

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-WFLGA
Supplier Device Package	25-LGA (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10e8eala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- <R> Notes 1. Current flowing to VDD.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing to the AVDD.
 - 8. Current flowing from the reference voltage source of A/D converter.
 - 9. Operation current flowing to the internal reference voltage.
 - **10.** Current flowing to the AVREFP.
 - **11.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 12. Current flowing only during data flash rewrite.
 - **13.** Current flowing only during self programming.

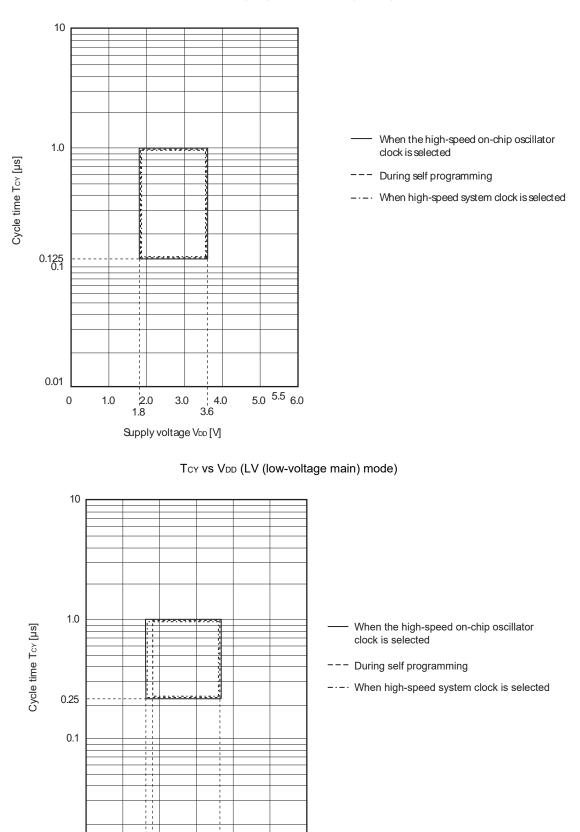
Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ AV}_{DD} \le \text{V}_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

Items	Symbol		Cond	itions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (high-s	peed	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	0.03125		1	μs
instruction execution time)		clock (fmain) operation	main) mod	le	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-sp main) mod		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0.125		1	μs
			LV (low-vo main) mod	•	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0.25		1	μs
		operation		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	28.5	30.5	31.3	μs	
		In the self .	HS (high-s		$2.7~V \leq V_{\text{DD}} \leq 3.6~V$			1	μs
		programming mode	main) mod	le	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μs
			LS (low-sp main) mod		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	0.125		1	μs
			LV (low-vo main) mod	•	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7~V \leq V_{\text{DD}} \leq$	3.6 V			1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} <$	2.7 V			1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ <	2.4 V			1.0		8.0	MHz
		1.6 V \leq V_DD <	1.8 V			1.0		4.0	MHz
	fexs					32		35	kHz
External system clock input	texh, texl	$2.7~V \leq V_{\text{DD}} \leq$	3.6 V			24			ns
high-level width, low-level width		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$				30			ns
wiath		$1.8 V \le V_{DD} <$	2.4 V			60			ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$				120			ns
	texhs, texls					13.7			μs
TI00, TI01, TI03 to TI07 input high-level width, low-level width	t⊤ıн, t⊤ı∟					1/fмск+10			ns ^{Note}
TO00, TO01, TO03 to	fтo	HS (high-spee	ed main)	2.7 V	$\leq EV_{\text{DD0}} \leq 3.6 \text{ V}$			8	MHz
TO07 output frequency		mode		1.8 V	$\leq EV_{DD0}$ < 2.7 V			4	MHz
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$				2	MHz
		LS (low-speed	d main)	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$				4	MHz
		mode		1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LV (low-voltag mode	ge main)	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$				2	MHz
PCLBUZ0, PCLBUZ1	f PCL	HS (high-spee	ed main)	2.7 V	$\leq EV_{\text{DD0}} \leq 3.6 \text{ V}$			8	MHz
output frequency		mode		1.8 V	$\leq EV_{DD0}$ < 2.7 V			4	MHz
				1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LS (low-speed	d main)	1.8 V	$\leq EV_{\text{DD0}} \leq 3.6 \text{ V}$			4	MHz
		mode		1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LV (low-voltag	ge main)	1.8 V	$\leq EV_{\text{DD0}} \leq 3.6 \text{ V}$			4	MHz
		mode	Γ	1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
Interrupt input high-level	tinth, tintl	INTP0		1.6 V	$\leq V_{\text{DD}} \leq 3.6 \text{ V}$	1			μs
width, low-level width		INTP1 to INT	P11	1.6 V	$\leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	1			μs
Key interrupt input high-level width, low-level	t KR	KR0 to KR9			$ \leq EV_{DD0} \leq 3.6 \text{ V}, \\ \leq AV_{DD0} \leq 3.6 \text{ V} $	250			ns
width					$\leq EV_{DD0} < 1.8 \text{ V},$ $\leq AV_{DD0} < 1.8 \text{ V}$	1			μs
RESET low-level width	t _{RSL}					10			μs


