

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 18x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10ebcana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

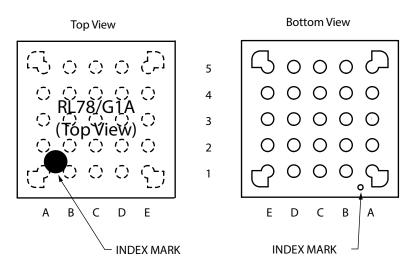
<R>

Pin count	Package	Fields of Application ^{Note}	Ordering Part Number
25 pins	25-pin plastic WFLGA (3 × 3 mm, 0.5 mm pitch)	A	R5F10E8AALA#U0, R5F10E8CALA#U0, R5F10E8DALA#U0, R5F10E8EALA#U0, R5F10E8AALA#W0, R5F10E8CALA#W0, R5F10E8DALA#W0, R5F10E8EALA#W0
		G	R5F10E8AGLA#U0, R5F10E8CGLA#U0, R5F10E8DGLA#U0, R5F10E8EGLA#U0, R5F10E8AGLA#W0, R5F10E8CGLA#W0, R5F10E8DGLA#W0, R5F10E8EGLA#W0
32 pins	32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)	A	R5F10EBAANA#U0, R5F10EBCANA#U0, R5F10EBDANA#U0, R5F10EBEANA#U0, R5F10EBAANA#W0, R5F10EBCANA#W0, R5F10EBDANA#W0, R5F10EBEANA#W0
		G	R5F10EBAGNA#U0, R5F10EBCGNA#U0, R5F10EBDGNA#U0, R5F10EBEGNA#U0, R5F10EBAGNA#W0, R5F10EBCGNA#W0, R5F10EBDGNA#W0, R5F10EBEGNA#W0
48 pins	48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)	A	R5F10EGAAFB#V0, R5F10EGCAFB#V0, R5F10EGDAFB#V0, R5F10EGEAFB#V0, R5F10EGAAFB#X0, R5F10EGCAFB#X0, R5F10EGDAFB#X0, R5F10EGEAFB#X0
		G	R5F10EBAGNA#V0, R5F10EBCGNA#V0, R5F10EBDGNA#V0, R5F10EBEGNA#V0, R5F10EBAGNA#X0, R5F10EBCGNA#X0, R5F10EBDGNA#X0, R5F10EBEGNA#X0
	48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)	A	R5F10EGAANA#U0, R5F10EGCANA#U0, R5F10EGDANA#U0, R5F10EGEANA#U0, R5F10EGAANA#W0, R5F10EGCANA#W0, R5F10EGDANA#W0, R5F10EGEANA#W0
		G	R5F10EGAGNA#U0, R5F10EGCGNA#U0, R5F10EGDGNA#U0, R5F10EGEGNA#U0, R5F10EGAGNA#W0, R5F10EGCGNA#W0, R5F10EGDGNA#W0, R5F10EGEGNA#W0
64 pins	64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm	A	R5F10ELCAFB#V0, R5F10ELDAFB#V0, R5F10ELEAFB#V0, R5F10ELCAFB#X0, R5F10ELDAFB#X0, R5F10ELEAFB#X0
	pitch)	G	R5F10ELCGFB#V0, R5F10ELDGFB#V0, R5F10ELEGFB#V0, R5F10ELCGFB#X0, R5F10ELDGFB#X0, R5F10ELEGFB#X0
	64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)	A	R5F10ELCABG#U0, R5F10ELDABG#U0, R5F10ELEABG#U0, R5F10ELCABG#W0, R5F10ELDABG#W0, R5F10ELEABG#W0
		G	R5F10ELCGBG#U0, R5F10ELDGBG#U0, R5F10ELEGBG#U0, R5F10ELCGBG#W0, R5F10ELDGBG#W0, R5F10ELEGBG#W0

<R>

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G1A.

Caution The part number above is valid as of when this manual was issued. For the latest part number, see the web page of the target product on the Renesas Electronics website.

