

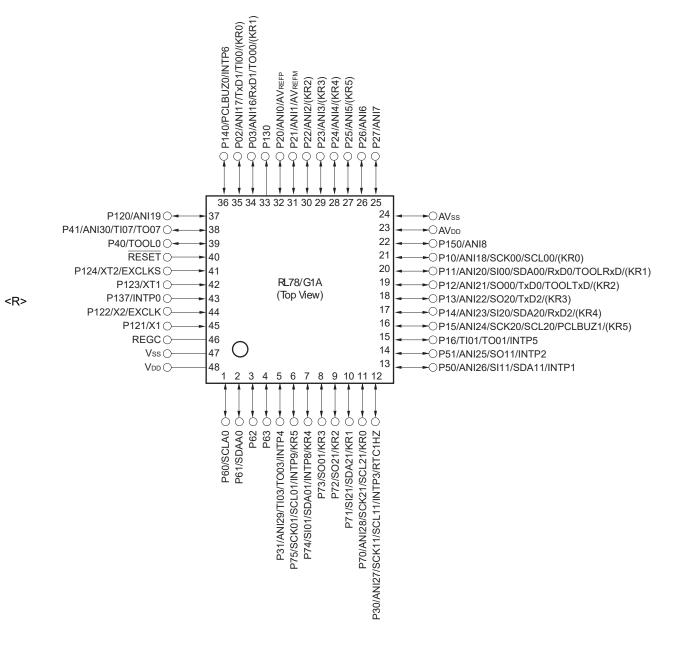
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 18x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10ebdana-u0

