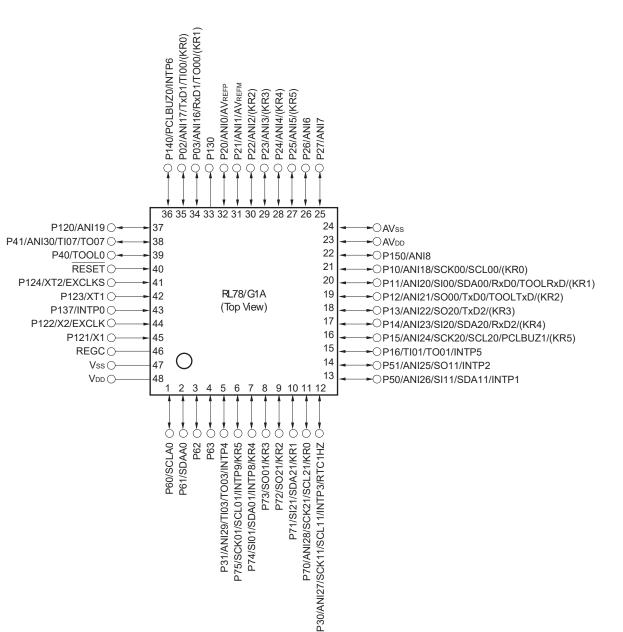


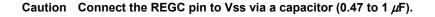
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

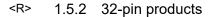

Details

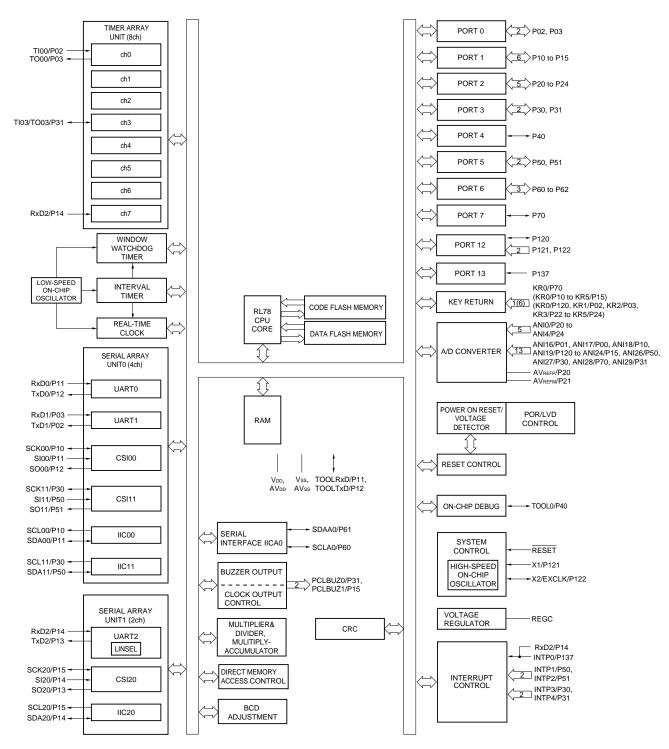

 \mathbf{X}

Detano	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10egeana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

This chapter describes the following electrical specifications.

- Target productsA:Consumer applicationsTA = -40 to +85°CR5F10E8AALA, R5F10E8CALA, R5F10E8DALA, R5F10E8EALAR5F10EBAANA, R5F10EBCANA, R5F10EBDANA, R5F10EBEANAR5F10EGAAFB, R5F10EGCAFB, R5F10EGDAFB, R5F10EGEAFBR5F10EGAANA, R5F10EGCANA, R5F10EGDANA, R5F10EGEANAR5F10ELCAFB, R5F10ELDAFB, R5F10ELEAFBR5F10ELCABG, R5F10ELDABG, R5F10ELEABG
 - G: Industrial applications When T_A = -40 to +105°C products is used in the range of T_A = -40 to +85°C
 R5F10EBAGNA, R5F10EBCGNA, R5F10EBDGNA, R5F10EBEGNA
 R5F10EGAGFB, R5F10EGCGFB, R5F10EGDGFB, R5F10EGEGFB
 R5F10EGAGNA, R5F10EGCGNA, R5F10EGDGNA, R5F10EGEGNA
 R5F10ELCGFB, R5F10ELDGFB, R5F10ELEGFB
- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0} or EV_{SS0} pin, replace EV_{DD0} with V_{DD}, or replace EV_{SS0} with V_{SS}.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V}) $ (1/5)										
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit			
Output current, Ion high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$1.6~V \leq EV_{DD0} \leq 3.6~V$			-10.0 ^{Note 2}	mA			
		Total of P00 to P04, P40 to P43, P120,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			-10.0	mA			
		P130, P140, P141 (When duty $\leq 70\%^{\text{Note 3}}$) Total of P05, P06, P10 to P16, P30, P31, P50, P51, P70 to P77,	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA			
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA			
			$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			-19.0	mA			
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA			
		(When duty ≤ 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-5.0	mA			
Іон2		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$			-29.0	mA			
	Іон2	Per pin for P20 to P27, P150 to P154	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			-0.1 ^{Note 2}	mA			
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \le AV_{\text{DD}} \le 3.6 \text{ V}$			-1.3	mA			

