



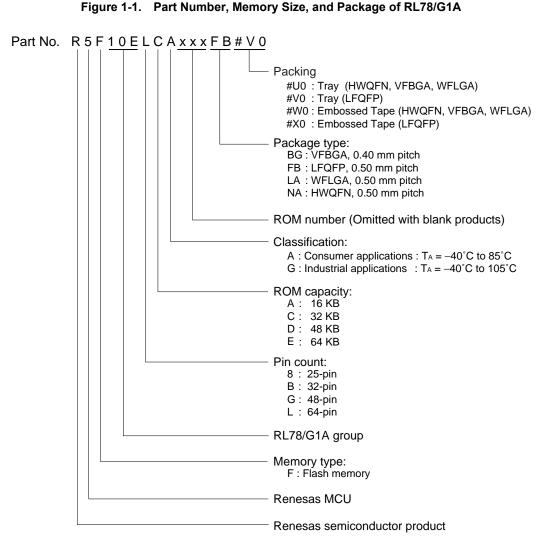

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

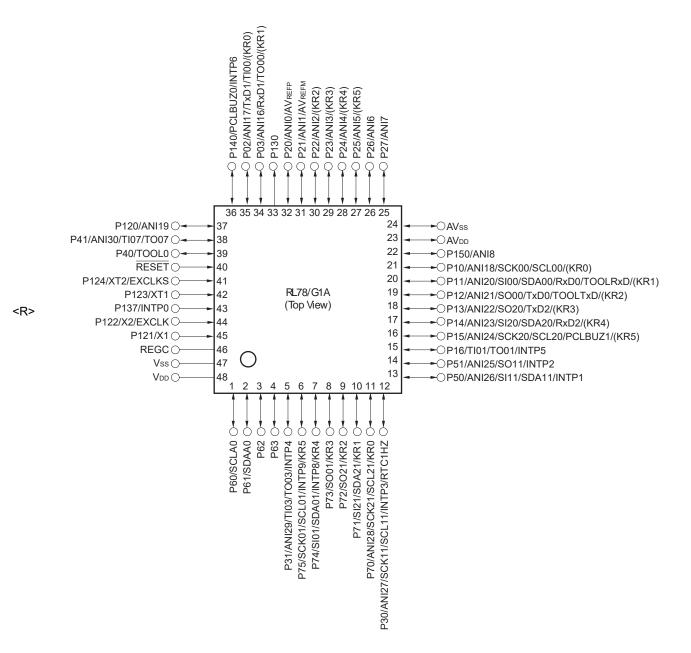

XFI

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 32                                                                              |
| Program Memory Size        | 64KB (64K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 4K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 3.6V                                                                     |
| Data Converters            | A/D 24x12b                                                                      |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 48-LQFP                                                                         |
| Supplier Device Package    | 48-LFQFP (7x7)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10egeafb-v0 |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 1.2 List of Part Numbers

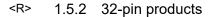


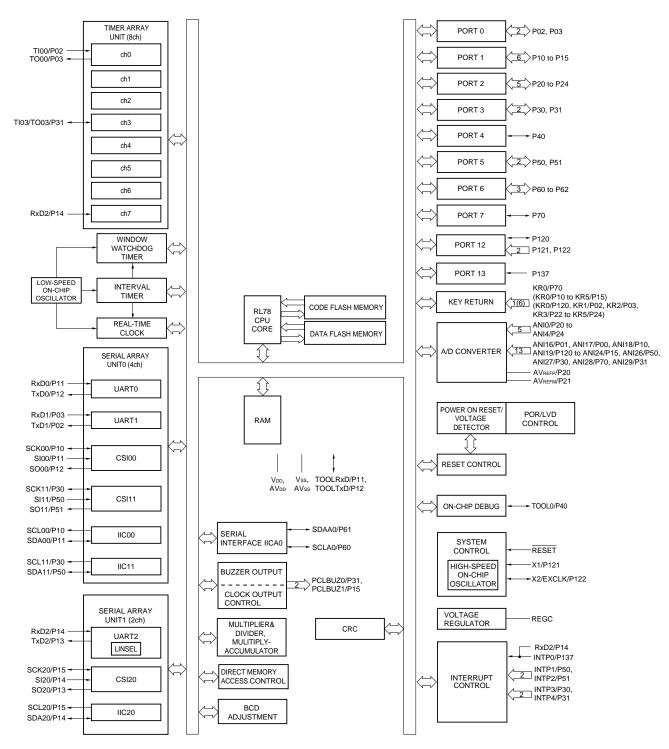

Caution The part number above is valid as of when this manual was issued. For the latest part number, see the web page of the target product on the Renesas Electronics website.