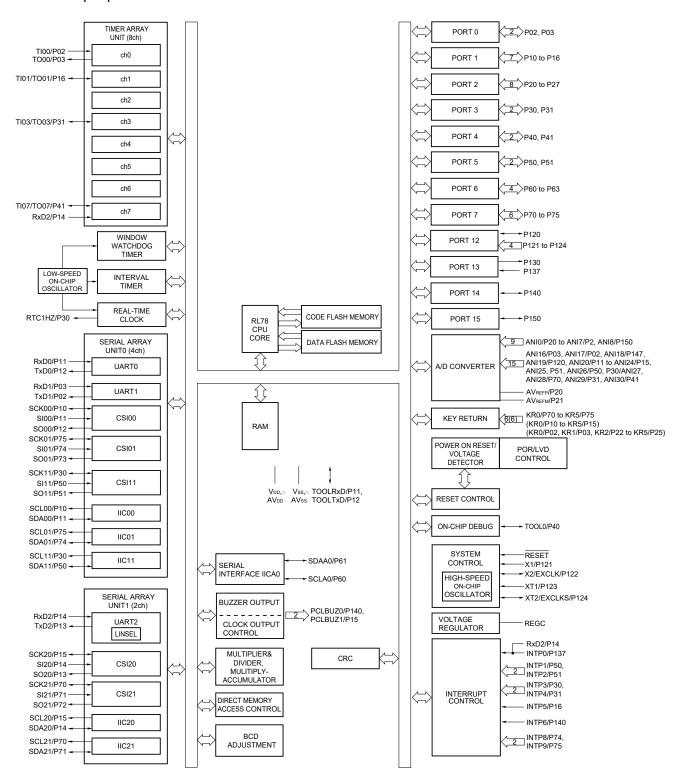

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G1A 1. OUTLINE

1.3.3 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

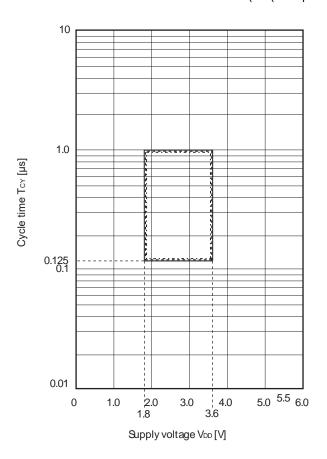
RL78/G1A 1. OUTLINE

<R> 1.5.3 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{SS0} = 0 \text{ V})$									
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit		
Output current, low ^{Note 1}	I _{OL1}	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141				20.0 ^{Note 2}	mA		
	Per pin for P60 to P63				15.0 ^{Note 2}	mA			
	Total of P00 to P04, P40 to P43, P120,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$			15.0	mA			
	P130, P140, P141 (When duty ≤ 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA			
			1.6 V ≤ EV _{DD0} < 1.8 V			4.5	mA		
		P31, P50, P51, P60 to P63, P70 to P77	2.7 V ≤ EV _{DD0} ≤ 3.6 V			35.0	mA		
			1.8 V ≤ EV _{DD0} < 2.7 V			20.0	mA		
			1.6 V ≤ EV _{DD0} < 1.8 V			10.0	mA		
lo _{L2}		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA		
	Per pin for P20 to P27, P150 to P154				0.4 ^{Note 2}	mA			
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.6 V ≤ AV _{DD} ≤ 3.6 V			5.2	mA		

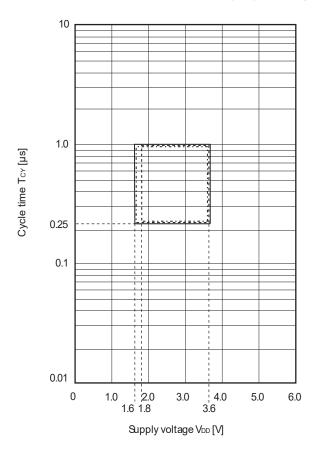
Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso and Vss pin.


- 2. However, do not exceed the total current value.
- 3. Specification under conditions where the duty factor ≤ 70%.
 The output current value that has changed to the duty factor > 70% the duty ratio can can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(loL \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and loL = 10.0 mA Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>


Tcy vs Vdd (LS (low-speed main) mode)

- When the high-speed on-chip oscillator clock is selected
- --- During self programming
- --- When high-speed system clock is selected

<R>

Tcy vs Vdd (LV (low-voltage main) mode)

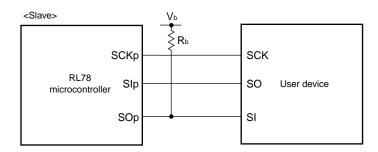
- When the high-speed on-chip oscillator clock is selected
- --- During self programming
- --- When high-speed system clock is selected

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}0} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS ^N	ote 1	LSN	ote 2	LV ^{No}	ote 3	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	tkcy1 ≥ 2/f cLk	300		1150		1150		ns
SCKp high-level width	t _{KH1}	$2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega$		tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	t _{KL1}	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, 2.3 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	tксү1/2 —		tксү1/2 — 50		tксү1/2 — 50		ns	
SIp setup time (to SCKp↑) ^{Note 4}	tsıĸ1	$2.7 \text{ V} \le \text{EV}_{\text{DDO}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 4}	t _{KSI1}	$2.7 \text{ V} \le \text{EV}_{\text{DDO}} \le 3.6 \text{ V}, 2.3 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	$V \le V_b \le 2.7 V$,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	$2.7 \text{ V} \le \text{EV}_{\text{DDO}} \le 3.6 \text{ V}, 2.3 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	$V \le V_b \le 2.7 V$,		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 5}	tsıĸ1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}, 2.3 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	$' \le V_b \le 2.7 V$,	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 5}	t _{KSI1}	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, 2.3 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	$V \le V_b \le 2.7 V$,	10		10		10		ns
Delay time from SCKp↑ to SOp outputNote 5	tkso1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}, 2.3 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	$V \le V_b \le 2.7 V$,		10		10		10	ns

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 5. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

<R>

Nov 30, 2016

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10))
 - **4.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 3.6 V, Vss = EVss0 = 0 V)

Parameter	Symbol	Conditions		St	andard	Mode ^{No}	te 1		Unit
			HS	Note 2	LS ^N	lote 3	LV	lote 4	
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	2.7 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	kHz
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		0	100	0	100	
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		4.7		4.7		
Hold time ^{Note 5}	thd:STA	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.7		4.7		
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		ns
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		250		250		
Data hold time (transmission) ^{Note 6}	thd:dat	2.7 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-	_	0	3.45	0	3.45	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Bus-free time	t _{BUF}	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		4.7		4.7		

(Note and Remark are listed on the next page.)

