

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

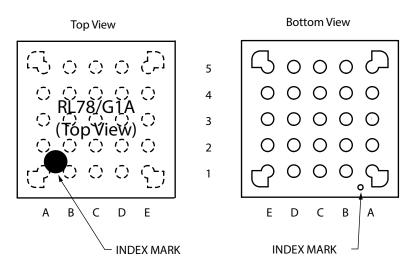
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10egdana-u0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

1.3.1 25-pin products

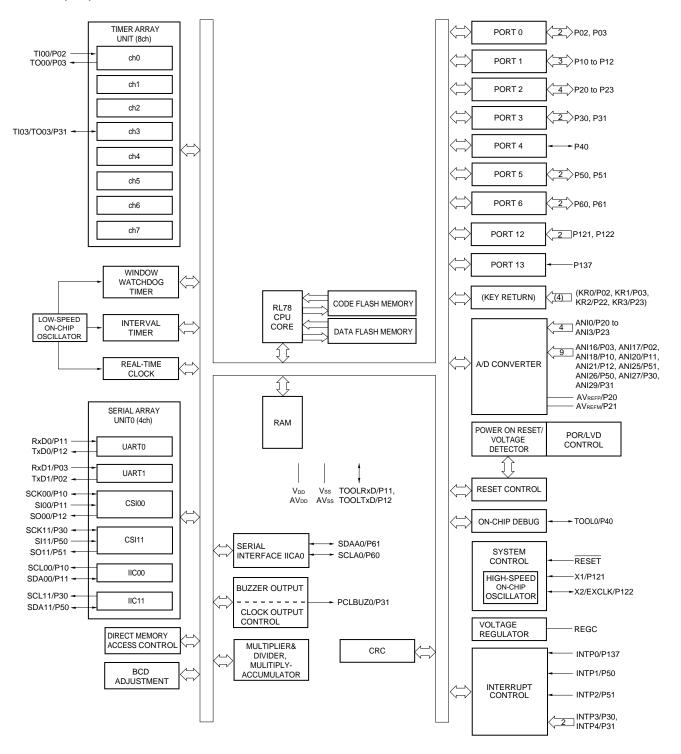
• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)

	А	В	С	D	E	_
5	P40/TOOL0	RESET	P03/ANI16/ RxD1/TO00/ (KR1)	P23/ANI3/ (KR3)	AVss	5
4	P122/X2/ EXCLK	P137/INTP0	P02/ANI17/ TxD1/TI00/ (KR0)	P22/ANI2/ (KR2)	AVDD	4
3	P121/X1	VDD	P21/ANI1/ AVrefm	P11/ANI20/ SI00/SDA00/ RxD0/ TOOLRxD	P10/ANI18/ SCK00/SCL00	3
2	REGC	Vss	P30/ANI27/ SCK11/SCL11/ INTP3	P51/ANI25/ SO11/INTP2	P50/ANI26/ SI11/SDA11 INTP1	2
1	P60/SCLA0	P61/SDAA0	P31/ANI29/TI03/ TO03/PCLBUZ0 /INTP4	P12/ANI21/ SO00/TxD0/ TOOLTxD	P20/ANI0/ AV _{REFP}	1
	А	В	С	D	E	-

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).