### 1.3.3 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)





#### Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu$ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

**2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).







**Remark** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

| Items                                | Symbol                                                           | Conditio                                                                                                  | ons                       |                                             | MIN. | TYP. | MAX. | Unit |
|--------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------|------|------|------|------|
| Input leakage ILIH1<br>current, high |                                                                  | P00 to P06, P10 to P16, P30,<br>P31, P40 to P43, P50, P51,<br>P60 to P63, P70 to P77, P120,<br>P140, P141 | VI = EVDDO                | ,                                           |      |      | 1    | μA   |
|                                      | ILIH2                                                            | P137, RESET                                                                                               | VI = VDD                  |                                             |      |      | 1    | μA   |
| Ішнз                                 |                                                                  | P121 to P124<br>(X1, X2, XT1, XT2, EXCLK,<br>EXCLKS)                                                      | VI = VDD                  | In input port or<br>external clock<br>input |      |      | 1    | μA   |
|                                      |                                                                  |                                                                                                           |                           | In resonator connection                     |      |      | 10   | μA   |
|                                      | Ілн4                                                             | P20 to P27, P150 to P154                                                                                  | VI = AVDD                 |                                             |      |      | 1    | μA   |
| Input leakage<br>current, low        | Ilili                                                            | P00 to P06, P10 to P16,<br>P30, P31, P40 to P43,<br>P50, P51, P60 to P67,<br>P70 to P77, P120, P140, P141 | Vi = EVsso                |                                             |      |      | -1   | μA   |
|                                      | ILIL2                                                            | P137, RESET                                                                                               | VI = Vss                  |                                             |      |      | -1   | μA   |
|                                      | Ililis                                                           | P121 to P124<br>(X1, X2, XT1, XT2, EXCLK,<br>EXCLKS)                                                      | VI = Vss                  | In input port or<br>external clock<br>input |      |      | -1   | μA   |
|                                      |                                                                  |                                                                                                           |                           | In resonator connection                     |      |      | -10  | μA   |
|                                      | I <sub>LIL4</sub> P20 to P27, P150 to P154 V <sub>I</sub> = AVss |                                                                                                           |                           |                                             |      | -1   | μA   |      |
| On-chip pull-up<br>resistance        | Ru                                                               | P00 to P06, P10 to P16, P30,<br>P31, P40 to P43, P50, P51,<br>P70 to P77, P120, P140, P141                | VI = EVSSO, In input port |                                             | 10   | 20   | 100  | kΩ   |

#### /**T** <u>0 \</u>0

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and data flash rewriting.
  - 2. During HALT instruction execution by flash memory.
  - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 4. When high-speed system clock and subsystem clock are stopped.
  - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). Including the current flowing into the RTC. However, not including the current flowing into the 12-bit interval timer, and watchdog timer.
  - **6.** When subsystem clock is stopped. Not including the current flowing into the RTC, 12-bit interval timer, watchdog timer.
  - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}@1 \text{ MHz}$  to 32 MHz

- 2.4 V  $\leq$  V\_DD  $\leq$  3.6 V@1 MHz to 16 MHz
- LS (low-speed main) mode:  $1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.6 \text{ V}@1 \text{ MHz}$  to 8 MHz
- LV (low-voltage main) mode:  $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V} @1 \text{ MHz}$  to 4 MHz
- Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T<sub>A</sub> = 25°C



# (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

| Parameter                                                | Symbol       | Conditions                                                    |              | HS      | Note 1 | LS <sup>Note 2</sup> |      | LV <sup>Note 3</sup> |      | Unit |
|----------------------------------------------------------|--------------|---------------------------------------------------------------|--------------|---------|--------|----------------------|------|----------------------|------|------|
|                                                          |              |                                                               |              | MIN.    | MAX.   | MIN.                 | MAX. | MIN.                 | MAX. |      |
| SCKp cycle time                                          | tkcy1        | $2.7~V \leq EV_{\text{DD}} \leq 3.6~V$                        | tkcy1≥2/fcLk | 83.3    |        | 250                  |      | 500                  |      | ns   |
| SCKp high-/low-level width                               | tкнı,        | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 3.6 \text{ V}$ |              | tксү1/2 |        | tксү1/2              |      | <b>t</b> ксү1/2      |      | ns   |
|                                                          | <b>t</b> KL1 |                                                               |              | -10     |        | -50                  |      | -50                  |      |      |
| SIp setup time (to SCKp↑) <sup>Note 4</sup>              | tsıĸ1        | $2.7~V \leq EV_{\text{DD}} \leq 3.6~V$                        | 1            | 33      |        | 110                  |      | 110                  |      | ns   |
| SIp hold time (from SCKp↑) <sup>Note 4</sup>             | tksi1        | $2.7~V \leq EV_{\text{DD}} \leq 3.6~V$                        | 1            | 10      |        | 10                   |      | 10                   |      | ns   |
| Delay time from SCKp↓ to<br>SOp output <sup>Note 5</sup> | tkso1        | C = 20 pF <sup>Note 6</sup>                                   |              |         | 10     |                      | 10   |                      | 10   | ns   |

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ 

Notes 1. HS is condition of HS (high-speed main) mode.