(Note and Remark are listed on the next page.)

<R>

<R>

TCY vs VDD (LS (low-speed main) mode)

0.01

0

2.0 1.6 1.8

3.0

Supply voltage VDD [V]

4.0

3.6

5.0

1.0

6.0

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

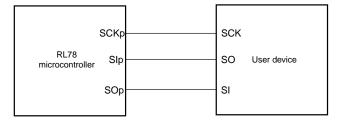
Parameter	Symbol	Conditions	6	HS	Note 1	LS	lote 2	LV ^{Note 3}		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү2	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	tkcy1 ≥ 4/fclk	125		500		1000		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$	tkcy1 ≥ 4/fclk	250		500		1000		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	tkcy1 ≥ 4/fclk	500		500		1000		ns
		$1.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	tkcy1 ≥ 4/fclk	1000		1000		1000		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$	tkcy1 ≥ 4/fclk	-		1000		1000		ns
SCKp high-/low-level width	tкн2, tкL2			tксү2/2 –18		tксү2/2 –50		tксү₂/2 –50		ns
				tксү₂/2 –38		tксү2/2 –50		tксү2/2 –50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		tксү2/2 –50		tксү2/2 –50		tксү2/2 –50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		tксү2/2 –100		tксү2/2 –100		tксү2/2 –100		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$		-		tксү₂/2 −100		tксү₂/2 −100		ns
SIp setup time	tsık2	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$		44		110		110		ns
(to SCKp↑) ^{Note 4}		$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$		75		110		110		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$		110		110		110		ns
		$1.7~V \leq EV_{\text{DD0}} \leq 3.6~V$		220		220		220		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$		_		220		220		ns
SIp hold time	tksi2	$1.7~V \leq EV_{\text{DD}} \leq 3.6~V$		19		19		19		ns
(from SCKp↑) ^{Note 4}	$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 3.6 \text{ V}$			_		19		19		ns
Delay time from SCKp \downarrow	tkso2	$1.7~V \leq EV_{\text{DD}} \leq 3.6~V$	$C = 30 \text{ pF}^{Note 6}$		25		25		25	ns
to SOp output ^{Note 5}		$1.6~V \leq EV_{\text{DD}} \leq 3.6~V$	$C = 30 pF^{Note 6}$		_		25		25	ns

Notes 1. HS is condition of HS (high-speed main) mode.