1.4 Pin Identification

ANI0 to ANI12,		PCLBUZ0, PCLBUZ1:	Programmable clock output/buzzer
ANI16 to ANI30:	Analog input		output
AVDD:	Analog power supply	REGC:	Regulator capacitance
AVss:	Analog ground	RESET:	Reset
AVREFM:	A/D converter reference	RTC1HZ:	Real-time clock correction clock
	potential (– side) input		(1 Hz) output
AVREFP:	A/D converter reference	RxD0 to RxD2:	Receive data
	potential (+ side) input	SCK00, SCK01, SCK10,	
EVDD0:	Power supply for port	SCK11, SCK20, SCK21:	Serial clock input/output
EVsso:	Ground for port	SCLA0, SCL00, SCL01,	
EXCLK:	External clock input (main	SCL10, SCL11, SCL20,	
	system clock)	SCL21:	Serial clock output
EXCLKS:	External clock input	SDAA0, SDA00, SDA01,	
	(subsystem clock)	SDA10, SDA11, SDA20,	
INTP0 to INTP11:	Interrupt Request from	SDA21:	Serial data input/output
	External	SI00, SI01, SI10, SI11,	
KR0 to KR9:	Key return	SI20, SI21:	Serial data input
P00 to P06:	Port 0	SO00, SO01, SO10,	
P10 to P16:	Port 1	SO11, SO20, SO21:	Serial data output
P20 to P27:	Port 2	TI00, TI01, TI03 to TI07:	Timer input
P30, P31:	Port 3	TO00, TO01,	
P40 to P43:	Port 4	TO03 to TO07:	Timer output
P50, P51:	Port 5	TOOL0:	Data input/output for tool
P60 to P63:	Port 6	TOOLRxD, TOOLTxD:	Data input/output for external device
P70 to P77:	Port 7	TxD0 to TxD2:	Transmit data
P120 to P124:	Port 12	Vdd:	Power supply
P130, P137:	Port 13	Vss:	Ground
P140, P141:	Port 14	X1, X2:	Crystal oscillator (main system clock)
P150 to P154:	Port 15	XT1, XT2:	Crystal oscillator (subsystem clock)

1.5 Block Diagram

1.5.1 25-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

This chapter describes the following electrical specifications.

- Target productsA:Consumer applicationsTA = -40 to +85°CR5F10E8AALA, R5F10E8CALA, R5F10E8DALA, R5F10E8EALAR5F10EBAANA, R5F10EBCANA, R5F10EBDANA, R5F10EBEANAR5F10EGAAFB, R5F10EGCAFB, R5F10EGDAFB, R5F10EGEAFBR5F10EGAANA, R5F10EGCANA, R5F10EGDANA, R5F10EGEANAR5F10ELCAFB, R5F10ELDAFB, R5F10ELEAFBR5F10ELCABG, R5F10ELDABG, R5F10ELEABG
 - G: Industrial applications When T_A = -40 to +105°C products is used in the range of T_A = -40 to +85°C
 R5F10EBAGNA, R5F10EBCGNA, R5F10EBDGNA, R5F10EBEGNA
 R5F10EGAGFB, R5F10EGCGFB, R5F10EGDGFB, R5F10EGEGFB
 R5F10EGAGNA, R5F10EGCGNA, R5F10EGDGNA, R5F10EGEGNA
 R5F10ELCGFB, R5F10ELDGFB, R5F10ELEGFB
- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0} or EV_{SS0} pin, replace EV_{DD0} with V_{DD}, or replace EV_{SS0} with V_{SS}.

- <R> Notes 1. Current flowing to VDD.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing to the AVDD.
 - 8. Current flowing from the reference voltage source of A/D converter.
 - 9. Operation current flowing to the internal reference voltage.
 - **10.** Current flowing to the AVREFP.
 - **11.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 12. Current flowing only during data flash rewrite.
 - **13.** Current flowing only during self programming.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.5 Peripheral Functions Characteristics

AC Timing Test Points

Ин/Vон	\geq	Test points	<		
$/ \downarrow VIL/VOL$				VIL/VOL $\neq $	

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to +85°C, 1.6 V $\leq EV_{DD0} \leq V_{DD} \leq$ 3.6 V, Vss = EVsso = 0 V)

Parameter	Symbol	Conditions	HS	Note 1	LS	Note 2	LV	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 4}		$2.4~V \leq EV_{\text{DD}} \leq 3.6~V$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 6}		5.3 ^{Note 5}		1.3		0.6	Mbps
	1.8 \	$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 3.6 \text{ V}$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 6}		5.3 ^{Note 5}		1.3		0.6	Mbps
		$1.7~V \le EV_{\text{DD}} \le 3.6~V$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 6}$		5.3 ^{Note 5}		1.3 ^{Note 5}		0.6	Mbps
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 3.6 \text{ V}$		-		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 6}$		_		1.3 ^{Note 5}		0.6	Mbps

Notes 1. HS is condition of HS (high-speed main) mode.