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and I_OH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Caution P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P140, P141	Vi = EV _{DD0}				1	μA
	ILIH2	P137, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	Ілн4	P20 to P27, P150 to P154	VI = AVDD				1	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P67, P70 to P77, P120, P140, P141	Vi = EVsso				-1	μA
	ILIL2	P137, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P20 to P27, P150 to P154	VI = AVss	VI = AVss			-1	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	Vi = EVsso, In input port		10	20	100	kΩ

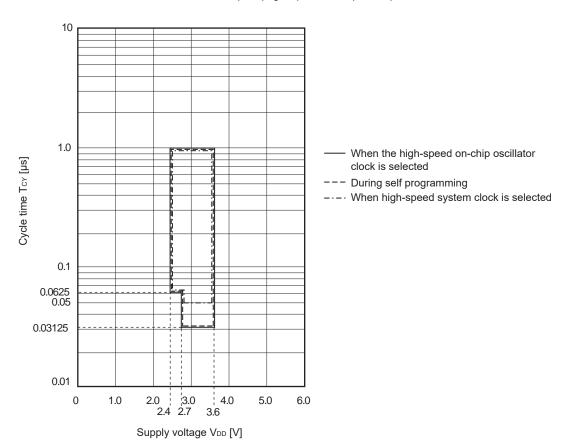
/**T** <u>0 \</u>0

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- <R> Notes 1. Current flowing to VDD.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing to the AVDD.
 - 8. Current flowing from the reference voltage source of A/D converter.
 - 9. Operation current flowing to the internal reference voltage.
 - **10.** Current flowing to the AVREFP.
 - **11.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 12. Current flowing only during data flash rewrite.
 - **13.** Current flowing only during self programming.

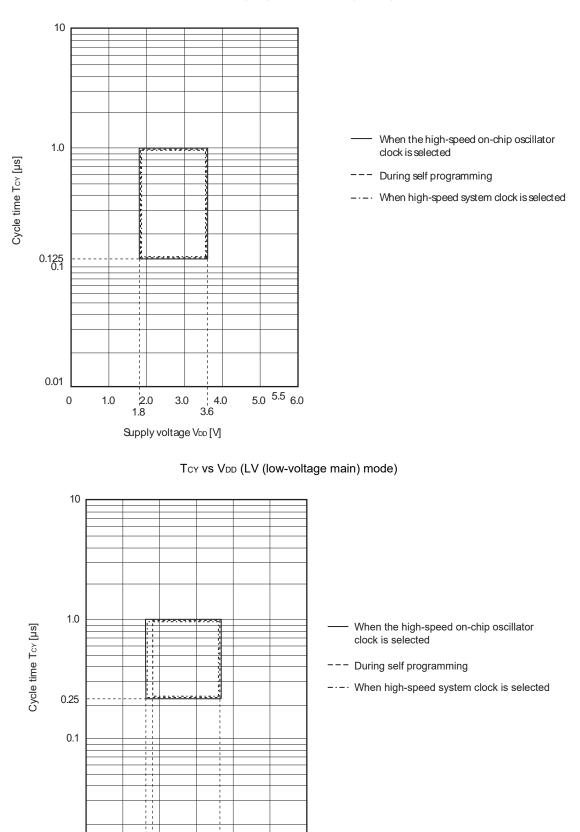
Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$



Note The following conditions are required for low-voltage interface when $EV_{DD0} < V_{DD}$. $1.8 V \le EV_{DD0} < 2.7 V$: MIN. 125 ns $1.6 V \le EV_{DD0} < 1.8 V$: MIN. 250 ns

Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKS0n bit of timer clock select register 0 (TPS0) and timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))


Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

<R>

TCY vs VDD (LS (low-speed main) mode)

0.01

0

2.0 1.6 1.8

3.0

Supply voltage VDD [V]

