

Welcome to E-XFL.COM

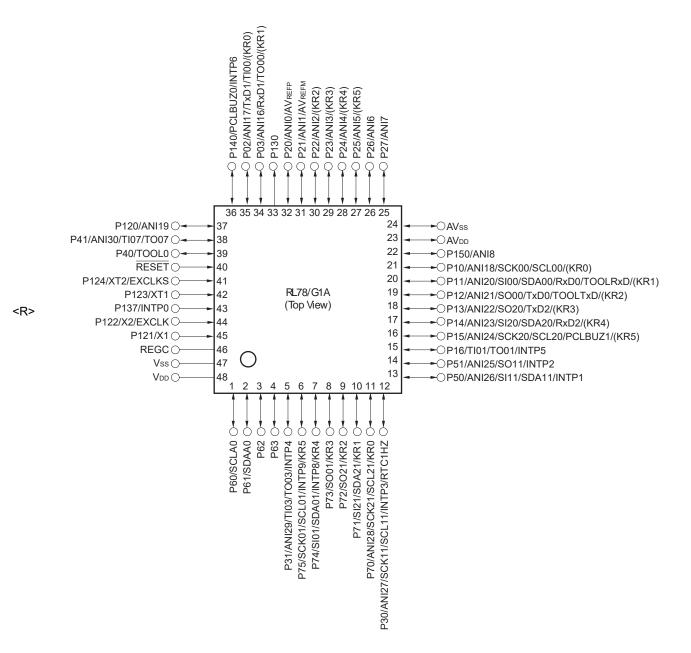
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \mathbf{X}


Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10egcana-u0

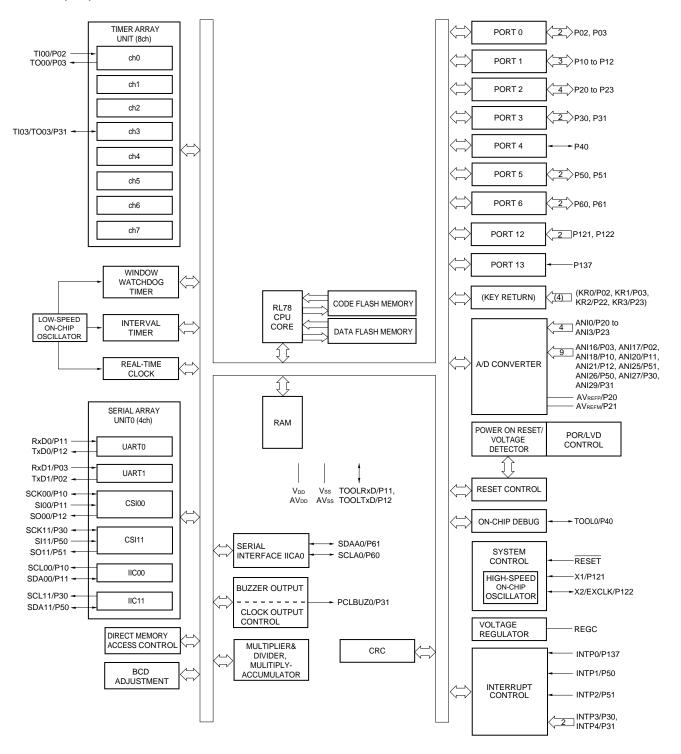
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