<R> (5) When reference voltage (+) = AV_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AV_{SS} (ADREFM = 0), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD0}} \le 3.6 \text{ V}, \ 1.6 \text{ V} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \ \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}, \ \text{AV}_{\text{SS}} = 0 \text{ V}, \ \text{Reference voltage (+)} = \text{AV}_{\text{DD}}, \ \text{Reference voltage (-)} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AV _{DD} ≤ 3.6 V	8		12	bit
			1.8 V ≤ AV _{DD} ≤ 3.6 V	8		10 ^{Note 1}	
			1.6 V ≤ AV _{DD} ≤ 3.6 V	8Note 2			
Overall error ^{Note 3}	AINL	12-bit resolution	2.4 V ≤ AV _{DD} ≤ 3.6 V			±8.5	LSB
		10-bit resolution	1.8 V ≤ AV _{DD} ≤ 3.6 V			±6.0	•
		8-bit resolution	1.6 V ≤ AV _{DD} ≤ 3.6 V			±3.5	•
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AV _{DD} ≤ 3.6 V	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AV _{DD} ≤ 3.6 V	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AV _{DD} ≤ 3.6 V	57.5			
		ADTYP = 1,	2.4 V ≤ AV _{DD} ≤ 3.6 V	3.3125			μs
		8-bit resolution	1.8 V ≤ AV _{DD} ≤ 3.6 V	7.875			
			$1.6~V \le AV_{DD} \le 3.6~V$	54.25			
Zero-scale error ^{Note 3}	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$			±3.0	
Full-scale errorNote 3	Ers	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$			±3.0	
Integral linearity errorNote 3	ILE	12-bit resolution	$2.4~V \le AV_{DD} \le 3.6~V$			±3.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$			±2.5	
		8-bit resolution	1.6 V ≤ AV _{DD} ≤ 3.6 V			±1.5	
Differential linearity error ^{Note 3}	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$			±2.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$			±2.5	
		8-bit resolution	1.6 V ≤ AV _{DD} ≤ 3.6 V			±2.0	
Analog input voltage	VAIN			0		AV _{DD} and EV _{DD0}	V
		Interanal reference voltage (2.4 V ≤ V _{DD} ≤ 3.6 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
		Temperature sensor ou (2.4 V ≤ V _{DD} ≤ 3.6 V, H	utput voltage S (high-speed main) mode)	,	V _{TMPS25} Note	4	V

- Notes 1. Cannot be used for lower 2 bit of ADCR register
 - 2. Cannot be used for lower 4 bit of ADCR register
 - 3. Excludes quantization error (±1/2 LSB).
 - 4. See 2.6.2 Temperature sensor, internal reference voltage output characteristics.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 3.6 \text{ V}, V_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD2}	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3.00	3.06	3.12	V
		V _{LVD3}	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		V _{LVD4}	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V _{LVD6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		V _{LVD7}	Power supply rise time	2.56	2.61	2.66	V
		Power supply fall time	2.50	2.55	2.60	V	
		V _{LVD8}	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		V _{LVD9}	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		V _{LVD10}	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		V _{LVD11}	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		V _{LVD12}	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		V _{LVD13}	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	llse width	tuw		300			μs
Detection de	elay time					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 3.6 V@1 MHz to 32 MHz

 $V_{DD} = 2.4 \text{ to } 3.6 \text{ V@1 MHz to } 16 \text{ MHz}$

LS (low-speed main) mode: V_{DD} = 1.8 to 3.6 V@1 MHz to 8 MHz LV (low-voltage main) mode: V_{DD} = 1.6 to 3.6 V@1 MHz to 4 MHz