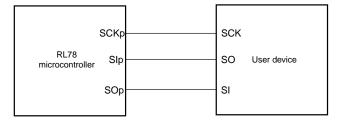
- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode is 4800 bps.
- 5. The following conditions are required for low-voltage interface when $EV_{DD0} < V_{DD}$.
 - $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 2.6 Mbps
 - $1.8~V \leq EV_{\text{DD0}}$ < 2.4 V : MAX. 1.3 Mbps
 - $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$: MAX. 0.6 Mbps
- **6.** fclk in each operating mode is as below.
 - HS (high-speed main) mode: fclk = 32 MHz
 - LS (low-speed main) mode: fclk = 8 MHz
 - LV (low-voltage main) mode: fclk = 4 MHz
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

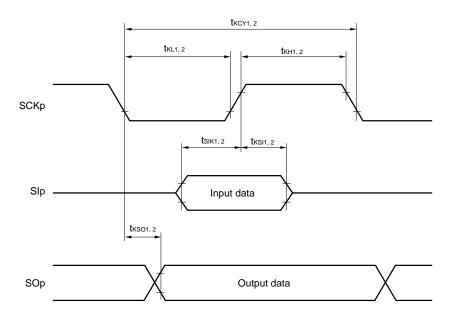
Parameter	Symbol	Conditions		HS ^{Note 1}		LS ^{Note 2}		LV ^{Note 3}		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$2.7~V \leq EV_{\text{DD}} \leq 3.6~V$	tkcy1≥2/fcLk	83.3		250		500		ns
SCKp high-/low-level width	tкнı,	$2.7~V \leq EV_{\text{DD}} \leq 3.6~V$		tксү1/2		tксү1/2		t ксү1/2		ns
	t KL1			-10		-50		-50		
SIp setup time (to SCKp↑) ^{Note 4}	tsıĸ1	$2.7~V \leq EV_{\text{DD}} \leq 3.6~V$	1	33		110		110		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi1	$2.7~V \leq EV_{\text{DD}} \leq 3.6~V$	1	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tkso1	C = 20 pF ^{Note 6}			10		10		10	ns

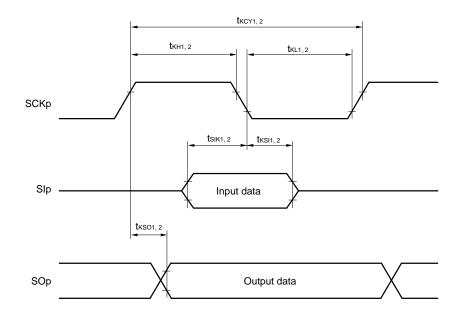
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

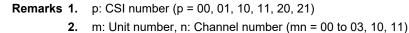
Notes 1. HS is condition of HS (high-speed main) mode.


- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 6. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 - g: PIM and POM numbers (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(5) During communication at same potential (simplified l²C mode) (1/2) (T_A = -40 to +85°C, 1.6 V \leq EV_{DD} \leq V_{DD} \leq 3.6 V. Vss = EV_{S0} = 0 V)