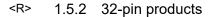
1.3.3 48-pin products

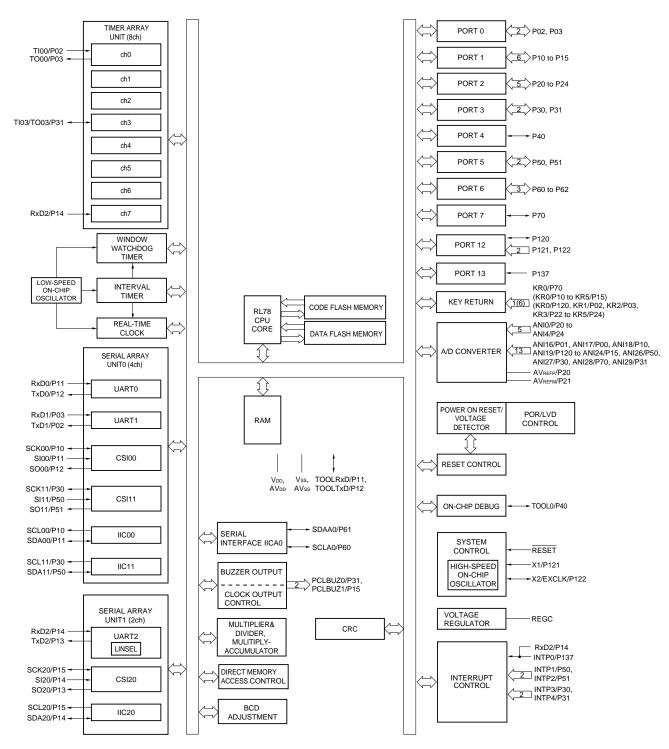
• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).




1.5 Block Diagram

1.5.1 25-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

<R>

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	_{FIL} Note 1				0.20		μA
RTC operating current	RTC ^{Notes 1, 2, 3}				0.02		μA
12-bit interval timer operating current	ITNotes 1, 2, 4				0.02		μA
Watchdog timer operating current	WDT ^{Notes 1, 2, 5}	fı∟ = 15 kHz	f⊩ = 15 kHz				μA
A/D converter operating current	ADC ^{Notes 6, 7}	AV _{DD} = 3.0 V, W		420	720	μA	
AV _{REF(+)} current	AVREF ^{Note 8}	AV _{DD} = 3.0 V, AI	DREFP1 = 0, ADREFP0 = 0 ^{Note 7}		14.0	25.0	μA
			ADREFP1 = 0, ADREFP0 = $1^{\text{Note 10}}$		14.0	25.0	μA
		ADREFP1 = 1, A	ADREFP0 = 0 ^{Note 1}		14.0	25.0	μA
A/D converter reference voltage current	ADREF ^{Notes 1, 9}	V _{DD} = 3.0 V			75.0		μA
Temperature sensor operating current	_{TMP} Note 1	V _{DD} = 3.0 V			75.0		μA
LVD operating current	LVD ^{Notes 1, 11}				0.08		μA
BGO operating current	BGO ^{Notes 1, 12}				2.5	12.2	mA
Self-programming operating current	FSP ^{Notes 1, 13}				2.5	12.2	mA
SNOOZE operating	Isnoz	A/D converter	The mode is performed ^{Notes 1, 14}		0.50	0.60	mA
current		operation	During A/D conversion ^{Note 1}		0.60	0.75	mA
		(AV _{DD} = 3.0 V)	During A/D conversion ^{Note 7}		420	720	μA
		CSI/UART opera	ation ^{Note 1}		0.70	0.84	mA

(Notes and Remarks are listed on the next page.)

- <R> Notes 1. Current flowing to VDD.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing to the AVDD.
 - 8. Current flowing from the reference voltage source of A/D converter.
 - 9. Operation current flowing to the internal reference voltage.
 - **10.** Current flowing to the AVREFP.
 - **11.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 12. Current flowing only during data flash rewrite.
 - **13.** Current flowing only during self programming.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- Notes 1. HS is condition of HS (high-speed main) mode.
 - **2.** LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 7. C is the load capacitance of the SOp output lines.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),
 - g: PIM number (g = 0, 1)
 - 2. fMCK: Serial array unit operation clock frequency

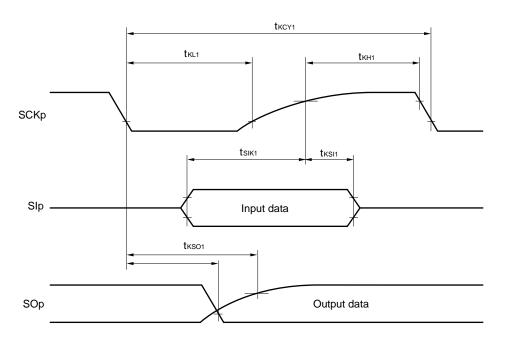
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11))

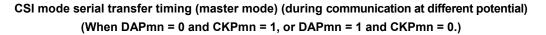
(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