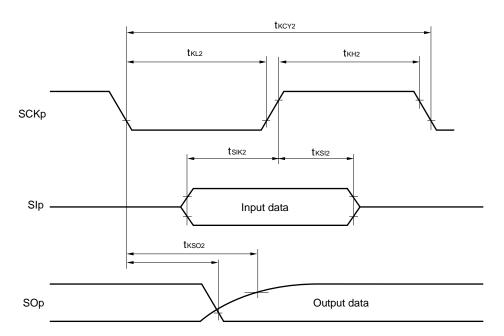
- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 6. C is the load capacitance of the SCKp and SOp output lines.

# Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

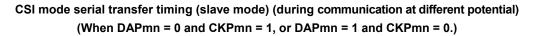
- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
  - g: PIM and POM numbers (g = 1)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

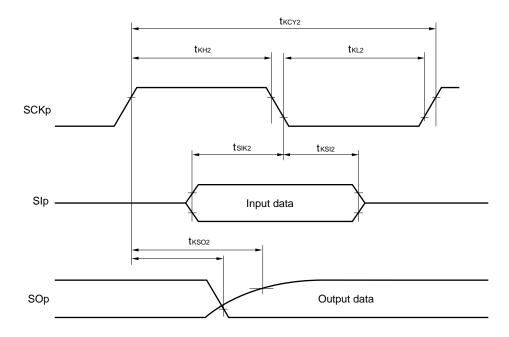


- Notes 1. HS is condition of HS (high-speed main) mode.
  - **2.** LS is condition of LS (low-speed main) mode.
  - 3. LV is condition of LV (low-voltage main) mode.
  - 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
  - When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 7. C is the load capacitance of the SOp output lines.

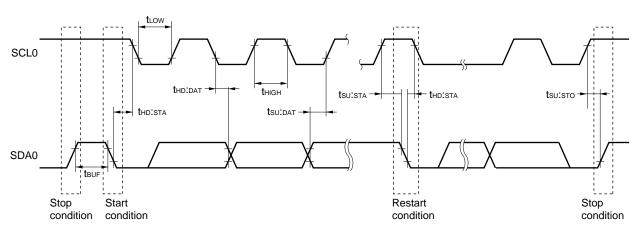

# Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),
  - g: PIM number (g = 0, 1)
  - 2. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,


n: Channel number (mn = 00 to 03, 10, 11))






CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
  - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.



IICA serial transfer timing



<R>

## (3) When reference voltage (+) = AV<sub>DD</sub> (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AV<sub>SS</sub> (ADREFM = 0), target for conversion: ANI0 to ANI12

## $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V}, \text{ AV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+) = AV}_{\text{DD}}, \text{ Reference voltage (+) =$

| Parameter                                      | Symbol        | Co                                                | onditions                                              | MIN.   | TYP.                | MAX.                 | U |  |
|------------------------------------------------|---------------|---------------------------------------------------|--------------------------------------------------------|--------|---------------------|----------------------|---|--|
| Resolution                                     | Res           |                                                   | $2.4~V \leq AV_{\text{DD}} \leq 3.6~V$                 | 8      |                     | 12                   | k |  |
|                                                |               |                                                   | $1.8 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$ | 8      |                     | 10 <sup>Note 1</sup> |   |  |
|                                                |               |                                                   | $1.6~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        | 8 <sup>Note 2</sup> |                      |   |  |
| Overall errorNote 3                            | AINL          | 12-bit resolution                                 | $2.4~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±7.5                 | L |  |
|                                                |               | 10-bit resolution                                 | $1.8~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±5.5                 |   |  |
|                                                |               | 8-bit resolution                                  | $1.6~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±3.0                 |   |  |
| Conversion time                                | <b>t</b> CONV | ADTYP = 0,<br>12-bit resolution                   | $2.4~V \leq AV_{\text{DD}} \leq 3.6~V$                 | 3.375  |                     |                      | ļ |  |
|                                                |               | ADTYP = 0,<br>10-bit resolution <sup>Note 1</sup> | $1.8 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$ | 6.75   |                     |                      |   |  |
|                                                |               | ADTYP = 0,<br>8-bit resolution <sup>Note 2</sup>  | $1.6 \text{ V} \leq AV_{DD} \leq 3.6 \text{ V}$        | 13.5   |                     |                      |   |  |
|                                                |               | ADTYP = 1,                                        | $2.4~V \leq AV_{\text{DD}} \leq 3.6~V$                 | 2.5625 |                     |                      |   |  |
|                                                |               | 8-bit resolution                                  | $1.8~V \leq AV_{\text{DD}} \leq 3.6~V$                 | 5.125  |                     |                      |   |  |
|                                                |               |                                                   | $1.6~V \leq AV_{\text{DD}} \leq 3.6~V$                 | 10.25  |                     |                      |   |  |
| Zero-scale error <sup>Note 3</sup>             | Ezs           | 12-bit resolution                                 | $2.4~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±6.0                 | L |  |
|                                                |               | 10-bit resolution                                 | $1.8~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±5.0                 |   |  |
|                                                |               | 8-bit resolution                                  | $1.6~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±2.5                 |   |  |
| Full-scale error <sup>Note 3</sup>             | Ers           | 12-bit resolution                                 | $2.4~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±6.0                 | L |  |
|                                                |               | 10-bit resolution                                 | $1.8~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±5.0                 |   |  |
|                                                |               | 8-bit resolution                                  | $1.6~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±2.5                 |   |  |
| Integral linearity errorNote 3                 | ILE           | 12-bit resolution                                 | $2.4~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±3.0                 | L |  |
|                                                |               | 10-bit resolution                                 | $1.8~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±2.0                 |   |  |
|                                                |               | 8-bit resolution                                  | $1.6~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±1.5                 |   |  |
| Differential linearity error <sup>Note 3</sup> | DLE           | 12-bit resolution                                 | $2.4~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±2.0                 | L |  |
|                                                |               | 10-bit resolution                                 | $1.8~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±2.0                 | ] |  |
|                                                |               | 8-bit resolution                                  | $1.6~V \leq AV_{\text{DD}} \leq 3.6~V$                 |        |                     | ±1.5                 |   |  |
| Analog input voltage                           | VAIN          |                                                   |                                                        | 0      |                     | AVDD                 |   |  |