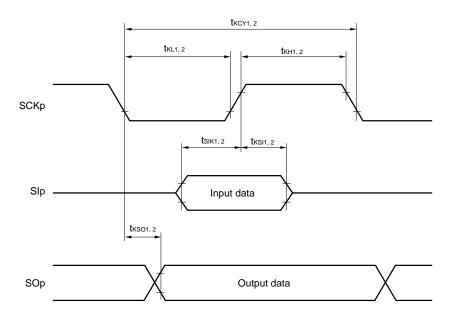
- **2.** LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 6. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1)

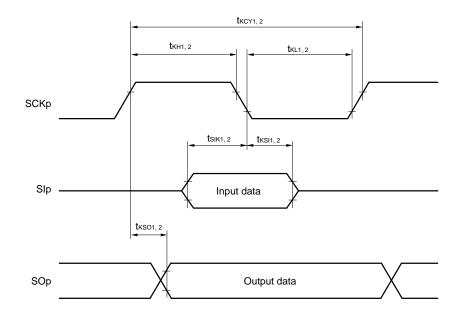
- Notes 1. HS is condition of HS (high-speed main) mode.
 - **2.** LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 7. C is the load capacitance of the SOp output lines.

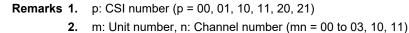
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),
 - g: PIM number (g = 0, 1)
 - 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,


n: Channel number (mn = 00 to 03, 10, 11))


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS [№]	ote 1	LS [№]	ote 2	LV ^{NC}	ote 3	Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	tксү1 ≥ 2/f с∟к	300		1150		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \ 2.3 \ V\\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V$,	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120		ns
SCKp low-level width	tĸ∟1	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 3.6 \mbox{ V}, 2.3 \mbox{ V} \\ C_b = 20 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	$V \le V_b \le 2.7 V$,	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp↑) ^{Note 4}	tsik1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V_s$	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V_s$	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 3.6 \mbox{ V}, 2.3 \mbox{ V} \\ C_b = 20 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	$V \le V_b \le 2.7 V$,		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 5}	tsik1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V_s$	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 5}	tksi1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V$,	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 5}	tkso1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V\\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \leq V_b \leq 2.7 V$,		10		10		10	ns

($T_{A} = -40$ to +85°C 2	$.7 V \leq EV_{DD0} \leq V_{DD} \leq 3.6$	$V_{SS} = FV_{SS0} = 0 V$
۰.	1A = -40 10 0000, 2		v, voo – Lvoou – U vj

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 5. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

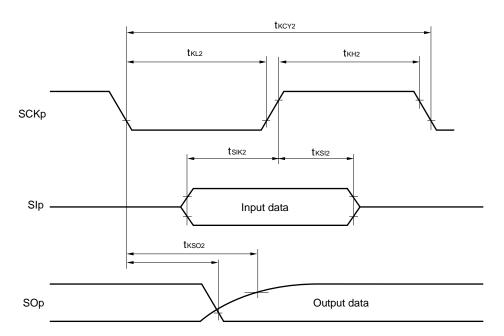
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

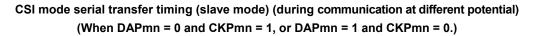
<R>

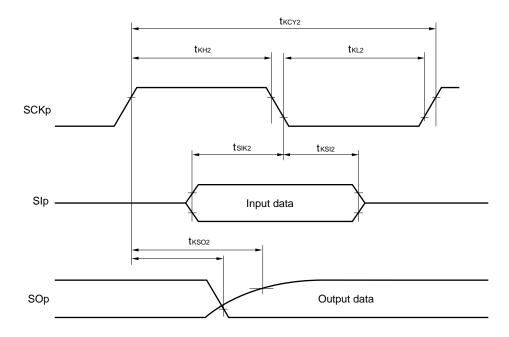
(8) Communication at different potential (1.8V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2)

Parameter	Symbol	Conditions	Conditions		ote 1	LS ^{Note 2}		LV ^{Note 3}		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	$\begin{array}{ll} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, & t_{KCY1} \geq 4/f_{CLK} \\ 2.3 \ V \leq V_b \leq 2.7 \ V, & \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega & \end{array}$		500		1150		1150		ns
		$ \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 4}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	tксү1 ≥ 4/fс∟к	1150		1150		1150		ns
SCKp high-level width	tкнı	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, 2.3 \mbox{ V} \leq \\ C_{\mbox{\tiny b}} = 30 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 2.7 \mbox{ k}\Omega \end{array}$	$\leq V_{b} \leq 2.7 V$,	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \\ \text{4}, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	tĸ∟1	$\begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{split}$		tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq \\ ^{4}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	$\leq V_b \leq 2.0 V^{Note}$	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns


 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD0} \le V_{DD} \le 3.6 \text{ V}, \text{ Vss} = EV_{SS0} = 0 \text{ V})$

Notes 1. HS is condition of HS (high-speed main) mode.


- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Use it with $EV_{DD0} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and V_{IL} , see the DC characteristics with TTL input buffer selected.
 - **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 10, 20), m: Unit number , n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - 3. CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.


<R>

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Conditions		St	andard	Mode ^{No}	ote 1		Unit
			HS	Note 2	LS	lote 3	L۷	lote 4	
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	$2.7~V \leq EV_{DD0} \leq 3.6~V$	0	100	0	100	0	100	kHz
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	0	100	0	100	0	100	
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	0	100	0	100	0	100	
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		0	100	0	100	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.7		4.7		
Hold time ^{Note 5}	thd:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.0		4.0		
Hold time when SCLA0 = "L"	tLOW	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.7		4.7		
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq 3.6 \text{ V}$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.0		4.0		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		ns
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		250		250		
Data hold time (transmission)Note 6	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	
		$1.6~V \leq EV_{DD0} \leq 3.6~V$	-	-	0	3.45	0	3.45	
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{DD0} \leq 3.6~V$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$	_		4.0		4.0		
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	_		4.7		4.7		

(Note and Remark are listed on the next page.)

- <R>
- (5) When reference voltage (+) = AV_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AV_{SS} (ADREFM = 0), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD0}} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+) = AV}_{\text{DD}}, \text{Reference voltage (-) = AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
			$1.8 V \le AV_{DD} \le 3.6 V$	8		10 ^{Note 1}	
			$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$		8 ^{Note 2}		
Overall error ^{Note 3}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.5	LSB
		10-bit resolution	$1.8~V \le AV_{\text{DD}} \le 3.6~V$			±6.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.5	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4~V \le AV_{\text{DD}} \le 3.6~V$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8~V \le AV_{DD} \le 3.6~V$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6~V \le AV_{\text{DD}} \le 3.6~V$	57.5			
		ADTYP = 1,	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	3.3125			μs
		8-bit resolution	$1.8~V \le AV_{\text{DD}} \le 3.6~V$	7.875			
			$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$	54.25			
Zero-scale error ^{Note 3}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.0	LSB
		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±5.5	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	
Full-scale error ^{Note 3}	EFS	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.0	LSB
		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±5.5	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	
Integral linearity error ^{Note 3}	ILE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.5	LSB
		10-bit resolution	$1.8~V \le AV_{\text{DD}} \le 3.6~V$			±2.5	
		8-bit resolution	$1.6~V \le AV_{\text{DD}} \le 3.6~V$			±1.5	
Differential linearity errorNote 3	DLE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	LSB
		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
Analog input voltage	VAIN			0		AV _{DD} and EV _{DD0}	V
		Interanal reference voltage (2.4 V \leq V _{DD} \leq 3.6 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
		Temperature sensor of (2.4 V \leq V _{DD} \leq 3.6 V, H	utput voltage S (high-speed main) mode)	,	VTMPS25 ^{Note}	4	V

Notes 1. Cannot be used for lower 2 bit of ADCR register

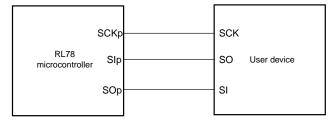
- 2. Cannot be used for lower 4 bit of ADCR register
- **3.** Excludes quantization error ($\pm 1/2$ LSB).
- 4. See 2.6.2 Temperature sensor, internal reference voltage output characteristics.