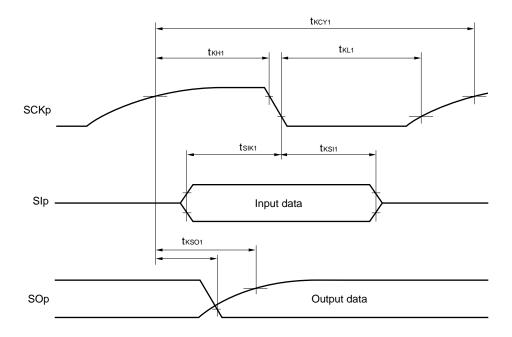
Parameter	Symbol	Conditions		HS [№]	ote 1	LS [№]	ote 2	LV ^{NC}	ote 3	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	tксү1 ≥ 2/f с∟к	300		1150		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120		ns
SCKp low-level width	tĸ∟1	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 3.6 \mbox{ V}, 2.3 \mbox{ V} \\ C_b = 20 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns	
SIp setup time (to SCKp↑) ^{Note 4}	tsik1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V_s$	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V$,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 3.6 \mbox{ V}, 2.3 \mbox{ V} \\ C_b = 20 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	$V \le V_b \le 2.7 V$,		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 5}	tsik1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V$,	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 5}	tksi1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V$,	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 5}	tkso1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \leq V_b \leq 2.7 V$,		10		10		10	ns

($T_{A} = -40$ to +85°C 2	$.7 V \leq EV_{DD0} \leq V_{DD} \leq 3.6$	$V_{SS} = FV_{SS0} = 0 V$
۰.	1A = -40 10 0000, 2		v, voo – Lvoou – U vj

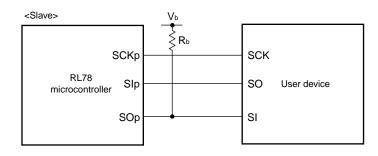

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 5. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

<R>


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (m = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02, 10))
 - **4.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

<R>

(3) When reference voltage (+) = AV_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AV_{SS} (ADREFM = 0), target for conversion: ANI0 to ANI12

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V}, \text{ AV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+) = AV}_{\text{DD}}, \text{ Reference voltage (+) =$

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	U
Resolution	Res		$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	8		12	k
			$1.8 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	8		10 ^{Note 1}	
			$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$		8 ^{Note 2}		
Overall errorNote 3	AINL	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±7.5	L
		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±5.5	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	
Conversion time	t _{CONV}	ADTYP = 0, 12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	3.375			ļ
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq AV_{DD} \leq 3.6 \text{ V}$	13.5			
		ADTYP = 1,	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	2.5625			
		8-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$	5.125			l
			$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$	10.25			
Zero-scale error ^{Note 3}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±6.0	L
		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Full-scale error ^{Note 3}	Ers	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±6.0	L
		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Integral linearity errorNote 3	ILE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	L
		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Differential linearity error ^{Note 3}	DLE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	L
		10-bit resolution $1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$				±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Analog input voltage	VAIN			0		AVDD	

Notes 1. Cannot be used for lower 2 bit of ADCR register

- 2. Cannot be used for lower 4 bit of ADCR register
- **3.** Excludes quantization error ($\pm 1/2$ LSB).

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
	EVDD0		–0.5 to +6.5	V
	AVDD		–0.5 to +4.6	V
	AVREFP		-0.3 to AV _{DD} +0.3 ^{Note 3}	V
	EVsso		–0.5 to +0.3	V
	AVss		-0.5 to +0.3	V
	AVREFM		–0.3 to AV _{DD} +0.3 ^{Note 3} and AV _{REFM} ≤ AV _{REFP}	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	-0.3 to EV_DD0 +0.3 and -0.3 to V_DD +0.3^{Note 2}	V
	V ₁₂	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V _{I3}	P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₁₄	P20 to P27, P150 to P154	-0.3 to AV _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P130, P140, P141	–0.3 to EV _{DD0} +0.3 ^{Note 2}	V
	V ₀₂	P20 to P27, P150 to P154	-0.3 to AV _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Vaii	ANI16 to ANI30	-0.3 to EV_DD0 +0.3 and -0.3 to AV_{REF(+)} +0.3^{Notes 2, 4}	V
	Vai2	ANI0 to ANI12	-0.3 to AV_DD +0.3 and -0.3 to AV_{REF(+)} +0.3^{Notes 2, 4}	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- **2.** Must be 6.5 V or lower.
- 3. Must be 4.6 V or lower.
- 4. Do not exceed AV_{REF(+)} + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF(+)}: + side reference voltage of the A/D converter.
 - **3.** Vss: Reference voltage