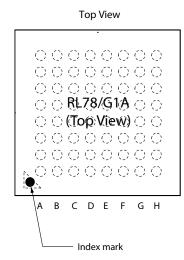

RENESAS

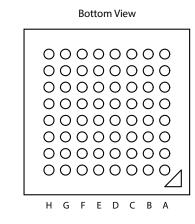
1. OUTLINE

1.3 Pin Configuration (Top View)

1.3.1 25-pin products

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)


	А	В	С	D	E	_
5	P40/TOOL0	RESET	P03/ANI16/ RxD1/TO00/ (KR1)	P23/ANI3/ (KR3)	AVss	5
4	P122/X2/ EXCLK	P137/INTP0	P02/ANI17/ TxD1/TI00/ (KR0)	P22/ANI2/ (KR2)	AVDD	4
3	P121/X1	VDD	P21/ANI1/ AVrefm	P11/ANI20/ SI00/SDA00/ RxD0/ TOOLRxD	P10/ANI18/ SCK00/SCL00	3
2	REGC	Vss	P30/ANI27/ SCK11/SCL11/ INTP3	P51/ANI25/ SO11/INTP2	P50/ANI26/ SI11/SDA11 INTP1	2
1	P60/SCLA0	P61/SDAA0	P31/ANI29/TI03/ TO03/PCLBUZ0 /INTP4	P12/ANI21/ SO00/TxD0/ TOOLTxD	P20/ANI0/ AV _{REFP}	1
	А	В	С	D	E	-


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

• 64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)

Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	P05/TI05/TO05/KR8	C1	P51/ANI25/SO11 /INTP2	E1	P153/ANI11/(KR8)	G1	AVdd
A2	P30/ANI27/SCK11 /SCL11/INTP3 /RTC1HZ	C2	P71/SI21/SDA21/KR1	E2	P154/ANI12/(KR9)	G2	P25/ANI5/(KR8)
A3	P70/ANI28/SCK21 /SCL21/KR0	C3	P74/SI01/SDA01 /INTP8/KR4	E3	P10/ANI18/SCK00 /SCL00/(KR0)	G3	P24/ANI4/(KR7)
A4	P75/SCK01/SCL01 /INTP9/KR5	C4	P16/TI01/TO01/INTP5	E4	P11/ANI20/SI00 /SDA00/RxD0 /TOOLRxD/(KR1)	G4	P22/ANI2/(KR5)
A5	P77/INTP11/KR7	C5	P15/ANI24/SCK20 /SCL20/(KR5)	E5	P03/ANI16/SI10 /SDA10/RxD1/(KR3)	G5	P130
A6	P61/SDAA0	C6	P63	E6	P41/ANI30/TI07/TO07	G6	P02/ANI17/SO10/TxD1 /(KR2)
A7	P60/SCLA0	C7	Vss	E7	RESET	G7	P00/TI00/(KR0)
A8	EVDD0	C8	P121/X1	E8	P137/INTP0	G8	P124/XT2/EXCLKS
B1	P50/ANI26 /SI11 /SDA11/INTP1	D1	P13/ANI22/SO20 /TxD2/(KR3)	F1	P150/ANI8	H1	AVss
B2	P72/SO21/KR2	D2	P06/TI06/TO06/KR9	F2	P151/ANI9/(KR6)	H2	P27/ANI7
B3	P73/SO01/KR3	D3	P12/ANI21/SO00 /TxD0/TOOLTxD/(KR2)	F3	P152/ANI10/(KR7)	H3	P26/ANI6/(KR9)
B4	P76/INTP10/KR6	D4	P14/ANI23/SI20/ SDA20/RxD2/(KR4)	F4	P21/ANI1/AVREFM	H4	P23/ANI3/(KR6)
B5	P31/ANI29/TI03/TO03 /INTP4	D5	P42/TI04/TO04	F5	P04/SCK10/SCL10 /(KR4)	H5	P20/ANI0/AVREFP
B6	P62	D6	P40/TOOL0	F6	P43	H6	P141/PCLBUZ1/INTP7
B7	Vdd	D7	REGC	F7	P01/TO00/(KR1)	H7	P140/PCLBUZ0/INTP6
B8	EVsso	D8	P122/X2/EXCLK	F8	P123/XT1	H8	P120/ANI19

8

7

6

5

4

3

2

1

Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

<R>

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	-40	mA
		Total of all pins –170 mA	P00 to P04, P40 to P43, P120, P130, P140, P141	-70	mA
			P05, P06, P10 to P16, P30, P31, P50, P51, P70 to P77,	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P154	-0.1	mA
		Total of all pins		-1.3	mA
Output current, low	IoL1 Per pin		P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P130, P140, P141	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P43, P120, P130, P140, P141	70	mA
			P05, P06, P10 to P16, P30, P31, P50, P51, P60 to P63, P70 to P77	100	mA
	IOL2	Per pin	P20 to P27, P150 to P154	0.4	mA
		Total of all pins		6.4	mA
Operating ambient	TA	In normal operation	on mode	-40 to +85	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1.0		20.0	MHz
frequency (fx) ^{Note}		$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. See AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- <R> Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.0		+5.0	%
		–40 to –20 °C	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	-1.5		+1.5	%
			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

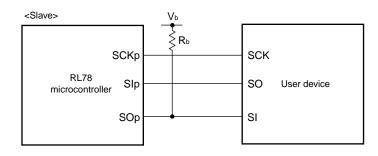
- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.