Notes 1. Cannot be used for lower 2 bit of ADCR register

- 2. Cannot be used for lower 4 bit of ADCR register
- **3.** Excludes quantization error ( $\pm 1/2$  LSB).

<R>

(6) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), target ANI pin: ANI0 to ANI12, ANI16 to ANI30

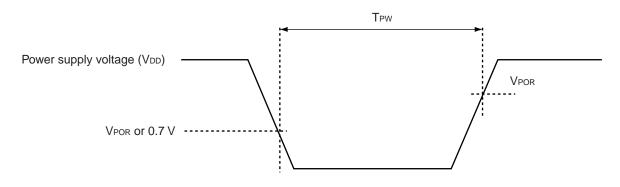
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD} \le \text{V}_{DD}, 1.6 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ V}, \text{Reference voltage (+) = Internal reference voltage, Reference voltage (-) = AV}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$ 

| Parameter                                    | Symbol               | Conditions                                       | MIN. | TYP. | MAX. | Unit |
|----------------------------------------------|----------------------|--------------------------------------------------|------|------|------|------|
| Resolution                                   | Res                  |                                                  | 8    |      | bit  |      |
| Conversion time                              | t <sub>CONV</sub>    | 8-bit resolution                                 | 16   |      |      | μs   |
| Zero-scale error <sup>Note</sup>             | Ezs                  | 8-bit resolution                                 |      |      | ±4.0 | LSB  |
| Integral linearity error <sup>Note</sup>     | ILE                  | 8-bit resolution                                 |      |      | ±2.0 | LSB  |
| Differential linearity error <sup>Note</sup> | DLE                  | 8-bit resolution                                 |      |      | ±2.5 | LSB  |
| Reference voltage (+)                        | AV <sub>REF(+)</sub> | = Internal reference voltage (V <sub>BGR</sub> ) | 1.38 | 1.45 | 1.5  | V    |
| Analog input voltage                         | VAIN                 |                                                  | 0    |      | VBGR | V    |

**Note** Excludes quantization error ( $\pm 1/2$  LSB).

#### 2.6.2 Temperature sensor, internal reference voltage output characteristics

| •                                 |         | ; <b>(                                   </b>                     |      |      |      |       |
|-----------------------------------|---------|-------------------------------------------------------------------|------|------|------|-------|
| Parameter                         | Symbol  | Conditions                                                        | MIN. | TYP. | MAX. | Unit  |
| Temperature sensor output voltage | VTMPS25 | Setting ADS register = 80H, T <sub>A</sub> = +25°C                |      | 1.05 |      | V     |
| Internal reference voltage        | VBGR    | Setting ADS register = 81H                                        | 1.38 | 1.45 | 1.5  | V     |
| Temperature coefficient           | Fvtmps  | Temperature sensor output voltage that depends on the temperature |      | -3.6 |      | mV/°C |
| Operation stabilization wait time | tamp    |                                                                   | 10   |      |      | μs    |


#### (T<sub>A</sub> = -40 to +85°C, 2.4 V $\leq$ V<sub>DD</sub> $\leq$ 3.6 V, V<sub>SS</sub> = 0 V, HS (high-speed main) mode)