Parameter	Symbol	Conditions	HS	Note 1	LS	lote 2	L٧	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 50 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 2.7 \mbox{ k}\Omega \end{array}$		1000 ^{Note} 4		400 ^{Note} 4		400 ^{Note} 4	kHz
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$		400 ^{Note 4}		400 ^{Note} 4		400 ^{Note} 4	kHz
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 5 \ k\Omega \end{array}$		300 ^{Note 4}		300 ^{Note} 4		300 ^{Note} 4	kHz
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{EV}_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ \mbox{C}_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{ k}\Omega \end{array}$		250 ^{Note 4}		250 ^{Note} 4		250 ^{Note} 4	kHz
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{EV}_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{k}\Omega \end{array}$		_		250 ^{Note} 4		250 ^{Note} 4	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	1150		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 5 \text{ k}\Omega$	1550		1550		1550		ns
		1.7 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	1850		1850		1850		ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{EV}_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{k}\Omega \end{array}$	_		1850		1850		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{EV}_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{Ω} \end{array}$	1550		1550		1550		ns
		$1.7 V \le EV_{DD0} < 1.8 V,$ C _b = 100 pF, R _b = 5 kΩ	1850		1850		1850		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 5 \text{ k}\Omega$	-		1850		1850		ns
Data setup time (reception)	tsu:dat	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1/f _{МСК} + 85 ^{Note 5}		1/f _{мск} + 145 ^{Note 5}		1/f _{мск} + 145 ^{Note 5}		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$	1/f _{МСК} + 145 ^{Note 5}		1/f _{МСК} + 145 ^{Note 5}		1/f _{МСК} + 145 ^{Note 5}		ns
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 2.7 \ V, \\ C_b &= 100 \ p\text{F}, \ R_b = 5 \ k\Omega \end{split}$	1/fмск+ 230 ^{Note 5}		1/f _{МСК} + 230 ^{Note 5}		1/f _{мск} + 230 ^{Note 5}		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V},$ C _b = 100 pF, R _b = 5 kΩ	1/f _{MCK} + 290 ^{Note 5}		1/f _{MCK} + 290 ^{Note 5}		1/f _{MCK} + 290 ^{Note 5}		ns
		1.6 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_		1/f _{мск} + 290 ^{Note 5}		1/f _{мск} + 290 ^{Note 5}		ns

(Notes, Caution and Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output) (1/2)

Parameter	Symbol		Conditions			HS ^{Note 1}		LS ^{Note 2}		LV ^{Note 3}	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Transfer		Reception	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V,$			fмск/6		fмск/6		fмск/6	bps
rate ^{Note 4}				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 7}$		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$			fмск/6		fмск/6		fмск/6	bps
			$1.6~V \leq V_b \leq 2.0~V^{\text{Note 5}}$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 7}$		5.3 Note 6		1.3		0.6	Mbps

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - **4.** Transfer rate in the SNOOZE mode is 4800 bps.
 - 5. Use it with $EV_{DD0} \ge V_b$.
 - 6. The following conditions are required for low-voltage interface when EVDD0 < VDD.
 - $2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$: MAX. 2.6 Mbps
 - $1.8~\text{V} \leq \text{EV}_{\text{DD0}}$ < 2.4 V : MAX. 1.3 Mbps
 - 7. fclk in each operating mode is as below.
 - HS (high-speed main) mode: fclk = 32 MHz
 - LS (low-speed main) mode: fclk = 8 MHz
 - LV (low-voltage main) mode: fcLK = 4 MHz
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11)

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +85°C, 1.8 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = EVss0 = 0 V)

