

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10egaana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5.4 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

					(2/2)			
Item	1	25-pin	32-pin	48-pin	64-pin			
		R5F10E8x	R5F10EBx	R5F10EGx	R5F10ELx			
Clock output/buzzer	r output	1	2	2	2			
		 2.44 kHz, 4.88 kHz, 9.7 2.5 MHz, 5 MHz, 10 MI (Main system clock: fm/) 	76 kHz, 1.25 MHz, Hz an = 20 MHz operation)	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 				
8/12-bit resolution A	VD converter	13 channels	18 channels	24 channels	28 channels			
Serial interface	<u>.</u>	[25-pin products]			1			
		 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel [32-pin products] CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel 						
		 CSI: 1 channel/simpli CSI: 1 channel/simpli [48-pin products] 	 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel [48-pin products] 					
		 CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] 						
		 CSI: 2 channels/simp CSI: 2 channels/simp CSI: 2 channels/simp 	olified I ² C: 2 channels/UA olified I ² C: 2 channels/UA olified I ² C: 2 channels/UA	.RT: 1 channel .RT: 1 channel .RT (UART supporting LIN	N-bus): 1 channel			
I	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Multiplier and divider/multiply-accu	umulator	 16 bits × 16 bits = 32 b 32 bits ÷ 32 bits = 32 t 16 bits × 16 bits + 32 t 	bits (Unsigned or signed) bits (Unsigned) bits = 32 bits (Unsigned o	r signed)	<u> </u>			
DMA controller		2 channels						
Vectored interrupt I	Internal	24	27	27	27			
sources f	External	6	6	10	13			
Key interrupt		0 ch (4 ch) ^{Note 1}	1 ch (6 ch) ^{Note 1}	6 ch	10 ch			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 						
Power-on-reset circ	uit	Power-on-reset: 1.5 Power-down-reset: 1.5	51 V (TYP.) 50 V (TYP.)					
Voltage detector		Rising edge : 1 Falling edge : 1	.67 V to 3.14 V (12 stage .63 V to 3.06 V (12 stage	es) es)				
On-chip debug func	tion	Provided						
Power supply voltaç	ge	V _{DD} = 1.6 to 3.6 V						
Operating ambient t	temperature	T _A = -40 to $+85^{\circ}$ C (A: Consumer application), T _A = -40 to $+105^{\circ}$ C (G: Industrial application)						

Notes 1. Can be used by the Peripheral I/O redirection register (PIOR).

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	-40	mA
		Total of all pins –170 mA	P00 to P04, P40 to P43, P120, P130, P140, P141	-70	mA
			P05, P06, P10 to P16, P30, P31, P50, P51, P70 to P77,	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P154	-0.1	mA
		Total of all pins		-1.3	mA
Output current, low	lol1	Per pin	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P130, P140, P141	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P43, P120, P130, P140, P141	70	mA
			P05, P06, P10 to P16, P30, P31, P50, P51, P60 to P63, P70 to P77	100	mA
	Iol2	Per pin	P20 to P27, P150 to P154	0.4	mA
		Total of all pins		6.4	mA
Operating ambient	TA	In normal operation	on mode	-40 to +85	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(T _A = -40 to	o +85°C,	1.6 V ≤ EV	$V_{\text{DD0}} \leq V_{\text{DD}} \leq 3.6$ \	/, Vss = EVsso = 0 V)				-		(1/3)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	DD1	Operating mode	HS (high-speed main) mode ^{Note 5}	fı⊩ = 32 MHz ^{Note 3}	Basic operation	V _{DD} = 3.0 V		2.1		mA
					Normal operation	V _{DD} = 3.0 V		4.6	7.0	mA
				f _{IH} = 24 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		3.7	5.5	mA
				f⊪ = 16 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-speed	fiH = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	
			LV (Low-voltage main) mode ^{Note 5}	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
					operation	V _{DD} = 2.0 V		1.2	1.7	
			HS (high-speed main) mode ^{Note 5}	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Normal operation	Square wave input		3.0	4.6	mA
						Resonator connection		3.2	4.8	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 3.0 \text{ V}$	Normal operation	Square wave input		1.9	2.7	mA
						Resonator connection		1.9	2.7	
			LS (low-speed main) mode ^{Note 5}	f _{MX} = 8 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		1.1	1.7	mA
						Resonator connection		1.1	1.7	
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 2.0 \text{ V}$	Normal operation	Square wave input		1.1	1.7	mA
						Resonator connection		1.1	1.7	
			Subsystem clock mode	f _{SUB} = 32.768 kHz ^{Note 4} T _A = -40°C	Normal operation	Square wave input		4.1	4.9	μA
						Resonator connection		4.2	5.0	
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +25°C	Normal operation	Square wave input		4.2	4.9	μA
						Resonator connection		4.3	5.0	
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +50°C	Normal operation	Square wave input		4.3	5.5	μA
						Resonator connection		4.4	5.6	
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +70°C	Normal operation	Square wave input		4.5	6.3	μA
						Resonator connection		4.6	6.4	
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +85°C	Normal operation	Square wave input		4.8	7.7	μA
						Resonator connection		4.9	7.8	