#### 2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$ 

| Parameter                           | Symbol | Conditions             | MIN. | TYP. | MAX. | Unit |
|-------------------------------------|--------|------------------------|------|------|------|------|
| Detection voltage                   | VPOR   | Power supply rise time | 1.47 | 1.51 | 1.55 | V    |
|                                     | VPDR   | Power supply fall time | 1.46 | 1.50 | 1.54 | V    |
| Minimum pulse width <sup>Note</sup> | TPW    |                        | 300  |      |      | μs   |

**Note** This is the time required for the POR circuit to execute a reset when V<sub>DD</sub> falls below V<sub>PDR</sub>. When the microcontroller enters STOP mode or if the main system clock (f<sub>MAIN</sub>) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset before V<sub>DD</sub> rises to V<sub>POR</sub> after having fallen below 0.7 V.





| Items                  | Symbol | Conditions                                                                                 |                                                                                 | MIN.                 | TYP.    | MAX.     | Unit |
|------------------------|--------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|---------|----------|------|
| Input voltage,<br>high | VIH1   | P00 to P06, P10 to P16, P30, P31,<br>P40 to P43, P50, P51, P70 to P77,<br>P120, P140, P141 | Normal input buffer                                                             | 0.8EV <sub>DD0</sub> |         | EVDD0    | V    |
|                        | VIH2   | P01, P03, P04, P10, P11,<br>P13 to P16, P43                                                | TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$   | 2.0                  |         | EVDD0    | V    |
|                        |        |                                                                                            | TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$    | 1.5                  |         | EVDD0    | V    |
|                        | VIH3   | P20 to P27, P150 to P154                                                                   |                                                                                 | 0.7AVDD              |         | AVDD     | V    |
|                        | VIH4   | P60 to P63                                                                                 |                                                                                 | 0.7EVDD0             |         | 6.0      | V    |
|                        | VIH5   | P121 to P124, P137, EXCLK, EXCL                                                            | 0.8Vdd                                                                          |                      | VDD     | V        |      |
| Input voltage, low     | VIL1   | P00 to P06, P10 to P16, P30, P31,<br>P40 to P43, P50, P51, P70 to P77,<br>P120, P140, P141 | Normal input buffer                                                             | 0                    |         | 0.2EVDD0 | V    |
|                        | VIL2   | P01, P03, P04, P10, P11,<br>P13 to P16, P43                                                | TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$ | 0                    |         | 0.5      | V    |
|                        |        |                                                                                            | TTL input buffer<br>2.4 V $\leq$ EV <sub>DD0</sub> $<$ 3.3 V                    | 0                    |         | 0.32     | V    |
|                        | VIL3   | P20 to P27, P150 to P154                                                                   | 0                                                                               |                      | 0.3AVDD | V        |      |
|                        | VIL4   | P60 to P63                                                                                 |                                                                                 | 0                    |         | 0.3EVDD0 | V    |
|                        | VIL5   | P121 to P124, P137, EXCLK, EXCLK                                                           | 0                                                                               |                      | 0.2VDD  | V        |      |

