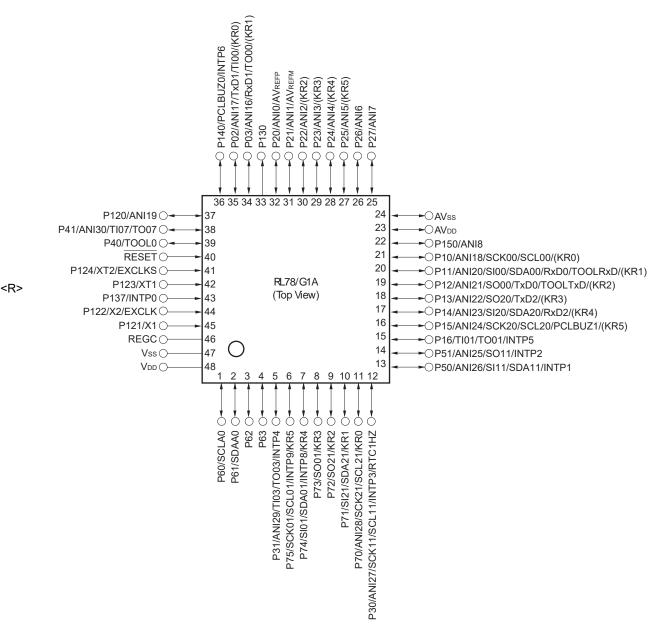


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10egaafb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANI0 to ANI12, PCLBUZ0, PCLBUZ1: Programmable clock output/buzzer

ANI16 to ANI30: Analog input output

AV_{DD}: Analog power supply REGC: Regulator capacitance

AVss: Analog ground RESET: Reset

AVREFM: A/D converter reference RTC1HZ: Real-time clock correction clock

potential (– side) input (1 Hz) output

AV_{REFP}: A/D converter reference RxD0 to RxD2: Receive data

potential (+ side) input SCK00, SCK01, SCK10,

EVDDO: Power supply for port SCK11, SCK20, SCK21: Serial clock input/output

EVsso: Ground for port SCLA0, SCL00, SCL01, EXCLK: External clock input (main SCL10, SCL11, SCL20,

system clock) SCL21: Serial clock output

EXCLKS: External clock input SDAA0, SDA00, SDA01,

(subsystem clock) SDA10, SDA11, SDA20,

INTP0 to INTP11: Interrupt Request from SDA21: Serial data input/output

External SI00, SI01, SI10, SI11,

KR0 to KR9: Key return SI20, SI21: Serial data input

P00 to P06: Port 0 S000, S001, S010,

P10 to P16: Port 1 SO11, SO20, SO21: Serial data output

P20 to P27: Port 2 TI00, TI01, TI03 to TI07: Timer input

P30, P31: Port 3 TO00, TO01,

P40 to P43: Port 4 TO03 to TO07: Timer output

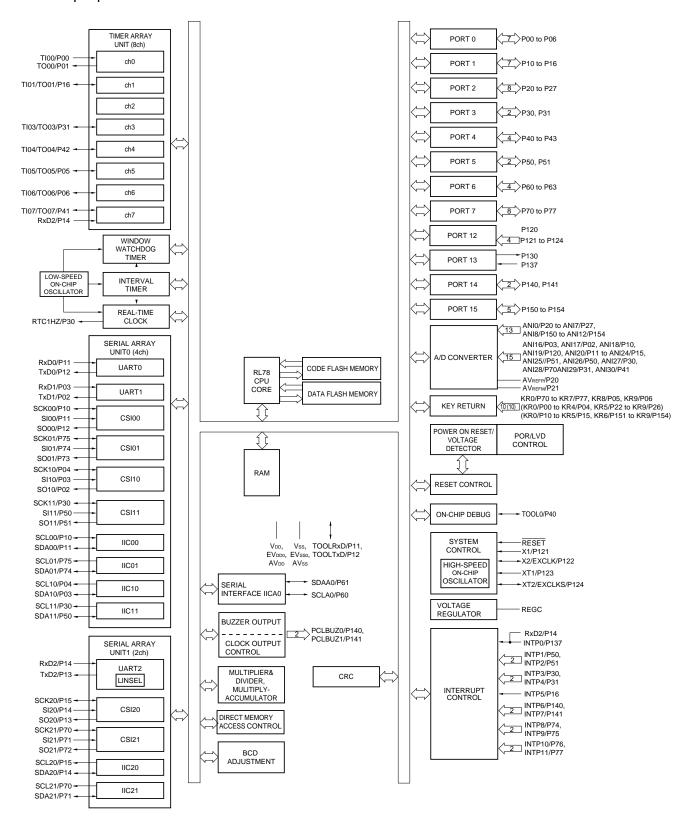
P50, P51: Port 5 TOOL0: Data input/output for tool