Parameter	Symbol	Cond	ditions	HS	Note 1	LS	lote 2	L۷	lote 3	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	l
SCKp cycle time ^{Note 4}	t ксү2	$2.7~V \leq EV_{DD0} \leq 3.6~V,$	24 MHz < fмск	20/fмск		-		-		ns
		$2.3V{\leq}V_b{\leq}2.7V$	20 MHz < fмск≤24 MHz	16/ f мск		-		-		ns
			16 MHz < fмск≤20 MHz	14/ f мск		_		-		ns
			8 MHz < fмск≤ 16 MHz	12/fмск		-		-		ns
			4 MHz < fмck≤8 MHz	8/f мск		16/fмск		_		ns
			fмск≤4 MHz	6/fмск		10/f мск		10/f мск		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 5}} \end{array}$	24 MHz < fмск	48/f мск		_		_		ns
			20 MHz < fмск≤24 MHz	36/f мск		_		_		ns
			16 MHz < fмск≤20 MHz	32/f мск		-		-		ns
			8 MHz < fмск≤ 16 MHz	26/ f мск		_		_		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/ f мск		16/fмск		-		ns
			fмck ≤ 4 MHz	10/ f мск		10/f мск		10/fмск		ns
SCKp high-/low-level width	tкн2, t _{KL2}	$2.7~V \leq EV_{DD0} \leq 3.6~V$, 2.3 V \le Vb \le 2.7 V	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V ≤ EV _{DD0} < 3.3 V ₅	, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note}}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 6}	tsıĸ2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$, 2.3 V \le Vb \le 2.7 V	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note}} \\ {}_{5} \end{array}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Slp hold time (from SCKp↑) ^{Note 6}	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 7}	tkso2	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		1.8 V \leq EV _{DD0} < 3.3 V 5, C _b = 30 pF, R _b = 5.5 k	$V_{\rm b} \le V_{\rm b} \le 2.0 \ V^{\rm Note}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- **3.** LV is condition of LV (low-voltage main) mode.
- **4.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
- **5.** Use it with $EV_{DD0} \ge V_b$.
- 6. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 7. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

<R>

2.5.2 Serial interface IICA

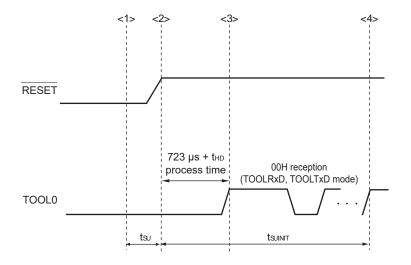
(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Conditions	Standard Mode ^{Note 1}				Unit		
			HS	Note 2	LS	lote 3	LV'	Note 4	
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fsc∟	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	0	100	0	100	0	100	kHz
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	0	100	0	100	0	100	
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	0	100	0	100	0	100	
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		0	100	0	100	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	_		4.7		4.7		
Hold time ^{Note 5}	thd:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	_		4.0		4.0		
Hold time when SCLA0 = "L"	tLow	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	_		4.7		4.7		
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	_		4.0		4.0		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	250		250		250		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	-		250		250		
Data hold time (transmission)Note 6	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	0	3.45	0	3.45	0	3.45	
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	_	-	0	3.45	0	3.45	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.0		4.0		4.0		
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	_		4.0		4.0		
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		
		$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	4.7		4.7		4.7		1
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$	_		4.7		4.7		1

(Note and Remark are listed on the next page.)

2.9 Dedicated Flash Memory Programmer Communication (UART)


$(1A = -40 \ 10 \ 103 \ 0, \ 1.0 \ 4 \ 3 \ 10$												
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit						
Transfer rate		During flash memory programming	115.2 k		1 M	bps						

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

2.10 Timing Specs for Switching Flash Memory Programming Modes

(T _A = -40 to +85°C	$1.8 V \le EV_{DD0} \le V_{DD} \le 3.6$	V, Vss = EVsso = 0 V)
--------------------------------	---	-----------------------

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
	How long from when the TOOL0 pin is placed at the low level until a external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
<r></r>	How long the TOOL0 pin must be kept at the low level after an external reset ends (except flash firmware processing time)	tнD	POR and LVD reset must end before the external reset ends.	1			ms

<R>

<R>

- <1> The low level is input to the TOOL0 pin.
- <2> The pins reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - $t_{\mbox{\scriptsize SU:}}$ How long from when the TOOL0 pin is placed at the low level until a external reset ends
- tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (except flash firmware processing time)