#### 40 to +105°C 2 4 V < AV-- 11-< 2 6 V 2 4 V < EV-< V-EV ·--**0** \/\

#### Caution The maximum value of V<sub>IH</sub> of pins P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 is EV<sub>DD0</sub>, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| (T <sub>A</sub> = -40 to  | • +105°C              | , 2.4 V ≤ E            | $V_{DD0} \leq V_{DD} \leq 3.6$   | V, Vss = EVsso = 0 V                         | )                       |      |      |       | (2/3) |
|---------------------------|-----------------------|------------------------|----------------------------------|----------------------------------------------|-------------------------|------|------|-------|-------|
| Parameter                 | Symbol                |                        |                                  | Conditions                                   |                         | MIN. | TYP. | MAX.  | Unit  |
| Supply                    | DD2Note 2             | HALT                   | HS (high-speed                   | fı⊢ = 32 MHz <sup>Note 4</sup>               | V <sub>DD</sub> = 3.0 V |      | 0.54 | 2.90  | mA    |
| current <sup>Note 1</sup> |                       | mode                   | main) mode <sup>Note 7</sup>     | f <sub>IH</sub> = 24 MHz <sup>Note 4</sup>   | V <sub>DD</sub> = 3.0 V |      | 0.44 | 2.30  | mA    |
|                           |                       |                        |                                  | f⊮ = 16 MHz <sup>Note 4</sup>                | V <sub>DD</sub> = 3.0 V |      | 0.40 | 1.70  | mA    |
|                           |                       |                        | HS (high-speed                   | f <sub>MX</sub> = 20 MHz <sup>Note 3</sup> , | Square wave input       |      | 0.28 | 1.90  | mA    |
|                           |                       |                        | main) mode <sup>Note 7</sup>     | V <sub>DD</sub> = 3.0 V                      | Resonator connection    |      | 0.45 | 2.00  |       |
|                           |                       |                        |                                  | f <sub>MX</sub> = 10 MHz <sup>Note 3</sup> , | Square wave input       |      | 0.19 | 1.02  | mA    |
|                           |                       |                        |                                  | V <sub>DD</sub> = 3.0 V                      | Resonator connection    |      | 0.26 | 1.10  |       |
|                           |                       |                        | Subsystem clock                  | fsuв = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.25 | 0.57  | μA    |
|                           |                       |                        | mode                             | $T_A = -40^{\circ}C$                         | Resonator connection    |      | 0.44 | 0.76  |       |
|                           |                       |                        |                                  | fsuв = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.30 | 0.57  | μA    |
|                           |                       |                        |                                  | T <sub>A</sub> = +25°C                       | Resonator connection    |      | 0.49 | 0.76  |       |
|                           |                       |                        | fsub = 32.768 kHz <sup>Not</sup> | fsuв = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.38 | 1.17  | μA    |
|                           |                       |                        |                                  | T <sub>A</sub> = +50°C                       | Resonator connection    |      | 0.57 | 1.36  |       |
|                           |                       |                        |                                  | fsuв = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.52 | 1.97  | μA    |
|                           |                       |                        |                                  | T <sub>A</sub> = +70°C                       | Resonator connection    |      | 0.71 | 2.16  |       |
|                           |                       |                        |                                  | fsub = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.97 | 3.37  | μA    |
|                           |                       |                        |                                  | T <sub>A</sub> = +85°C                       | Resonator connection    |      | 1.16 | 3.56  |       |
|                           |                       |                        |                                  | fsub = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 3.01 | 15.37 | μA    |
|                           |                       |                        |                                  | T <sub>A</sub> = +105°C                      | Resonator connection    |      | 3.20 | 15.56 |       |
|                           | DD3 <sup>Note 6</sup> | STOP                   | T <sub>A</sub> = -40°C           |                                              |                         |      | 0.16 | 0.50  | μA    |
|                           | mode                  | mode <sup>Note 8</sup> | T <sub>A</sub> = +25°C           |                                              |                         | 0.23 | 0.50 |       |       |
|                           |                       |                        | T <sub>A</sub> = +50°C           |                                              | 0.34                    | 1.10 |      |       |       |
|                           |                       |                        | T <sub>A</sub> = +70°C           |                                              |                         |      |      | 1.90  |       |
|                           |                       |                        | T <sub>A</sub> = +85°C           |                                              |                         |      | 0.75 | 3.30  |       |
|                           |                       |                        | T <sub>A</sub> = +105°C          |                                              |                         |      | 2.94 | 15.30 |       |

(Notes and Remarks are listed on the next page.)



- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and data flash rewriting.
  - 2. During HALT instruction execution by flash memory.
  - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 4. When high-speed system clock and subsystem clock are stopped.
  - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). Including the current flowing into the RTC. However, not including the current flowing into the 12-bit interval timer, and watchdog timer.
  - **6.** When subsystem clock is stopped. Not including the current flowing into the RTC, 12-bit interval timer, watchdog timer.
  - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}@1 \text{ MHz}$  to 32 MHz

 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}@1 \text{ MHz}$  to 16 MHz

- Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is  $T_A = 25^{\circ}C$



### <R>

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T<sub>A</sub> = -40 to +105°C, 2.4 V ≤ EV<sub>DD0</sub> ≤ V<sub>DD</sub> ≤ 3.6 V, V<sub>SS</sub> = EV<sub>SS0</sub> = 0 V)

| Parameter                         | Symbol             | Cond                                                           | ditions                                 | MIN.                            | TYP. | MAX.       | Unit |
|-----------------------------------|--------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------|------|------------|------|
| SCKp cycle time <sup>Note 1</sup> | <b>t</b> ксү2      | $2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$                        | 16 MHz < fмск                           | <b>16/f</b> мск                 |      |            | ns   |
|                                   |                    |                                                                | fмск ≤ 16 MHz                           | <b>12/f</b> мск                 |      |            | ns   |
|                                   |                    | $2.4 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$        |                                         | 12/f <sub>мск</sub> and<br>1000 |      |            | ns   |
| SCKp high-/low-level width        | t <sub>кн2</sub> , | $2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$                        |                                         | tксү2/2–14                      |      |            | ns   |
|                                   | tĸ∟2               | $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$ |                                         | tксү2/2–16                      |      |            | ns   |
| SIp setup time                    | tsik2              | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$   | 1/fмск + 40                             |                                 |      | ns         |      |
| (to SCKp↑) <sup>Note 2</sup>      |                    | $2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$                        | 1                                       | 1/fмск + 60                     |      |            | ns   |
| SIp hold time                     | tKSI2              | $2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$        | ,                                       | 1/fмск+62                       |      |            | ns   |
| (from SCKp↑) <sup>Note 2</sup>    |                    | $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$ |                                         | 1/fмск+62                       |      |            | ns   |
| Delay time from SCKp↓ to          | tkso2              | C = 30 pF <sup>Note 4</sup>                                    | $2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$ |                                 |      | 2/fмск+66  | ns   |
| SOp output <sup>Note 3</sup>      |                    |                                                                | $2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$ |                                 |      | 2/fмск+113 | ns   |

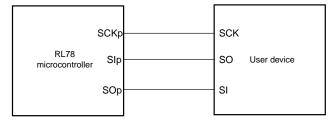
Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SOp output lines.

# Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

**Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

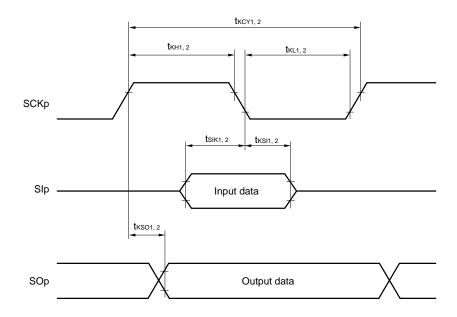
g: PIM number (g = 0, 1)

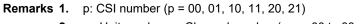

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

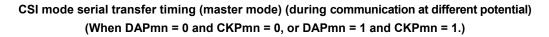
n: Channel number (mn = 00 to 03, 10, 11))

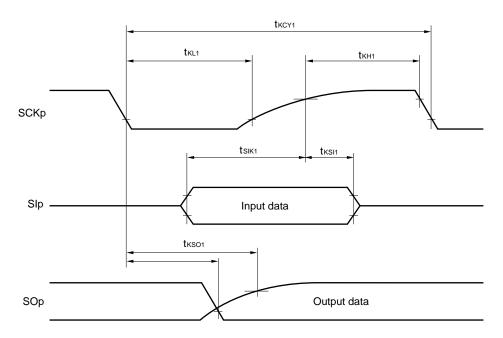


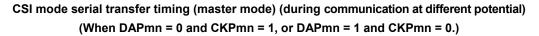

#### CSI mode connection diagram (during communication at same potential)

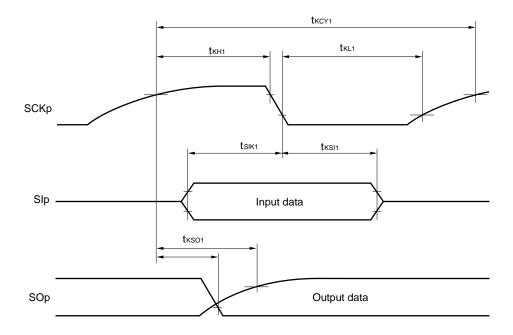



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)




2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)









- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (m = 00, 02, 10), g: PIM and POM number (g = 0, 1)
  - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

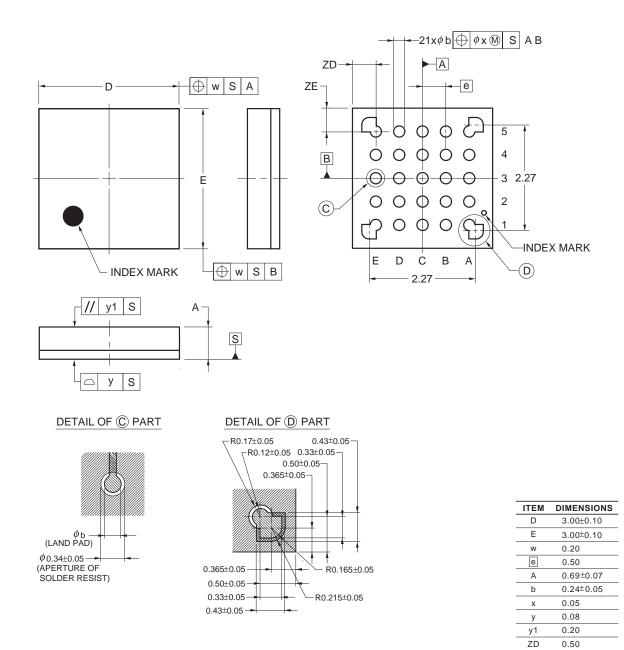
### (8) Communication at different potential (1.8 V, 2.5 V) (simplified $l^2C$ mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ 

| Parameter                 | Symbol | Conditions                                                                                                                                                                      | MIN. | MAX.                  | Unit |
|---------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------|------|
| SCLr clock frequency      | fscL   | $\label{eq:2.7} \begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$                    |      | 400 <sup>Note 1</sup> | kHz  |
|                           |        | $\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$    |      | 100 <sup>Note 1</sup> | kHz  |
|                           |        | $\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$       |      | 100 <sup>Note 1</sup> | kHz  |
| Hold time when SCLr = "L" | t∟ow   | $\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$                     | 1200 |                       | ns   |
|                           |        | $\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$       | 4600 |                       | ns   |
|                           |        | $\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$ | 4650 |                       | ns   |
| Hold time when SCLr = "H" | tнıgн  | $\label{eq:2.7} \begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$                    | 500  |                       | ns   |
|                           |        | $\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$    | 2400 |                       | ns   |
|                           |        | $\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$       | 1830 |                       | ns   |

(Notes, Caution and Remarks are listed on the next page.)