P60 to P63: Port 6 TOOLRxD, TOOLTxD: Data input/output for external device

 P70 to P77:
 Port 7
 TxD0 to TxD2:
 Transmit data

 P120 to P124:
 Port 12
 V_{DD}:
 Power supply

 P130, P137:
 Port 13
 Vss:
 Ground


P140, P141: Port 14 X1, X2: Crystal oscillator (main system clock)
P150 to P154: Port 15 XT1, XT2: Crystal oscillator (subsystem clock)

<R> 1.5.3 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5.4 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
	EV _{DD0}		-0.5 to +6.5	V
	AVDD		-0.5 to +4.6	V
	AVREFP		-0.3 to AV _{DD} +0.3 ^{Note 3}	V
	EVsso		-0.5 to +0.3	V
	AVss		-0.5 to +0.3	V
	AVREFM		-0.3 to AV _{DD} +0.3 ^{Note 3} and AV _{REFM} ≤ AV _{REFP}	V
REGC pin input voltage	Virego	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VII	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	-0.3 to EV _{DD0} +0.3 and -0.3 to V _{DD} +0.3 ^{Note 2}	V
	Vı2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V _{I4}	P20 to P27, P150 to P154	-0.3 to AV _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo ₁	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P130, P140, P141	-0.3 to EV _{DD0} +0.3 ^{Note 2}	V
	V _{O2}	P20 to P27, P150 to P154	-0.3 to AV _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Val1	ANI16 to ANI30	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF(+)} +0.3 ^{Notes 2, 4}	V
	V _{Al2}	ANI0 to ANI12	-0.3 to AV _{DD} +0.3 and -0.3 to AV _{REF(+)} +0.3 ^{Notes 2, 4}	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Must be 4.6 V or lower.
 - **4.** Do not exceed AV_{REF(+)} + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF(+)}: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/crystal resonator	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1.0		20.0	MHz
frequency (fx)Note		$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$	1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{DD} < 2.4 \text{ V}$	1.0		8.0	MHz
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. See AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

<R> Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	1.8 V ≤ V _{DD} ≤ 3.6 V	-1.0		+1.0	%
clock frequency accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5.0		+5.0	%
		–40 to –20 °C	1.8 V ≤ V _{DD} ≤ 3.6 V	-1.5		+1.5	%
			1.6 V ≤ V _{DD} < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - **2.** This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and data flash rewriting.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). Not including the current flowing into the RTC, 12-bit interval timer and watchdog timer
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: VDD = 2.7 V to 3.6 V@1 MHz to 32 MHz

V_{DD} = 2.4 V to 3.6 V@1 MHz to 16 MHz

LS (low-speed main) mode: $V_{DD} = 1.8 \text{ V to } 3.6 \text{ V@1 MHz to } 8 \text{ MHz}$ LV (Low-voltage main) mode: $V_{DD} = 1.6 \text{ V to } 3.6 \text{ V@1 MHz to } 4 \text{ MHz}$

- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, AV_{DD} \le V_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le EV_{DD0} \le V_{DD} \le 3.6 \text{ V}, V_{SS} = EV_{SS0} = 0 \text{ V})$