3.3 DC Characteristics

3.3.1 Pin characteristics

<R> $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{SS0} = 0 \text{ V})$ (1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$2.4~\text{V} \le \text{EV}_{\text{DD0}} \le 3.6~\text{V}$			-3.0 ^{Note 2}	mA
Іон2		Total of P00 to P04, P40 to P43, P120,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$			-10.0	mA
		P130, P140, P141 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EV _{DD0} < 2.7 V			-5.0	mA
		Total of P05, P06, P10 to P16, P30, P31, P50, P51, P70 to P77, (When duty ≤ 70% Note 3)	$2.7~V \le EV_{DD0} \le 3.6~V$			-19.0	mA
			2.4 V ≤ EV _{DD0} < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EV _{DD0} ≤ 3.6 V			-29.0	mA
	І он2	Per pin for P20 to P27, P150 to P154	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	2.4 V ≤ AV _{DD} ≤ 3.6 V			-1.3	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DDO}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%.
 The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = (IoH × 0.7)/(n × 0.01)
 <Example> Where n = 80% and IoH = -10.0 mA
 Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) ≅ -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and data flash rewriting.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). Including the current flowing into the RTC. However, not including the current flowing into the 12-bit interval timer, and watchdog timer.
 - **6.** When subsystem clock is stopped. Not including the current flowing into the RTC, 12-bit interval timer, watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V} @1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V} @1 \text{ MHz}$ to 16 MHz

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

3.5 Peripheral Functions Characteristics

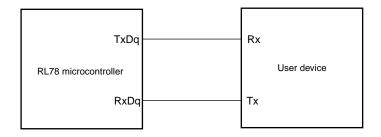
AC Timing Test Points

<R>

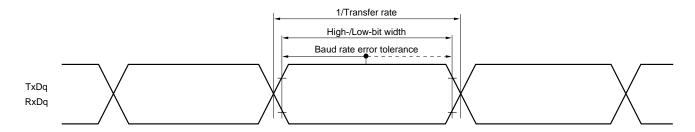
3.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate ^{Note 1}					fмск/12	bps
		Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk			2.6 ^{Note 2}	Mbps


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps.

2. The following conditions are required for low-voltage interface when $EV_{DD0} < V_{DD}$.


 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)

fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10, 11))

(4) During communication at same potential (simplified I^2C mode) $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EV_{DD0} \le V_{DD} \le 3.6 \text{ V}, \text{Vss} = EV_{SS0} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.7~V \leq EV_{DD0} \leq 3.6~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$		400 ^{Note 1}	kHz
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}Ω$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t LOW	$2.7~V \leq EV_{DD0} \leq 3.6~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1200		ns
		$2.4~V \le EV_{DD0} \le 3.6~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$	4600		ns
Hold time when SCLr = "H"	thigh	$2.7~V \leq EV_{DD0} \leq 3.6~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1200		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}Ω$	4600		ns
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{DD0} \leq 3.6~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1/f _{MCK} + 220 ^{Note 2}		ns
		$2.4~V \le EV_{DD} \le 3.6~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$	1/f _{MCK} + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{DD0} \leq 3.6~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	0	770	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}Ω$	0	1420	ns

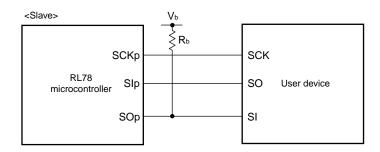
- Notes 1. The value must also be fclk/4 or lower.
 - 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (Vpb tolerance (When 25- to 48-pin products)/EVpb tolerance (When 64-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time ^{Note 1}	tkcy2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V},$	24 MHz < fmck	40/fмск			ns
		$2.3~V \leq V_b \leq 2.7~V$	20 MHz < f _{MCK} ≤ 24 MHz	32/fмск			ns
			16 MHz < f _{MCK} ≤ 20 MHz	28/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск			ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск			ns
			fмcк≤4 MHz	12/fмск			ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	24 MHz < fмск	96/fмск			ns
		$1.6~V \le V_b \le 2.0~V$	20 MHz < f _{MCK} ≤ 24 MHz	72/f мск			ns
			16 MHz < f _{MCK} ≤ 20 MHz	64/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/f мск			ns
			4 MHz < fmck≤8 MHz	32/fмск			ns
			fмcк≤4 MHz	20/fмск			ns
SCKp high-/low-level width	tkH2, tkL2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		tkcy2/2 - 36			ns
		2.4 V ≤ EV _{DD0} < 3.3 V, 1	$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	tkcy2/2 - 100			ns
SIp setup time	tsık2	2.7 V ≤ EV _{DD0} ≤ 3.6 V, 2	$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	1/f _{MCK} + 40			ns
(to SCKp↑) ^{Note 2}		2.4 V ≤ EV _{DD0} < 3.3 V,	$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	1/fmck + 60			
SIp hold time (from SCKp↑) ^{Note 2}	tks12			1/f _{MCK} + 62			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	· · · · · · · · · · · · · · · · · · ·		$2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$			2/fмск + 428	ns
		$2.4~V \le EV_{DD0} < 3.3~V, 1.6~V \le V_b \le 2.0~V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$				2/fмск + 1146	ns