Items	Symbol	$\frac{\mathbf{AV}_{DD} \leq \mathbf{V}_{DD} \leq \mathbf{3.6 V}, \ \mathbf{1.6 V} \leq \mathbf{EV}_{DD}}{\text{Conditions}}$	$0 \leq \mathbf{V} D D \leq 3.6 \mathbf{V}, \mathbf{V} SS =$	EVSSO = U MIN.	V) TYP.	MAX.	(3/5 Unit
Input voltage, high	ViH1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	Normal input buffer	0.8EVddo		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P16, P43	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	2.0		EVDD0	V
			TTL input buffer 1.6 V \leq EV _{DD0} $<$ 3.3 V	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P154		0.7AVDD		AVDD	V
	VIH4	P60 to P63	0.7EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	Normal input buffer	0		0.2EVDD0	V
	VIL2	P01, P03, P04, P10, P11, P13 to P16, P43	TTL input buffer $3.3 V \le EV_{DD0} \le 3.6 V$	0		0.5	V
			TTL input buffer 1.6 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P154		0		0.3AVDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCL	(S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +85^{\circ}\text{C} = 1.6 \text{ V} \le 4 \text{ Vpp} \le 3.6 \text{ V} = 1.6 \text{ V} \le F \text{ Vpp} \le 3.6 \text{ V} = 5 \text{ Vss} = 0.0 \text{ V}$

Caution The maximum value of VIH of pins P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 is EVDD0, even in the N-ch open-drain mode.

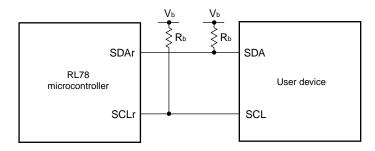
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

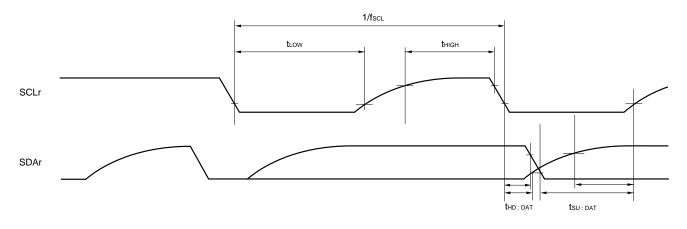

2.3.2 Supply current characteristics

Parameter	Symbol			/, Vss = EVss₀ = 0 V) Conditions			MIN.	TYP.	MAX.	(1) Uni
Supply current ^{Note 1}		Operating mode	HS (high-speed main) mode ^{Note 5}	f _{IH} = 32 MHz ^{Note 3}	Basic operation	V _{DD} = 3.0 V		2.1		mA
					Normal operation	V _{DD} = 3.0 V		4.6	7.0	mA
				f _{IH} = 24 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		3.7	5.5	mA
				f _{IH} = 16 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-speed	f _{IH} = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	m/
			main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	
			LV (Low-voltage	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	m/
			main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.7	
			HS (high-speed main) mode ^{Note 5}	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Normal operation	Square wave input		3.0	4.6	m
						Resonator connection		3.2	4.8	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Normal operation	Square wave input		1.9	2.7	m
						Resonator connection		1.9	2.7	
			LS (low-speed main) mode ^{Note 5}	f _{MX} = 8 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		1.1	1.7	m
						Resonator connection		1.1	1.7	
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 2.0 \text{ V}$	Normal operation	Square wave input		1.1	1.7	m
						Resonator connection		1.1	1.7	
			Subsystem clock mode	fs∪B = 32.768 kHz ^{Note 4} T _A = −40°C	Normal operation	Square wave input		4.1	4.9	μ
						Resonator connection		4.2	5.0	
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +25°C	Normal operation	Square wave input		4.2	4.9	μ
						Resonator connection		4.3	5.0	
				fsub = 32.768 kHz ^{Note 4} T _A = +50°C	Normal operation	Square wave input		4.3	5.5	μ
						Resonator connection		4.4	5.6	
				fsub = 32.768 kHz ^{Note 4} T _A = +70°C	Normal operation	Square wave input		4.5	6.3	μ
						Resonator connection		4.6	6.4	
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +85°C	Normal operation	Square wave input		4.8	7.7	μι
						Resonator connection		4.9	7.8	

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

(Notes and Remarks are listed on the next page.)