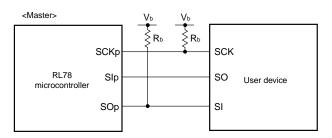
$(I_A = -40 \text{ to } +10)$	<u>)5°C, 2.4 V</u>	\leq AVDD \leq VDD \leq 3.6 V, 2.4 V \leq I		$0 \le 3.6 \text{ V}, \text{ Vss} =$	EVsso =	0 V)		(5/
Items	Symbol	Conditio	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ісінт	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P140, P141	VI = EVDD0				1	μA
	ILIH2	P137, RESET	$V_{I} = V_{DD}$				1	μA
	І∟інз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	Ілн4	P20 to P27, P150 to P154	$V_I = AV_{DD}$				1	μA
Input leakage current, low	luu1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P67, P70 to P77, P120, P140, P141	VI = EVsso				-1	μA
	ILIL2	P137, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P20 to P27, P150 to P154	VI = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	VI = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(T _A = -40 to	• +105°C	, 2.4 V ≤ E	$V_{DD0} \leq V_{DD} \leq 3.6$	V, Vss = EVsso = 0 V)				(2/3)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2Note 2	HALT	HS (high-speed	fı⊢ = 32 MHz ^{Note 4}	V _{DD} = 3.0 V		0.54	2.90	mA
current ^{Note 1}		mode	main) mode ^{Note 7}	fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.44	2.30	mA
				f⊮ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.40	1.70	mA
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.90	mA
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		0.45	2.00	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	
			Subsystem clock	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			mode T	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.38	1.17	μA
				T _A = +50°C	Resonator connection		0.57	1.36	
				f _{SUB} = 32.768 kHz ^{Note 5} T _A = +70°C	Square wave input		0.52	1.97	μA
					Resonator connection		0.71	2.16	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μA
				T _A = +85°C	Resonator connection		1.16	3.56	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μA
				T _A = +105°C	Resonator connection		3.20	15.56	
	DD3 ^{Note 6}	STOP	T _A = -40°C				0.16	0.50	μA
	mode ^{Note 8} T _A = +25°C	T _A = +25°C				0.23	0.50		
			T _A = +50°C				0.34	1.10	
			T _A = +70°C	T _A = +70°C			0.46	1.90	
			T _A = +85°C				0.75	3.30	
			T _A = +105°C				2.94	15.30	

(Notes and Remarks are listed on the next page.)

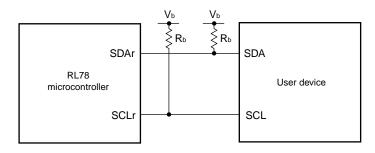
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SIp setup time (to SCKp↑) ^{Note 1}	tsıkı	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	354			ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	958			ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38			ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38			ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			390	ns
		$\begin{array}{l} 2.4 \; V \leq {\sf EV}_{{\sf D}{\sf D}{\sf 0}} < 3.3 \; {\sf V}, \; 1.6 \; {\sf V} \leq {\sf V}_{{\sf b}} \leq 2.0 \; {\sf V}, \\ {\sf C}_{{\sf b}} = 30 \; {\sf pF}, \; {\sf R}_{{\sf b}} = 5.5 \; {\sf k}\Omega \end{array}$			966	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸı	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	88			ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	220			ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	38			ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38			ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			50	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$ C _b = 30 pF, R _b = 5.5 k Ω			50	ns

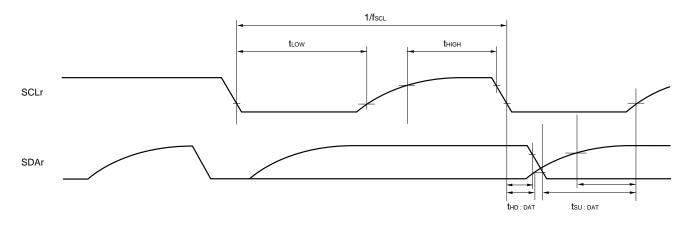

(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


CSI mode connection diagram (during communication at different potential)


- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number , n: Channel number (mn = 00, 02, 10),
 g: PIM and POM number (g = 0, 1)
 - **3.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10)
 - **4.** IIC01, IIC11, and IIC21 cannot communicate at different potential. Use IIC00, IIC10, or IIC20 for communication at different potential.