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and data flash rewriting.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). Including the current flowing into the RTC. However, not including the current flowing into the 12-bit interval timer, and watchdog timer.
 - **6.** When subsystem clock is stopped. Not including the current flowing into the RTC, 12-bit interval timer, watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}@1 \text{ MHz}$ to 32 MHz

- 2.4 V \leq V_DD \leq 3.6 V@1 MHz to 16 MHz
- LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.6 \text{ V}@1 \text{ MHz}$ to 8 MHz
- LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V} @1 \text{ MHz}$ to 4 MHz
- Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

<R>

$(1_{A} = -40 \text{ to } +85^{\circ}\text{C})$	$, 1.6 V \leq EVDD$	$0 \leq V DD \leq 3.6 V$,	VSS = EVSS0 = 0 V				(3/3	
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Low-speed on-chip oscillator operating current	_{FIL} Note 1				0.20		μA	
RTC operating current	I _{RTC} ^{Notes 1, 2, 3}				0.02		μA	
12-bit interval timer operating current	_{IT} Notes 1, 2, 4				0.02		μA	
Watchdog timer operating current	_{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA	
A/D converter operating current	ADC ^{Notes 6, 7}	AV _{DD} = 3.0 V, W	hen conversion at maximum speed		420	720	μA	
AV _{REF(+)} current	IAVREF ^{Note 8}	AV _{DD} = 3.0 V, AI	DREFP1 = 0, ADREFP0 = $0^{\text{Note 7}}$		14.0	25.0	μA	
		AV _{REFP} = 3.0 V, <i>J</i>	ADREFP1 = 0, ADREFP0 = 1 ^{Note 10}		14.0	25.0	μA	
		ADREFP1 = 1, A	$ADREFP0 = 0^{Note 1}$	lote 1 14.0				
A/D converter reference voltage current	ADREF ^{Notes 1, 9}	V _{DD} = 3.0 V			75.0		μA	
Temperature sensor operating current	_{TMP} Note 1	V _{DD} = 3.0 V			75.0		μA	
LVD operating current	LVD ^{Notes 1, 11}				0.08		μA	
BGO operating current	BGO ^{Notes 1, 12}				2.5	12.2	mA	
Self-programming operating current	FSP ^{Notes 1, 13}				2.5	12.2	mA	
SNOOZE operating	Isnoz	A/D converter	The mode is performed ^{Notes 1, 14}		0.50	0.60	mA	
current		operation	During A/D conversion ^{Note 1}		0.60	0.75	mA	
		$(AV_{DD} = 3.0 \text{ V})$	During A/D conversion ^{Note 7}		420	720	μA	
		CSI/UART operation	CSI/UART operation ^{Note 1}			0.84	mA	

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conditions	HS	Note 1	LS ^{Note 2}		LV ^{Note 3}		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	0	355	0	355	0	355	ns
		1.8 V ≤ EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} < 1.8 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{array}$	-	-	0	405	0	405	ns