CSI mode connection diagram (during communication at different potential)


- **Remarks 1.** R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02, 10))
 - **4.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10)
 - **4.** IIC01, IIC11, and IIC21 cannot communicate at different potential. Use IIC00, IIC10, or IIC20 for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Conditions		St	andard	Mode ^{No}	ote 1		Unit
			HS	Note 2	LS	lote 3	L۷	lote 4	
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	0	100	0	100	0	100	kHz
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	0	100	0	100	0	100	
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	0	100	0	100	0	100	
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		0	100	0	100	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.7		4.7		
Hold time ^{Note 5}	thd:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.0		4.0		
Hold time when SCLA0 = "L"	tLOW	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.7		4.7		
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq 3.6 \text{ V}$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	-		4.0		4.0		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	250		250		250		ns
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		250		250		
Data hold time (transmission)Note 6	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	
		$1.6~V \leq EV_{DD0} \leq 3.6~V$	-	-	0	3.45	0	3.45	
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{DD0} \leq 3.6~V$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	4.0		4.0		4.0		
		$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$	_		4.0		4.0		
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 3.6~V$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	_		4.7		4.7		

(Note and Remark are listed on the next page.)

Parameter	Symbol	Conditions			Fast M		Fast Mode Plus ^{Note 8} HS ^{Note 2}		Unit		
			HS	Note 2	LS ^{Note 3}				LV ^{Note 4}		
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	400	0	400	0	400	0	1000	kHz
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	400	0	400	0	400	-		
Setup time of restart condition	tsu:sta	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		0.26		μs
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		-		
Hold time ^{Note 5}	thd:sta	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		0.26		μs
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		-		
Hold time when SCLA0	tLow	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	1.3		1.3		1.3		0.5		μs
= "L"		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	1.3		1.3		1.3		-		
Hold time when SCLA0	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		0.26		μs
= "H"		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		-		
Data setup time	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	100		100		100		50		ns
(reception)		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	100		100		100		-		
Data hold time	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	0.9	0	0.9	0	0.9	0	450	μs
(transmission) ^{Note 6}		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	0.9	0	0.9	0	0.9	-		
Setup time of stop	tsu:sto	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		0.26		μs
condition		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		-		
Bus-free time	t BUF	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	1.3		1.3		1.3		0.5		μs
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	1.3		1.3		1.3		-		

(2) I²C fast mode, fast mode plus (T_A = -40 to +85°C, 1.6 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Notes 1. In normal mode, use it with fcLK \geq 1 MHz, 1.6 V \leq EVDD \leq 3.6 V.

- **2.** HS is condition of HS (high-speed main) mode.
- **3.** LS is condition of LS (low-speed main) mode.
- 4. LV is condition of LV (low-voltage main) mode.
- 5. The first clock pulse is generated after this period when the start/restart condition is detected.
- 6. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 7. In fast mode, use it with fcLK \ge 3.5 MHz, 1.8 V \le EVDD \le 3.6 V.
- 8. In fast mode plus, use it with fcLK \ge 10 MHz, 2.7 V \le EVDD \le 3.6 V.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

2.6.4 LVD circuit characteristics

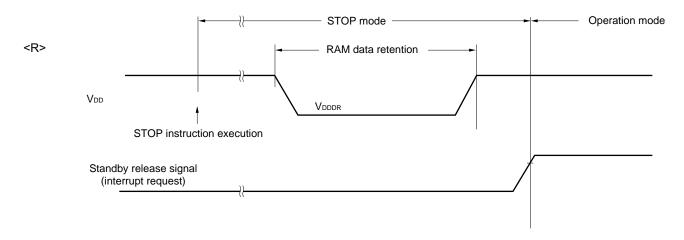
LVD Detection Voltage of Reset Mode and Interrupt Mode

(T _A = -40 to +85°C	, VPDR \leq VDD \leq 3.6	V, Vss = 0 V)
--------------------------------	------------------------------	---------------