3.3.2 Supply current characteristics

Parameter	Symbol			Conditions						Unit
Supply current	DD1 ^{Note 1}	Operating mode	HS (high-speed main) mode ^{Note 5}	f _{IH} = 32 MHz ^{Note 3}	Basic operation	V _{DD} = 3.0 V		2.1		mA
					Normal operation	V _{DD} = 3.0 V		4.6	7.5	mA
				f _{IH} = 24 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		3.7	5.8	mA
				f⊪ = 16 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		2.7	4.2	mA
			HS (high-speed main) mode ^{Note 5}	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Normal operation	Square wave input		3.0	4.9	mA
						Resonator connection		3.2	5.0	
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		1.9	2.9	mA
						Resonator connection		1.9	2.9	
			Subsystem clock mode	fsub = 32.768 kHz ^{Note 4} T _A = -40°C	Normal operation	Square wave input		4.1	4.9	μA
						Resonator connection		4.2	5.0	
				fsub = 32.768 kHz ^{Note 4} T _A = +25°C	Normal operation	Square wave input		4.2	4.9	μA
						Resonator connection		4.3	5.0	
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +50°C	Normal operation	Square wave input		4.3	5.5	μA
						Resonator connection		4.4	5.6	
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +70°C	Normal operation	Square wave input		4.5	6.3	μA
						Resonator connection		4.6	6.4	
				fsub = 32.768 kHz ^{Note 4} T _A = +85°C	Normal operation	Square wave input		4.8	7.7	μA
						Resonator connection		4.9	7.8	
				fsub = 32.768 kHz ^{Note 4} T _A = +105°C	Normal operation	Square wave input		6.9	19.7	μΑ
						Resonator connection		7.0	19.8	

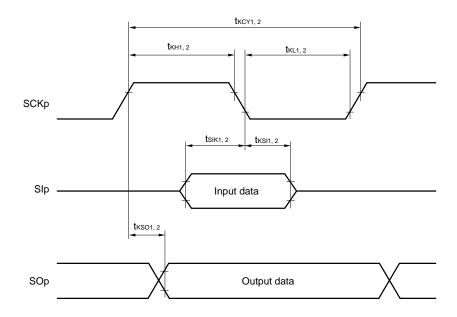
$(T_A = -40 \text{ to } +105^{\circ}\text{C},$	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}$

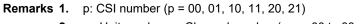
(Notes and Remarks are listed on the next page.)


- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and data flash rewriting.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). Not including the current flowing into the RTC, 12-bit interval timer and watchdog timer
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

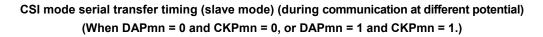
HS (high-speed main) mode: $V_{DD} = 2.7 V \text{ to } 3.6 V@1 \text{ MHz to } 32 \text{ MHz}$ $V_{DD} = 2.4 V \text{ to } 3.6 V@1 \text{ MHz to } 16 \text{ MHz}$

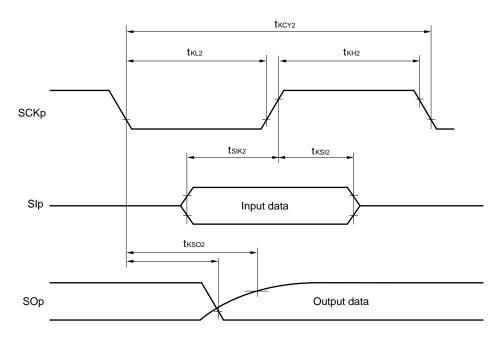
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

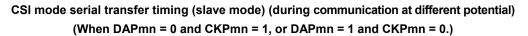

CSI mode connection diagram (during communication at same potential)

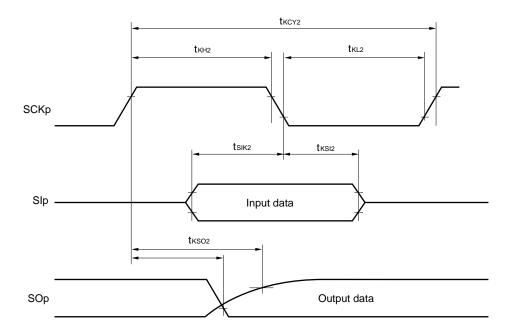


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)




CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)





2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8) Communication at different potential (1.8 V, 2.5 V) (simplified l^2C mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1200		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tнıgн	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1830		ns

(Notes, Caution and Remarks are listed on the next page.)