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	Normal input buffer	0.8EV _{DD0}		EVDD0	V
	VIH2	P01, P03, P04, P10, P11, P13 to P16, P43	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P154		0.7AVDD		AVDD	V
	VIH4	P60 to P63	0.7EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	Normal input buffer	0		0.2EVDD0	V
	VIL2	P01, P03, P04, P10, P11, P13 to P16, P43	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P154		0		0.3AVDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	0		0.2VDD	V	

40 to +105°C 2 4 V < AV-- 11-< 2 6 V 2 4 V < EV-< V-EV ·--**0** \/\

Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 is EV_{DD0}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ AV}_{DD} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

Items	Symbol		Conditio	ons		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (high-spe	ed	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	0.03125		1	μs
instruction execution time)		clock (fmain) operation	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	0.0625		1	μs	
		Subsystem clock (fsub) 2.4 operation		$2.4 \text{ V} \leq V_{\text{DD}} \leq 3.6 \text{ V}$	28.5	30.5	31.3	μs	
		In the self	HS (high-spe	ed	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	0.03125		1	μs
		programming main mode	main) mode	main) mode 2	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$		1.0		20.0	MHz		
frequency		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			1.0		16.0	MHz	
	fexs					32		35	kHz
External system clock input	texh, texl	$2.7~V \leq V_{\text{DD}} \leq$	3.6 V			24			ns
high-level width, low-level width		$2.4~V \leq V_{\text{DD}} <$	2.7 V			30			ns
	texns, texls		13.7			μs			
TI00, TI01, TI03 to TI07 input high-level width, low-level width	tт⊪, tт⊫					1/fмск+10			ns ^{Note}
TO00, TO01, TO03 to	fтo	HS (high-spee	ed main) 2.	$2.7 \text{ V} \le EV_{DD0} \le 3.6 \text{ V}$				8	MHz
TO07 output frequency		mode	2.	.4 V	\leq EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1	fpcl	HS (high-spee	ed main) 2.	7 V	$\leq EV_{DD0} \leq 3.6 V$			8	MHz
output frequency		mode	2.	.4 V	\leq EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level	tinth, tintl	INTP0	2.	.4 V	$\leq V_{DD} \leq 3.6 \text{ V}$	1			μs
width, low-level width		INTP1 to INTE	P11 2.	.4 V	$\leq EV_{DD0} \leq 3.6 V$	1			μs
Key interrupt input high-level width, low-level width	tкr	KR0 to KR9		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \\ 2.4 \ V \leq AV_{\text{DD0}} \leq 3.6 \ V \end{array}$		250			ns
RESET low-level width	trsl					10			μs

Note The following conditions are required for low-voltage interface when $EV_{DD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MIN. 125 ns

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer clock select register 0 (TPS0) and timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 ^{Note 1}	kHz
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLow	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1200		ns
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD}0} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1200		ns
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{мск} + 220 ^{Note 2}		ns
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	1/f _{мск} + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	0	1420	ns

(4)	During communication at same potential (simplified I ² C mode)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Notes 1. The value must also be fcLK/4 or lower.

- 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output) (2/2) (T_A = -40 to +105°C, 2.4 V ≤ EV_{DD0} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol		Conditions				MAX.	Unit
Transfer		Transmission	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V,$				Note 1	bps
rate			$2.3 V \le V_b \le 2.7 V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$			1.2 ^{Note 2}	Mbps
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$				Note 3	bps
	$1.6 V \le V_b \le 2.0 V_b$	$1.6 \ V \leq V_b \leq 2.0 \ V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$			0.43 ^{Note 4}	Mbps	

Notes 1. The smaller maximum transfer rate derived by using f_{MCK}/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} \leq 3.6 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 100 [\%]$$

 $(\frac{1}{\text{Transfer rate}})$ × Number of transferred bits

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance (When 25- to 48-pin products)/EVbb tolerance (When 64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected.