### 4. PACKAGE DRAWINGS

#### 4.1 25-pin products

R5F10E8AALA, R5F10E8CALA, R5F10E8DALA, R5F10E8EALA

| <r></r> | JEITA Package Code | RENESAS Code | Previous Code  | MASS (Typ) [g] |
|---------|--------------------|--------------|----------------|----------------|
|         | P-WFLGA25-3x3-0.50 | PWLG0025KA-A | P25FC-50-2N2-3 | 0.01           |

Unit: mm



© 2014 Renesas Electronics Corporation. All rights reserved.

ZE

0.50



**Revision History** 

### RL78/G1A Data Sheet

|      |              |                              | Description                                                                                      |
|------|--------------|------------------------------|--------------------------------------------------------------------------------------------------|
| Rev. | Date         | Page                         | Summary                                                                                          |
| 0.01 | Dec 26, 2011 | -                            | First Edition issued                                                                             |
| 1.00 | Sep 25, 2013 | p.1                          | Modification of 1.1 Features                                                                     |
|      |              | p.4                          | Modification of Table 1-1. List of Ordering Part Numbers                                         |
|      |              | p.6                          | Modification of Remark 3 to 1.3.2 32-pin products.                                               |
|      |              | p.13                         | Modification of 1.5.2 32-pin products.                                                           |
|      |              | p.14                         | Modification of 1.5.3 48-pin products.                                                           |
|      |              | p.16                         | Modification of 1.6 Outline of Functions                                                         |
|      |              | p.21                         | Modification of 2.2.1 X1, XT1 oscillator characteristics                                         |
|      |              | p.31, 32                     | Modification of Note 1 in 2.3.2 Supply current characteristics                                   |
|      |              | p.34, 35                     | Modification of Minimum Instruction Execution Time during Main System Clock<br>Operation         |
|      |              | p.37                         | Modification of AC Timing Test Points in 2.5 Peripheral Functions<br>Characteristics             |
|      |              | p.46 to<br>58                | Modification of Caution to 2.5.1 Serial array unit.                                              |
|      |              | p.63 to<br>68                | Modification of 2.6.1 A/D converter characteristics                                              |
|      |              | p.71                         | Modification of 2.7 Data Memory STOP Mode Low Supply Voltage Data<br>Retention Characteristics   |
|      |              | p.71                         | Modification of 2.8 Flash Memory Programming Characteristics                                     |
|      |              | p.72                         | Modification of 2.10 Timing Specs for Switching Flash Memory Programming<br>Modes                |
|      |              | p.73 to                      | Addition of 3 ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL                                           |
|      |              | 117                          | APPLICATIONS TA = $-40$ to $+105^{\circ}$ C)                                                     |
|      |              | p.118 to<br>123              | Modification of 4. PACKAGE DRAWINGS                                                              |
| 2.10 | Nov 30, 2016 | p.4                          | Modification of Table 1-1. List of Ordering Part Numbers                                         |
|      |              | p.5 to 10                    | Modification of the position of the index mark in 1.3.1 25-pin products to 1.3.4 64-pin products |
|      |              | p.6                          | Modification of Remark 3                                                                         |
|      |              | p.13                         | Modification of 1.5.2 32-pin products                                                            |
|      |              | p.14                         | Modification of 1.5.3 48-pin products                                                            |
|      |              | p.16                         | Modification of description in 1.6 Outline of Functions                                          |
|      |              | p.21                         | Modification of 2.2.1 X1, XT1 oscillator characteristics                                         |
|      |              | p.31, 32                     | Modification of Note 1 in 2.3.2 Supply current characteristics                                   |
|      |              | p.34, 35                     | Modification of Minimum Instruction Execution Time during Main System Clock<br>Operation         |
|      |              | p.36                         | Modification of AC Timing Test Points and TI/TO Timing                                           |
|      |              | p.38                         | Modification of AC Timing Test Points in 2.5 Peripheral Functions<br>Characteristics             |
|      |              | p.48, 50<br>to 52,<br>55, 59 | Modification of Caution in 2.5.1 Serial array unit                                               |
|      |              | p.64 to<br>69                | Modification of conditions of 2.6.1 A/D converter characteristics                                |
|      |              | p.72                         | Renamed to 2.7 RAM Data Retention Characteristics, and modification of note and figure           |
|      |              | p.72                         | Modification of 2.8 Flash Memory Programming Characteristics                                     |