			ns
		$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$	tксү1 ≥ 4/fc∟к	500			ns
SCKp high-/low-level width	tкнı,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$		tkcy1/2 - 36			ns
	tĸ∟1	$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$		tkcy1/2 - 76			ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$		66			ns
		$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$		113			ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1			38			ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tkso1	C = 30 p ^{Note 3}				50	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1)


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

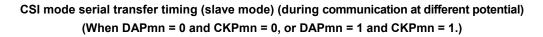
2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

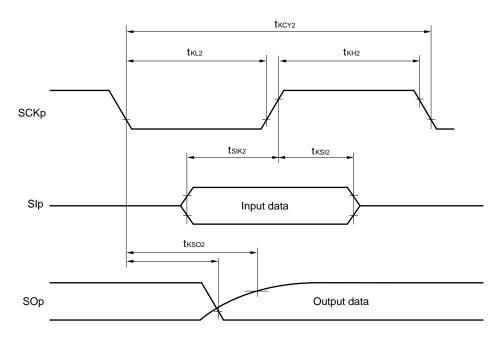
(5) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output) (1/2) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = EVsso = 0 V)

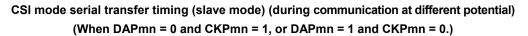
Parameter	Symbol		Conditions				MAX.	Unit
Transfer rate ^{Note 1}		Reception	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V,$				fмск/12	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate f _{CLK} = 32 MHz, f _{MCK} = f _{CLK}			2.6	Mbps
			$2.4~V \leq EV_{\text{DD0}} < 3.3~V,$				fмск/12	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate f _{CLK} = 32 MHz, f _{MCK} = f _{CLK}			2.6 ^{Note 2}	Mbps

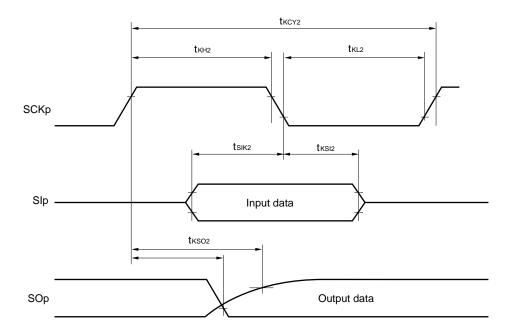
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps.

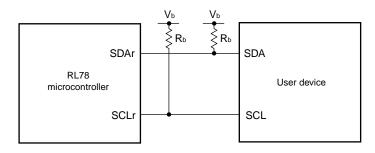
The following conditions are required for low-voltage interface when EV_{DD0} < V_{DD}.
 2.4 V ≤ EV_{DD0} < 2.7 V : MAX. 1.3 Mbps

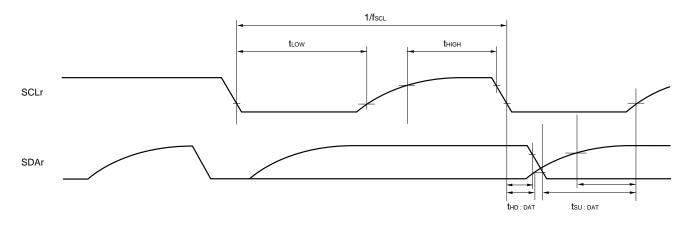

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


Remarks 1. V_b[V]: Communication line voltage


- **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10, 11)


<R>





- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10)
 - **4.** IIC01, IIC11, and IIC21 cannot communicate at different potential. Use IIC00, IIC10, or IIC20 for communication at different potential.

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Division of A/D Converter Characteristics

Reference voltag	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	Reference voltage (+) = AV _{DD} Reference voltage (-) = AV _{SS}	Reference voltage (+) = Internal refrence voltage Reference voltage (-) = AVss
High-accuracy channel; ANI0 to ANI12 (input buffer power supply: AV _{DD})	See 3.6.1 (1)	See 3.6.1 (2)	See 3.6.1 (5)
Standard channel; ANI16 to ANI30 (input buffer power supply: Vbb or EVbb0)	See 3.6.1 (3)	See 3.6.1 (4)	
Temperature sensor, internal reference voltage output	See 3.6.1 (3)	See 3.6.1 (4)	_

<R> (1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI12

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8.		12.	bit
Overall error ^{Note}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±6.0	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	3.375			μs
Zero-scale error ^{Note}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±4.5	LSB
Full-scale error ^{Note}	Ers	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±4.5	LSB
Integral linearity error ^{Note}	ILE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
Differential linearity error ^{Note}	DLE	12-bit resolution	$2.4 \text{ V} \le AV_{\text{REFP}} \le AV_{\text{DD}} \le 3.6 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN		·	0		AVREFP	V

Note Excludes quantization error ($\pm 1/2$ LSB).

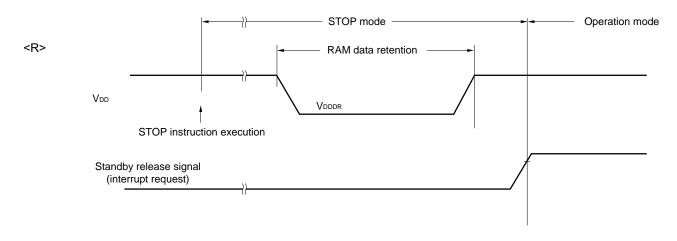
- <R>
- (3) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
Overall error ^{Note 1}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±7.0	LSB
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
Zero-scale error ^{Note 1}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	LSB
Full-scale error ^{Note 1}	Ers	12-bit resolution	$2.4~V \le AV_{\text{REFP}} \le AV_{\text{DD}} \le 3.6~V$			±5.0	LSB
Integral linearity error ^{Note 1}	ILE	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB
Differential linearity error ^{Note 1}	DLE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
Analog input voltage	Vain			0.		AVREFP and EVDD0	V
		Interanal reference voltage (2.4 V \leq V _{DD} \leq 3.6 V, HS (high-speed main) mode)		V _{BGR} Note 2 V _{TMPS25} Note 2			V
		Temperature sense (2.4 V \leq V _{DD} \leq 3.6 V	V				

Notes 1. Excludes quantization error (±1/2 LSB).

2. See 3.6.2 Temperature sensor, internal reference voltage output characteristics.



<R> 3.7 RAM Data Retention Characteristics

<R> (T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		3.6	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

		-	-			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclк	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 years T _A = 25°C		1,000,000		
		Retained for 5 years T _A = 85°C	100,000			
		Retained for 20 years T _A = 85°C	10,000			

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

<R>

R01DS0151EJ0210 Rev.2.10 Nov 30, 2016