(T _A = -40 to +85°C, AV _{DD} Items	Symbol		Condi		, , , , , , , , , , , , , , , , , , , ,	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (high-s	peed	$2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	0.03125		1	μs
instruction execution time)		clock (fmain)	main) mod	•	2.4 V ≤ V _{DD} < 2.7 V	+		1	μs
		operation	LS (low-sp		$1.8 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	0.125		1	μs
			LV (low-vo	•	1.6 V ≤ V _{DD} ≤ 3.6 V	0.25		1	μs
		Subsystem clock (fs∪B) 1.8 V ≤ VDD ≤ 3.6 V operation		28.5	30.5	31.3	μs		
		In the self	HS (high-s	peed	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	0.03125		1	μs
		programming mode	main) mod	е	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.0625		1	μs
		mode	LS (low-sp main) mod		$1.8 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	0.125		1	μs
			LV (low-vo main) mod	•	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7~V \leq V_{DD} \leq$	3.6 V			1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}_{DD} \leq$	2.7 V			1.0		16.0	MHz
		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V			1.0		8.0	MHz
		$1.6 \text{ V} \leq \text{V}_{DD} <$	1.8 V			1.0		4.0	MHz
	fexs					32		35	kHz
External system clock input	texh, texl	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	3.6 V			24			ns
high-level width, low-level width		$2.4 \text{ V} \leq \text{V}_{DD} <$	2.7 V			30			ns
		1.8 V ≤ V _{DD} <				60			ns
		$1.6 \text{ V} \leq \text{V}_{DD} <$	1.8 V			120			ns
	texhs, texhs					13.7			μs
TI00, TI01, TI03 to TI07 input high-level width, low-level width	tтін, tтіL					1/fмск+10			ns ^{Note}
TO00, TO01, TO03 to	f то	HS (high-spee	ed main)	2.7 V	$\leq EV_{DD0} \leq 3.6 \text{ V}$			8	MHz
TO07 output frequency		mode		1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
				1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-speed	d main)	1.8 V	\leq EV _{DD0} \leq 3.6 V			4	MHz
		mode		1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-voltag	ge main)	1.6 V	\leq EV _{DD0} \leq 3.6 V			2	MHz
PCLBUZ0, PCLBUZ1	fpcL	HS (high-spee	ed main)	2.7 V	\leq EV _{DD0} \leq 3.6 V			8	MHz
output frequency		mode		1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
				1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-speed	d main)	1.8 V	\leq EV _{DD0} \leq 3.6 V			4	MHz
		mode		1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-voltag	ge main)	1.8 V	\leq EV _{DD0} \leq 3.6 V			4	MHz
		mode		1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level	tinth, tintl	INTP0		1.6 V	$\leq V_{DD} \leq 3.6 \text{ V}$	1			μs
width, low-level width		INTP1 to INT	P11	1.6 V	$\leq EV_{DD0} \leq 3.6~V$	1			μs
Key interrupt input high-level width, low-level	tkr	KR0 to KR9			\leq EV _{DD0} \leq 3.6 V, \leq AV _{DD0} \leq 3.6 V	250			ns
width					≤ EV _{DD0} < 1.8 V, ≤ AV _{DD0} < 1.8 V	1			μs
	trsl			_		10			

(Note and Remark are listed on the next page.)

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 7. C is the load capacitance of the SOp output lines.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10, 11))

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS ^t	Note 1	LS ^N	lote 2	LV ^N	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{split}$	1/f _{MCK} + 135 ^{Note}		1/f _{MCK} + 190 ^{Note 6}		1/f _{MCK} + 190 ^{Note} 6		ns
		$ 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	1/f _{MCK} + 190 ^{Note} 6		1/f _{MCK} + 190 ^{Note 6}		1/f _{MCK} + 190 ^{Note} 6		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_{b} \leq 2.0 \ V^{Note 5}, \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k \Omega \end{split}$	1/f _{MCK} + 190 ^{Note} 6		1/f _{MCK} + 190 ^{Note 6}		1/f _{MCK} + 190 ^{Note} 6		ns
Data hold time (transmission)	thd:dat	$\begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{split}$	0	305	0	305	0	305	ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	0	355	0	355	0	355	ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 5}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	0	405	0	405	0	405	ns

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. The value must also be fclk/4 or lower.
- **5.** Use it with $EV_{DD0} \ge V_b$.
- 6. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

<R>

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 3.6 V, Vss = EVss0 = 0 V)

Parameter	Symbol	Conditions		St	andard	Mode ^{No}	te 1		Unit
			HS	Note 2	LS ^N	lote 3	LV	lote 4	
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	2.7 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	kHz
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		0	100	0	100	
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		4.7		4.7		
Hold time ^{Note 5}	thd:STA	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.7		4.7		
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		ns
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		250		250		
Data hold time (transmission) ^{Note 6}	thd:dat	2.7 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-	_	0	3.45	0	3.45	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Bus-free time	t _{BUF}	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		4.7		4.7		

(Note and Remark are listed on the next page.)