(5) During communication at same potential (simplified I²C mode) (2/2) (T_A = -40 to +85°C, 1.6 V \leq EV_{DD} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. The value must also be fcLK/4 or lower.
 - 5. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (Vbb tolerance (When 25- to 48-pin products)/EVbb tolerance (When 64-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1), h: POM number (h = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number, mn = 00 to 03, 10, 11)

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode) (1/2) (T_A = -40 to +85°C, 1.8 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, Vss = EV_{SS0} = 0 V)

Parameter	Symbol	Conditions	HS	Note 1	LS	Note 2	L۷	Note 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 ^{Note 4}		300 ^{Note} 4		300 ^{Note} 4	kHz
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 ^{Note} 4		300 ^{Note} 4		300 ^{Note} 4	kHz
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V^{Note\; 5}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split} $		300 ^{Note} 4		300 ^{Note} 4		300 ^{Note} 4	kHz
Hold time when SCLr = "L"	tlow	$\begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	475		1550		1550		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	1150		1550		1550		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_{b} \leq 2.0 \ V^{Note 5}, \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tнıgн	$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	200		610		610		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	600		610		610		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 5}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	610		610		610		ns

(Notes, Caution and Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10)
 - **4.** IIC01, IIC11, and IIC21 cannot communicate at different potential. Use IIC00, IIC10, or IIC20 for communication at different potential.

Parameter	Symbol	Conditions			Fast Mode ^{Note 7} Fast Mode Plus ^{Note 8}		Mode Note 8	Unit			
			HS	Note 2	LS⁵	lote 3	LVN	lote 4	HS	lote 2	
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscl	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	400	0	400	0	400	0	1000	kHz
		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	400	0	400	0	400	-		
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	0.6		0.6		0.6		0.26		μs
condition		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		-		
Hold time ^{Note 5}	thd:sta	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		0.26		μs
		$1.8~V \le EV_{\text{DD0}} \le 3.6~V$	0.6		0.6		0.6		-		
Hold time when SCLA0	t∟ow	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	1.3		1.3		1.3		0.5		μs
= "L"		$1.8~V \le EV_{\text{DD0}} \le 3.6~V$	1.3		1.3		1.3		-		
Hold time when SCLA0	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		0.26		μs
= "H"		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		-		
Data setup time	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	100		100		100		50		ns
(reception)		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	100		100		100		-		
Data hold time	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	0.9	0	0.9	0	0.9	0	450	μs
(transmission) ^{Note 6}		$1.8~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	0.9	0	0.9	0	0.9	-		
Setup time of stop	tsu:sto	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	0.6		0.6		0.6		0.26		μs
condition		$1.8~V \le EV_{\text{DD0}} \le 3.6~V$	0.6		0.6		0.6		-		
Bus-free time	t BUF	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	1.3		1.3		1.3		0.5		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	1.3		1.3		1.3		_		

(2) I²C fast mode, fast mode plus (T_A = -40 to +85°C, 1.6 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Notes 1. In normal mode, use it with fcLK \geq 1 MHz, 1.6 V \leq EVDD \leq 3.6 V.

- **2.** HS is condition of HS (high-speed main) mode.
- **3.** LS is condition of LS (low-speed main) mode.
- 4. LV is condition of LV (low-voltage main) mode.
- 5. The first clock pulse is generated after this period when the start/restart condition is detected.
- 6. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 7. In fast mode, use it with fcLK \ge 3.5 MHz, 1.8 V \le EVDD \le 3.6 V.
- 8. In fast mode plus, use it with fcLK \ge 10 MHz, 2.7 V \le EVDD \le 3.6 V.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

 $Standard mode: \quad C_b = 400 \text{ pF}, \text{ } \text{R}_b = 2.7 \text{ } \text{k}\Omega \\ Fast mode: \quad C_b = 320 \text{ pF}, \text{ } \text{R}_b = 1.1 \text{ } \text{k}\Omega \\ Fast mode plus: \quad C_b = 120 \text{ pF}, \text{ } \text{R}_b = 1.1 \text{ } \text{k}\Omega \\$