<R>

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), target for conversion: ANI0 to ANI12, ANI16 to ANI30

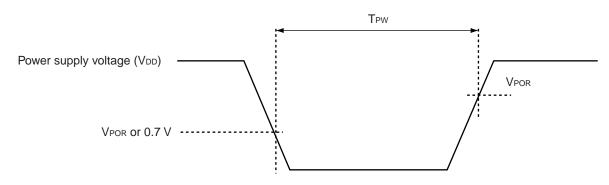
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{EV}_{DD} \le \text{V}_{DD}, 2.4 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ V}, \text{Reference voltage (+) = Internal reference voltage, Reference voltage (-) = AV}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8		bit	
Conversion time	t CONV	8-bit resolution	16.0			μs
Zero-scale error ^{Note}	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error ^{Note}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note}	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AV _{REF(+)}	= Internal reference voltage (V _{BGR})	1.38	1.45	1.50	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error ($\pm 1/2$ LSB).

3.6.2 Temperature sensor, internal reference voltage output characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

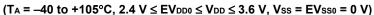

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (high-speed main) mode)

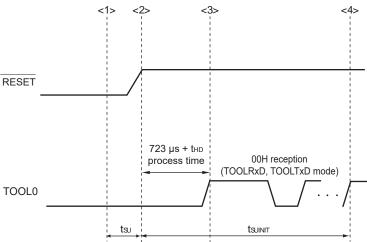
3.6.3 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode or if the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset before V_{DD} rises to V_{POR} after having fallen below 0.7 V.


3.9 Dedicated Flash Memory Programmer Communication (UART)


($T_{A} = -40$ to +105°C	2 4 V < FVDD	Vss = EVsso = 0 V)
٠.	TA = -40 10 + 103 0	, 2.4 V <u>> L</u> VDDU	, v ss - L v ssu - U v j

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115.2 k		1 M	bps

3.10 Timing Specs for Switching Flash Memory Programming Modes

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	
	How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	
	How long from when the TOOL0 pin is placed at the low level until a external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			
<r></r>	How long the TOOL0 pin must be kept at the low level after an external reset ends (except flash firmware processing time)	tнр	POR and LVD reset must end before the external reset ends.	1			

- <1> The low level is input to the TOOL0 pin.
- <2> The pins reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

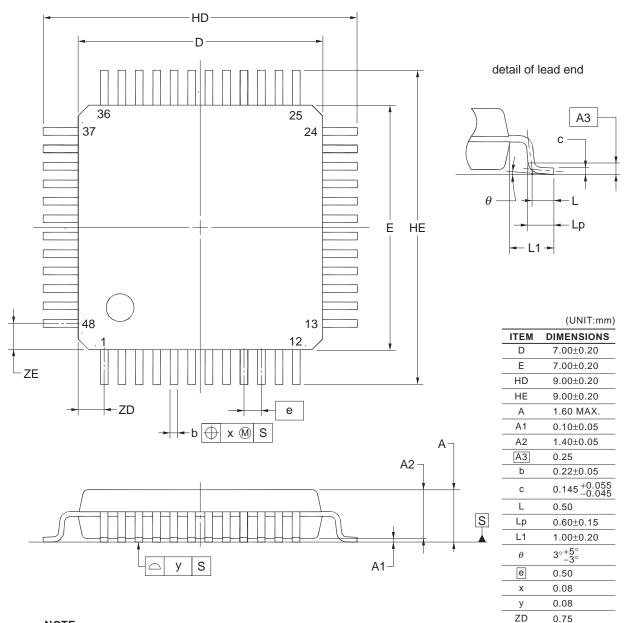
- $t_{\text{SU:}} \qquad \text{How long from when the TOOL0 pin is placed at the low level until a external reset ends}$
- thd: How long to keep the TOOL0 pin at the low level from when the external resets end (except flash firmware processing time)

<R>

<R>

RENESAS

Unit ms


μs

ms

4.3 48-pin products

R5F10EGAAFB, R5F10EGCAFB, R5F10EGDAFB, R5F10EGEAFB R5F10EGAGFB, R5F10EGCGFB, R5F10EGDGFB, R5F10EGEGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ZE

0.75