3.3 DC Characteristics

3.3.1 Pin characteristics

<R> $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{SS0} = 0 \text{ V})$ (1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$2.4~\text{V} \le \text{EV}_{\text{DD0}} \le 3.6~\text{V}$			-3.0 ^{Note 2}	mA
		Total of P00 to P04, P40 to P43, P120,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$			-10.0	mA
		P130, P140, P141 (When duty $\leq 70\%^{\text{Note 3}}$)	2.4 V ≤ EV _{DD0} < 2.7 V			-5.0	mA
		Total of P05, P06, P10 to P16, P30, P31, P50, P51, P70 to P77, (When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \le EV_{DD0} \le 3.6~V$			-19.0	mA
			2.4 V ≤ EV _{DD0} < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EV _{DD0} ≤ 3.6 V			-29.0	mA
	І он2	Per pin for P20 to P27, P150 to P154	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	2.4 V ≤ AV _{DD} ≤ 3.6 V			-1.3	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DDO}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%.
 The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = (IoH × 0.7)/(n × 0.01)
 <Example> Where n = 80% and IoH = -10.0 mA
 Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) ≅ -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R> Notes 1. Current flowing to VDD.

- 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing to the AVDD.
- 8. Current flowing from the reference voltage source of A/D converter.
- 9. Operation current flowing to the internal reference voltage.
- 10. Current flowing to the AVREFP.
- **11.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 12. Current flowing only during data flash rewrite.
- 13. Current flowing only during self programming.
- Remarks 1. fil.: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is TA = 25°C

3.4 AC Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \ AV_{DD} \leq V_{DD} \leq 3.6 \ V, \ 2.4 \ V \leq EV_{DD0} \leq V_{DD} \leq 3.6 \ V, \ V_{SS} = EV_{SS0} = 0 \ V)$

Items	Symbol		Condition	3	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main system	HS (high-spee	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	0.03125		1	μs
instruction execution time)		clock (f _{MAIN}) operation	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clooperation	ock (fsuB)	2.4 V ≤ V _{DD} ≤ 3.6 V	28.5	30.5	31.3	μs
		In the self		2.7 V ≤ V _{DD} ≤ 3.6 V	0.03125		1	μs
		programming mode	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
External system clock	fex	$2.7~V \leq V_{DD} \leq$	3.6 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}_{DD} \leq$	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$						ns
high-level width, low-level width								ns
widiii	texhs, texhs				13.7			μs
TI00, TI01, TI03 to TI07 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00, TO01, TO03 to	f TO	HS (high-spee	ed main) 2.7	V ≤ EV _{DD0} ≤ 3.6 V			8	MHz
TO07 output frequency		mode	2.4	V ≤ EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1	f PCL	HS (high-spee	ed main) 2.7	V ≤ EV _{DD0} ≤ 3.6 V			8	MHz
output frequency		mode	2.4	V ≤ EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level	tinth, tintl	INTP0	2.4	$V \le V_{DD} \le 3.6 \text{ V}$	1			μs
width, low-level width		INTP1 to INT	2.4	V ≤ EV _{DD0} ≤ 3.6 V	1			μs
Key interrupt input high-level width, low-level width	tkr	KR0 to KR9		$V \le EV_{DD0} \le 3.6 V$, $V \le AV_{DD0} \le 3.6 V$	250			ns
RESET low-level width	trsl				10			μs

Note The following conditions are required for low-voltage interface when EV_{DD0} < V_{DD}.

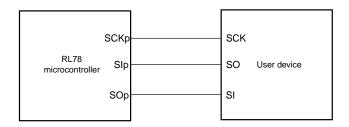
 $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MIN. 125 ns

Nov 30, 2016

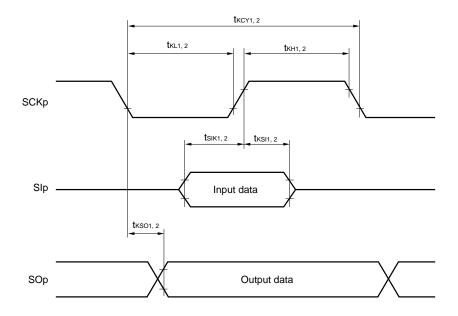
Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer clock select register 0 (TPS0) and timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

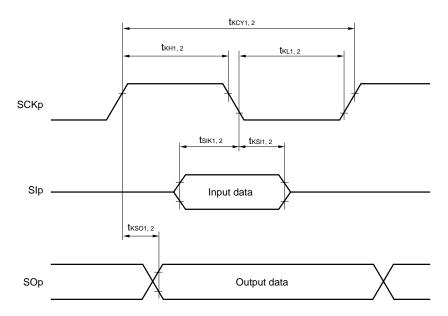
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$


Parameter	Symbol	Condition	Conditions			MAX.	Unit
SCKp cycle time	tkcy1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	tkcy1 ≥ 4/fcLk	250			ns
		2.4 V ≤ EV _{DD0} ≤ 3.6 V	tkcy1 ≥ 4/fcLk	500			ns
SCKp high-/low-level width	tĸнı,	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		tkcy1/2 - 36			ns
	t _{KL1}	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		tkcy1/2 - 76			ns
SIp setup time (to SCKp↑)Note 1	tsiĸ1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		66			ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		113			ns
SIp hold time (from SCKp↑) ^{Note 1}	t _{KSI1}			38			ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tkso1	C = 30 p ^{Note 3}				50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. C is the load capacitance of the SCKp and SOp output lines.


Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1)


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

<R>

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output) (1/2) (T_A = −40 to +105°C, 2.4 V ≤ EV_{DD0} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit	
Transfer rate ^{Note 1}		Reception	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V},$				fмск/12	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fMck = fclk			2.6	Mbps
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$				fмск/12	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk			2.6 ^{Note 2}	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps.
 - 2. The following conditions are required for low-voltage interface when $EV_{DD0} < V_{DD}$.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11)

(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time ^{Note 1}	tkcy2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V},$	24 MHz < fmck	40/fмск			ns
		$2.3~V \leq V_b \leq 2.7~V$	20 MHz < f _{MCK} ≤ 24 MHz	32/fмск			ns
			16 MHz < f _{MCK} ≤ 20 MHz	28/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск			ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск			ns
			fмcк≤4 MHz	12/fмск			ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	24 MHz < fмск	96/fмск			ns
		$1.6~V \le V_b \le 2.0~V$	20 MHz < f _{MCK} ≤ 24 MHz	72/f мск			ns
			16 MHz < f _{MCK} ≤ 20 MHz	64/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/f мск			ns
			4 MHz < fmck≤8 MHz	32/fмск			ns
			fмcк≤4 MHz	20/fмск			ns
SCKp high-/low-level width	t _{KH2} ,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, 2$	$2.3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 36			ns
	t _{KL2}	2.4 V ≤ EV _{DD0} < 3.3 V, 1	$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	tkcy2/2 - 100			ns
SIp setup time	tsık2	2.7 V ≤ EV _{DD0} ≤ 3.6 V, 2	$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	1/f _{MCK} + 40			ns
(to SCKp↑) ^{Note 2}		2.4 V ≤ EV _{DD0} < 3.3 V,	$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	1/fmck + 60			
SIp hold time (from SCKp↑) ^{Note 2}	tks12			1/f _{MCK} + 62			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, 2$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	•			2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$				2/fмск + 1146	ns

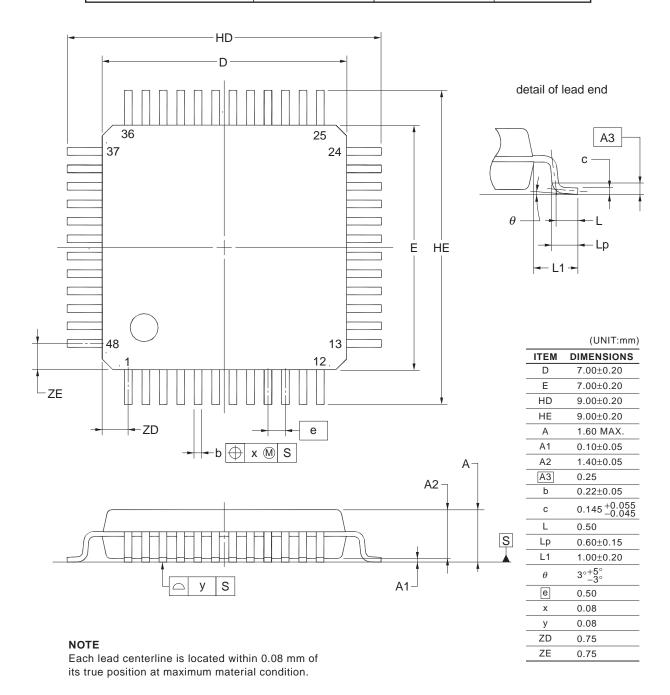
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V) (simplified I^2C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, Vss = EV_{SS0} = 0 V)


Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		100 ^{Note 1}	kHz
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1200		ns
		$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	4600		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		ns
		$\begin{aligned} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	2400		ns
		$2.4 \ V \leq EV_{DD0} < 3.3 \ V,$ $1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1830		ns

(Notes, Caution and Remarks are listed on the next page.)

4.3 48-pin products

R5F10EGAAFB, R5F10EGCAFB, R5F10EGDAFB, R5F10EGEAFB R5F10EGAGFB, R5F10EGCGFB, R5F10EGCGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

©2012 Renesas Electronics Corporation. All rights reserved.