IICA serial transfer timing

- <R>
- (4) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ AV}_{\text{SS}} = 0 \text{ AV}_{\text{SS} = 0 \text{ AV}_{\text{SS}} = 0 \text{ AV}_{\text{SS}} = 0 \text{ AV}_{\text{SS}} = 0 \text{ AV}_{\text{SS}} =$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
			$1.8~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8		10 ^{Note 1}	
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$		8 ^{Note 2}		
Overall error ^{Note 3}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±7.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	54.25			
Zero-scale error ^{Note 3}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Full-scale errorNote 3	Ers	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	LSB
		10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Integral linearity errorNote 3	ILE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	LSB
		10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Differential linearity errorNote 3	DLE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
		10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Analog input voltage	Vain			0		AVREFP and EVDD0	V
		Interanal reference v $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$	VBGR ^{Note 4}			V	
		Temperature sensor (2.4 V \leq V _{DD} \leq 3.6 V,	output voltage HS (high-speed main) mode)		V		

Notes 1. Cannot be used for lower 2 bit of ADCR register

- 2. Cannot be used for lower 4 bit of ADCR register
- **3.** Excludes quantization error ($\pm 1/2$ LSB).
- 4. See 2.6.2 Temperature sensor, internal reference voltage output characteristics.

2.9 Dedicated Flash Memory Programmer Communication (UART)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit				
Transfer rate		During flash memory programming	115.2 k		1 M	bps				

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

2.10 Timing Specs for Switching Flash Memory Programming Modes

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
	How long from when the TOOL0 pin is placed at the low level until a external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
<r></r>	How long the TOOL0 pin must be kept at the low level after an external reset ends (except flash firmware processing time)	tнo	POR and LVD reset must end before the external reset ends.	1			ms

<R>

<R>

- <1> The low level is input to the TOOL0 pin.
- <2> The pins reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - t_{SU} : How long from when the TOOL0 pin is placed at the low level until a external reset ends
- t_{HD}: How long to keep the TOOL0 pin at the low level from when the external resets end (except flash firmware processing time)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$ (3/3)							
Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
Low-speed on-chip oscillator operating current	_{FIL} Note 1			0.20		μA	
RTC operating current	I _{RTC} ^{Notes 1, 2, 3}						μA
12-bit interval timer operating current	IT ^{Notes 1, 2, 4}				0.02		μA
Watchdog timer operating current	_{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating current	I _{ADC} Notes 6, 7	AV _{DD} = 3.0 V, W	hen conversion at maximum speed		420	720	μA
AV _{REF(+)} current	AVREF ^{Note 8}	$AV_{DD} = 3.0 V$, ADREFP1 = 0, ADREFP0 = $0^{Note 7}$			14.0	25.0	μA
		AV _{REFP} = 3.0 V, <i>A</i>		14.0	25.0	μA	
		ADREFP1 = 1, A		14.0	25.0	μA	
A/D converter reference voltage current	ADREF ^{Notes 1, 9}	V _{DD} = 3.0 V			75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}	V _{DD} = 3.0 V			75.0		μA
LVD operating current	LVD ^{Notes 1, 11}				0.08		μA
BGO operating current	IBGO ^{Notes 1, 12}			2.5	12.2	mA	
Self-programming operating current	FSP ^{Notes 1, 13}				2.5	12.2	mA
SNOOZE operating	Isnoz	A/D converter operation (AV _{DD} = 3.0 V)	The mode is performed ^{Notes 1, 14}		0.50	1.10	mA
current			During A/D conversion ^{Note 1}		0.60	1.34	mA
			During A/D conversion ^{Note 7}		420	720	μA
		CSI/UART opera		0.70	1.54	mA	

(**T** $40 + 0 \pm 105^{\circ}$ $24 \times 5 \times 50^{\circ}$ EV/a

(Notes and Remarks are listed on the next page.)