<R>

<R>

(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү1	$\begin{array}{ll} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, & t_{KCY1} \geq 4/f_{CLK} \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000			ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	tkcy1 ≥ 4/fclk	2300			ns
SCKp high-level width	tкн1	$\begin{array}{l} 2.7 \; V \leq EV_{\text{DD0}} \leq 3.6 \; V, \; 2.3 \; V \leq \\ C_{\text{b}} = 30 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{array}$	$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}, 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega $				ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{array}$	2.4 V \leq EV _{DD0} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, C _b = 30 pF, R _b = 5.5 kΩ				ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		tксү1/2 — 36			ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{array}$	$V_b \leq 2.0 V$,	tксү1/2 – 100			ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number , n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **3.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8) Communication at different potential (1.8 V, 2.5 V) (simplified l^2C mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1200		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$	1830		ns

(Notes, Caution and Remarks are listed on the next page.)

- <R>
- (3) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
Overall error ^{Note 1}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±7.0	LSB
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
Zero-scale error ^{Note 1}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	LSB
Full-scale error ^{Note 1}	Ers	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
Integral linearity error ^{Note 1}	ILE	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB
Differential linearity error ^{Note 1}	DLE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
Analog input voltage	Vain			0.		AVREFP and EVDD0	V
		Interanal reference voltage $(2.4 \text{ V} \le V_{\text{DD}} \le 3.6 \text{ V}, \text{HS} \text{ (high-speed main) mode)}$			VBGR ^{Note 2}		V
		Temperature sense (2.4 V \leq V _{DD} \leq 3.6 V	V _{TMPS25} Note 2			V	

Notes 1. Excludes quantization error (±1/2 LSB).

2. See 3.6.2 Temperature sensor, internal reference voltage output characteristics.

3.6.4 LVD circuit characteristics

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
voltage			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width tLw		t∟w		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +105°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

Remark $V_{LVD (n-1)} > V_{LVDn}$: n = 3 to 7

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt & reset	VLVD5	VPOC	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.75	2.86	V
mode V _{LVD4}	VLVD4		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVD3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

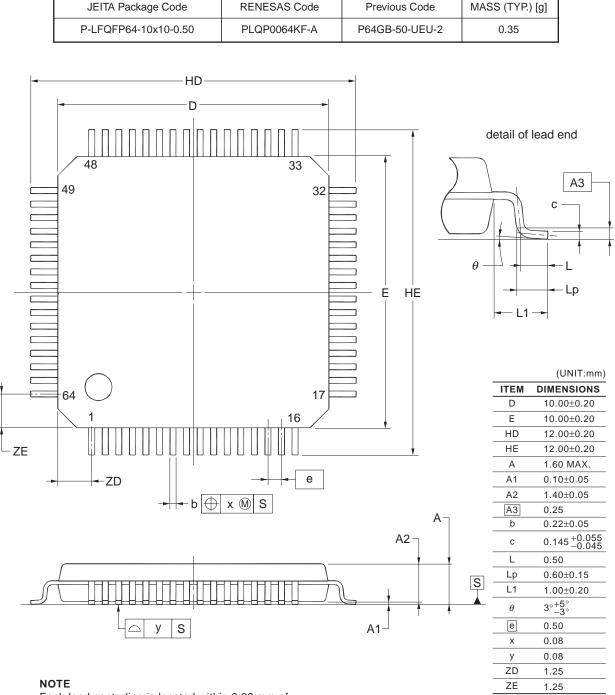
Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 3.6 V@1 MHz to 32 MHz

VDD = 2.4 to 3.6 V@1 MHz to 16 MHz

3.6.5 Supply voltage rise slope characteristics

(T_A = -40 to +105°C, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	V/ms

Caution Be sure to maintain the internal reset state until VDD reaches the operating voltage range specified in 3.4 AC Characteristics, by using the LVD circuit or external reset pin.

4.4 64-pin products

R5F10ELCAFB, R5F10ELDAFB, R5F10ELEAFB R5F10ELCGFB, R5F10ELDGFB, R5F10ELEGFB

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