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.19 3.12 3.08 3.02 2.97 2.91 2.87 2.81 2.70 2.66 2.70 2.66 2.60 2.55 2.50 2.13 2.08 2.02 1.98 1.91 1.87 1.81 1.77	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	lse width	t∟w		300			μs
Detection de	elay time					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: $V_{DD} = 2.7$ to 3.6 V@1 MHz to 32 MHz $V_{DD} = 2.4$ to 3.6 V@1 MHz to 16 MHz LS (low-speed main) mode: $V_{DD} = 1.8$ to 3.6 V@1 MHz to 8 MHz


LV (low-voltage main) mode: VDD = 1.6 to 3.6 V@1 MHz to 4 MHz

<R> 2.7 RAM Data Retention Characteristics

<R> (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		3.6	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

<R> 2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclк	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2}	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 3}$	1,000			Times
Number of data flash rewrites ^{Notes 1, 2}		Retained for 1 years T _A = $25^{\circ}C^{Note 3}$		1,000,000		
		Retained for 5 years $T_A = 85^{\circ}C^{Note 3}$	100,000			
		Retained for 20 years $T_A = 85^{\circ}C^{Note 3}$	10,000			

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le V_{DD} \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1.0		20.0	MHz
frequency (fx) ^{Note}		$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	1.0		16.0	
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

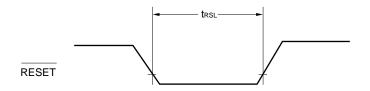
- **Note** Indicates only permissible oscillator frequency ranges. See AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- <R> Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator oscillation frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		+85 to +105 °C	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	-2		+2	%
oscillation frequency accuracy		–20 to +85 °C	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	-1		+1	%
		–40 to –20 °C	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	-1.5		+1.5	%
Low-speed on-chip oscillator oscillation frequency	fı∟				15		kHz
Low-speed on-chip oscillator oscillation frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.


- <R> Notes 1. Current flowing to VDD.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
 - **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing to the AVDD.
 - 8. Current flowing from the reference voltage source of A/D converter.
 - 9. Operation current flowing to the internal reference voltage.
 - **10.** Current flowing to the AVREFP.
 - **11.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 12. Current flowing only during data flash rewrite.
 - **13.** Current flowing only during self programming.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

RESET Input Timing

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +105°C, 2.4 V ≤ EV_{DD0} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	tĸcyı ≥ 4/fc∟ĸ	250			ns
		$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$	tксү1 ≥ 4/fc∟к	500			ns
SCKp high-/low-level width	tкнı,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$		tkcy1/2 - 36			ns
	t_{KL1} 2.4 V \leq EV _{DD0} \leq 3.6 V			tkcy1/2 - 76			ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$		66			ns
		$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$		113			ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1			38			ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tkso1	C = 30 p ^{Note 3}				50	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 ^{Note 1}	kHz
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLow	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1200		ns
		$\label{eq:linear} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1/f _{мск} + 220 ^{Note 2}		ns
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	1/f _{мск} + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	0	770	ns
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	0	1420	ns

(4)	During communication at same potential (simplified I ² C mode)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Notes 1. The value must also be fcLK/4 or lower.

- 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output) (1/2) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = EVsso = 0 V)

Parameter	Symbol		Conditions				MAX.	Unit
Transfer rate ^{Note 1}		Reception	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V,$				fмск/12	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate f _{CLK} = 32 MHz, f _{MCK} = f _{CLK}			2.6	Mbps
			$2.4~V \leq EV_{\text{DD0}} < 3.3~V,$				fмск/12	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate f _{CLK} = 32 MHz, f _{MCK} = f _{CLK}			2.6 ^{Note 2}	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps.

The following conditions are required for low-voltage interface when EV_{DD0} < V_{DD}.
 2.4 V ≤ EV_{DD0} < 2.7 V : MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10, 11)

<R>

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output) (2/2) (T_A = -40 to +105°C, 2.4 V ≤ EV_{DD0} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Transfer	fer Transmission $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V},$				Note 1	bps	
rate		$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$			1.2 ^{Note 2}	Mbps
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$				Note 3	bps
		$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$			0.43 ^{Note 4}	Mbps

Notes 1. The smaller maximum transfer rate derived by using f_{MCK}/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} \leq 3.6 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 100 [\%]$$

 $(\frac{1}{\text{Transfer rate}})$ × Number of transferred bits

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance (When 25- to 48-pin products)/EVbb tolerance (When 64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected.

<R>