(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = EVsso = 0 V)

Parameter	Symbol	Con	MIN.	TYP.	MAX.	Unit	
SCKp cycle time ^{Note 1}	tксү2	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V,$	24 MHz < fмск	40/fмск			ns
		$2.3~V \leq V_b \leq 2.7~V$	20 MHz < fмск ≤ 24 MHz	32/fмск			ns
			16 MHz < fмск ≤ 20 MHz	28/fмск			ns
			8 MHz < fмск ≤ 16 MHz	24/fмск			ns
			4 MHz < fмск ≤ 8 MHz	16/ f мск			ns
			fмск≤4 MHz	12/fмск			ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	24 MHz < fмск	96/fмск			ns
			20 MHz < fмск ≤ 24 MHz	72/fмск			ns
			16 MHz < fмск ≤ 20 MHz	64/fмск			ns
			8 MHz < fмск ≤ 16 MHz	52/fмск			ns
			4 MHz < fмск ≤ 8 MHz	32/fмск			ns
			fмск≤4 MHz	20/fмск			ns
SCKp high-/low-level width	th tкн2, tкL2	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V,~2.3~V \leq V_{\text{b}} \leq 2.7~V$		tксү2/2 – 36			ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 2.4 \text{ V} \le 100 \text{ V}$	$1.6~V \leq V_b \leq 2.0~V$	tксү2/2 – 100			ns
SIp setup time	tsıĸ₂	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}, 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$		1/fмск + 40			ns
(to SCKp↑) ^{Note 2}		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 2.4 \text{ V}$	$1.6~V \leq V_b \leq 2.0~V$	1/fмск + 60			
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск + 62			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, 2$ $C_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega$	$2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$			2/fмск + 428	ns
		2.4 V \leq EV _{DD0} < 3.3 V, $^{-2}$ C _b = 30 pF, R _b = 5.5 kΩ	$1.6 \text{ V} \leq \overline{\text{V}_{\text{b}}} \leq 2.0 \text{ V},$			2/f _{мск} + 1146	ns

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

<R>

R01DS0151EJ0210 Rev.2.10 Nov 30, 2016

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.9 Dedicated Flash Memory Programmer Communication (UART)

1	$T_{A} = -40 \text{ to } +105^{\circ}\text{C}$	2 4 V < FVppq < Vpp < 3 6	$V V_{SS} = FV_{SS0} = 0 V$
	1 = -40 10 + 100 0	,	v, voo – Lvoou – U vj

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115.2 k		1 M	bps

3.10 Timing Specs for Switching Flash Memory Programming Modes

	,		, ,			
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
	How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100
	How long from when the TOOL0 pin is placed at the low level until a external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10		
<r></r>	How long the TOOL0 pin must be kept at the low level after an external reset ends (except flash firmware processing time)	tнD	POR and LVD reset must end before the external reset ends.	1		

- <1> The low level is input to the TOOL0 pin.
- <2> The pins reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

- $t_{\text{SU:}} \qquad \text{How long from when the TOOL0 pin is placed at the low level until a external reset ends}$
- thd: How long to keep the TOOL0 pin at the low level from when the external resets end (except flash firmware processing time)

<R>

<R>

RENESAS

Unit ms

μs

ms

		Description		
Rev.	Date	Page	Summary	
2.10	Nov 30, 2016	p.73	Modification of 2.10 Timing Specs for Switching Flash Memory Programming	
			Modes	
		p.77	Modification of 3.2.1 X1, XT1 oscillator characteristics	
		p.78, 79	Modification of 3.3.1 Pin characteristics	
		p.88	Modification of 3.3.2 Supply current characteristics	
		p.90	Modification of Minimum Instruction Execution Time during Main System Clock	
			Operation	
		p.91	Modification of AC Timing Test Points and TI/TO Timing	
		p.93	Modification of AC Timing Test Points in 3.5 Peripheral Functions	
			Characteristics	
		p.95	Modification of 3.5.1 Serial array unit	
		p.99,	Modification of Caution in 2.5.1 Serial array unit	
		100,		
		102,		
		103,		
		105, 109		
		p.112 to	Modification of 3.6.1 (1) to (5)	
		116		
		p.118	Renamed to 3.7 RAM Data Retention Characteristics, and modification of note	
		p 110	Addition of note 4 to 2.9. Floop Memory Programming Characteristics	
		p.118	Addition of hote 4 to 3.8 Flash Memory Programming Characteristics	
		p.119	Model	
		m 100	Nodification of 4.4. OF his products	
		p.120		
		p.123	Modification of 4.3 48-pin products	

All trademarks and registered trademarks are the property of their respective owners

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.