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10))
 - **4.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8) Communication at different potential (1.8 V, 2.5 V) (simplified I^2C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		100 ^{Note 1}	kHz
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1200		ns
		$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	4600		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	4650		ns
Hold time when SCLr = "H"	tнісн	$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		ns
		$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	2400		ns
		$2.4 \ V \leq EV_{DD0} < 3.3 \ V,$ $1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1830		ns

(Notes, Caution and Remarks are listed on the next page.)

<R> (3) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 3.6 V, 2.4 V \leq AVREFP \leq AVDD \leq VDD \leq 3.6 V, Vss = EVss0 = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AV _{REFP} ≤ AV _{DD} ≤ 3.6 V	8		12	bit
Overall error ^{Note 1}	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.0	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	4.125			μs
Zero-scale error ^{Note 1}	Ezs	12-bit resolution	2.4 V ≤ AV _{REFP} ≤ AV _{DD} ≤ 3.6 V			±5.0	LSB
Full-scale errorNote 1	Ers	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB
Integral linearity error ^{Note 1}	ILE	12-bit resolution	2.4 V ≤ AV _{REFP} ≤ AV _{DD} ≤ 3.6 V			±3.0	LSB
Differential linearity errorNote 1	DLE	12-bit resolution	$2.4~V \le AV_{REFP} \le AV_{DD} \le 3.6~V$			±2.0	LSB
Analog input voltage	Vain			0.		AV _{REFP} and EV _{DD0}	V
		Interanal reference (2.4 V ≤ V _{DD} ≤ 3.6 \	V _{BGR} Note 2			V	
		Temperature sens (2.4 V ≤ V _{DD} ≤ 3.6 V	or output voltage /, HS (high-speed main) mode)	,	V _{TMPS25} Note	2	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. See 3.6.2 Temperature sensor, internal reference voltage output characteristics.

<R> (5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), target for conversion: ANI0 to ANI12, ANI16 to ANI30

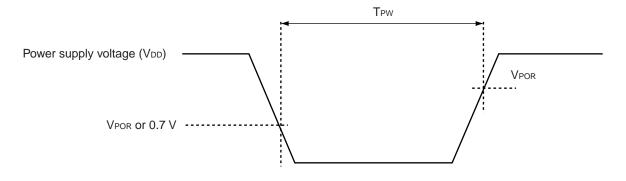
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{EV}_{DD} \le \text{V}_{DD}, 2.4 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{Internal reference voltage, Reference voltage (-)} = \text{AV}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	16.0			μs
Zero-scale error ^{Note}	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error ^{Note}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note}	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AV _{REF(+)}	= Internal reference voltage (V _{BGR})	1.38	1.45	1.50	V
Analog input voltage	VAIN		0		V _{BGR}	٧

Note Excludes quantization error (±1/2 LSB).

3.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (high-speed main) mode)

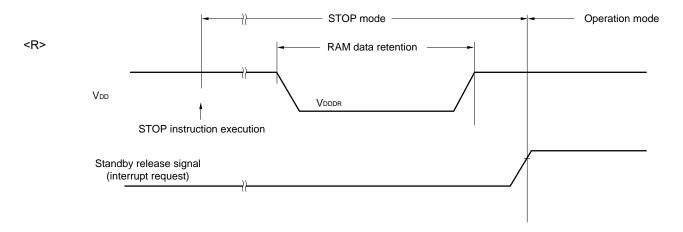

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvтмps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	Power supply rise time	1.45	1.51	1.57	٧
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse widthNote	T _{PW}		300			μs

Note This is the time required for the POR circuit to execute a reset when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode or if the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset before V_{DD} rises to V_{POR} after having fallen below 0.7 V.



<R> 3.7 RAM Data Retention Characteristics

$< R > (T_A = -40 \text{ to } +105^{\circ}C, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	2.4 V ≤ V _{DD} ≤ 3.6 V	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years T _A = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

<R>

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.