- <R>
- (3) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
Overall error ^{Note 1}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±7.0	LSB
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
Zero-scale error ^{Note 1}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	LSB
Full-scale error ^{Note 1}	Ers	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
Integral linearity error ^{Note 1}	ILE	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB
Differential linearity error ^{Note 1}	DLE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
Analog input voltage	Vain			0.		AVREFP and EVDD0	V
			Interanal reference voltage $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{HS} (high-speed main) mode)$				V
		•	Temperature sensor output voltage 2.4 V \leq V _{DD} \leq 3.6 V, HS (high-speed main) mode)			2	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. See 3.6.2 Temperature sensor, internal reference voltage output characteristics.

- <R>
- (4) When reference voltage (+) = AV_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AV_{SS} (ADREFM = 0), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD0}} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{DD}}, \text{Reference voltage (-)} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
Overall error ^{Note 1}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.5	LSB
Conversion time	tсоми	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
Zero-scale error ^{Note 1}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.0	LSB
Full-scale error ^{Note 1}	Ers	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.0	LSB
Integral linearity error ^{Note 1}	ILE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	LSB
Analog input voltage	Vain			0		AV _{DD} and EV _{DD0}	V
		Interanal reference vo $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{H})$	V _{BGR} Note 2			V	
		Temperature sensor (2.4 V \leq V _{DD} \leq 3.6 V, H	,	VTMPS25 ^{Note}	2	V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. See 3.6.2 Temperature sensor, internal reference voltage output characteristics.

<R>

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), target for conversion: ANI0 to ANI12, ANI16 to ANI30

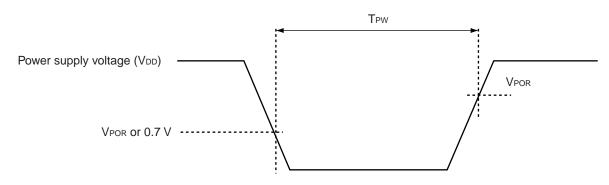
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{EV}_{DD} \le \text{V}_{DD}, 2.4 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ V}, \text{Reference voltage (+) = Internal reference voltage, Reference voltage (-) = AV}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t _{CONV}	8-bit resolution	16.0			μs
Zero-scale error ^{Note}	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error ^{Note}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note}	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AV _{REF(+)}	= Internal reference voltage (V _{BGR})	1.38	1.45	1.50	V
Analog input voltage	VAIN		0		VBGR	V

Note Excludes quantization error ($\pm 1/2$ LSB).

3.6.2 Temperature sensor, internal reference voltage output characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

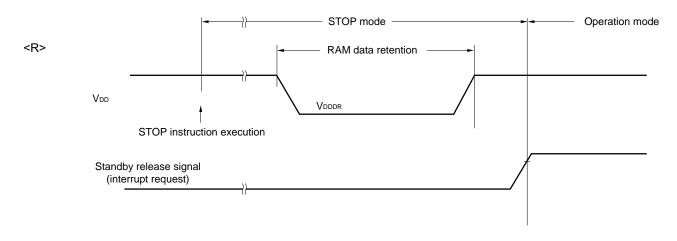

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (high-speed main) mode)

3.6.3 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode or if the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset before V_{DD} rises to V_{POR} after having fallen below 0.7 V.



<R> 3.7 RAM Data Retention Characteristics

<R> (T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		3.6	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fськ	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 years T _A = 25°C		1,000,000		
		Retained for 5 years T _A = 85°C	100,000			
		Retained for 20 years T _A = 85°C	10,000			

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

<R>

R01DS0151EJ0210 Rev.2.10 Nov 30, 2016