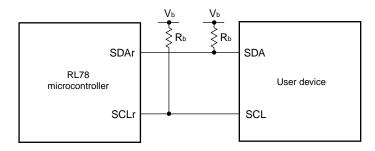
4.0

3.6

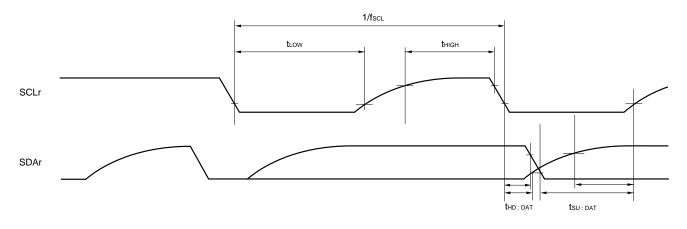
5.0

1.0

6.0


(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}C$, 1.6 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = $EV_{SS0} = 0$ V)

Parameter	Symbol	C	Condition	าร	HS	Note 1	LS	lote 2	LVN	ote 3	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 4}	t ксү2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≦ 3.6 V	16 MHz < fмск	8/fмск		-		-		ns
				$f_{MCK} ≤ 16 MHz$	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≦ 3.6 V		6/fмск		6/fмск		6/fмск		ns
					and		and		and		
					500ns		500ns		500ns		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≤ 3.6 V		6/fмск and		6/fмск and		6/fмск and		ns
					750ns		750ns		750ns		
		1.7 V ≤ EV _{DD0} ≤	≤ 3.6 V		6/fмск		6/fмск		6/fмск		ns
					and		and		and		
					1500ns		1500ns		1500ns		
		1.6 V ≤ EV _{DD0} ≤	≦ 3.6 V		-		6/fмск and		6/fмск and		ns
							1500ns		1500ns		
SCKp high-/low-level	tкн2,	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq$	3.6 V		tксү2/2		tксү2/2		tксү2/2		ns
width	tĸL2				-8		-8		8		
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le$	≦ 3.6 V		tксү2/2		tксү2/2		tксү2/2		ns
					-18		-18		-18		
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≦ 3.6 V		tксү2/2		tксү2/2		tксү2/2		ns
					-66		-66		-66		
		1.6 V ≤ EV _{DD0} ≤	≦ 3.6 V		-		tксү2/2 –66		tксү2/2 –66		ns
SIp setup time	tsik2	2.7 V ≤ EV _{DD0} ≤ 3.6 V			1/ f мск		_00 1/fмск		_00 1/fмск		ns
(to SCKp↑) ^{Note 5}	LOIKZ		20.0 V		+20		+30		+30		113
,		1.8 V ≤ EVDD0 ≤	≤ 3.6 V		1/fмск		1/fмск		1/fмск		ns
				+30		+30		+30			
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		1/fмск		1/fмск		1/fмск		ns	
					+40		+40		+40		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		-		1/fмск		1/fмск		ns	
					A.15		+40		+40		
SIp hold time (from SCKp↑) ^{Note 5}	tksi2	$1.8 V \le EV_{DD0} \le$	3.6 V		1/fмск +31		1/fмск +31		1/fмск +31		ns
		1.7 V ≤ EV _{DD0} ≤	36V		1/fмск+		1/fмск+		1/fмск+		ns
			0.0 1		250		250		250		110
		1.6 V ≤ EVDD0 ≤	≤ 3.6 V		_		1/fмск+		1/fмск+		ns
							250		250		
Delay time from SCKp \downarrow	tĸso2	C = 30 pF ^{Note 7}	2.7 V	$\leq EV_{DD0} \leq 3.6 V$		2/fмск		2/fмск		2/f мск	ns
to SOp output ^{Note 6}						+44		+110		+110	
			2.4 V	$\leq EV_{DD0} \leq 3.6 V$		2/fмск		2/fмск		2/fмск	ns
			4.011			+75		+110		+110	
			1.8 V :	$\leq EV_{DD0} \leq 3.6 V$		2/fмск +110		2/fмск +110		2/fмск +110	ns
			17V	≤ EV _{DD0} ≤ 3.6 V		2/fмск		2/fмск		2/fмск	ns
						+220		+220		+220	113
			1.6 V	$\leq EV_{DD0} \leq 3.6 V$		_		2/fмск		2/fмск	ns
								+220		+220	


(Note, Caution and Remark are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10)
 - **4.** IIC01, IIC11, and IIC21 cannot communicate at different potential. Use IIC00, IIC10, or IIC20 for communication at different potential.

- <R>
- (4) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ AV}, \text{AV}_{\text{SS} = 0 \text{ AV}, \text{AV}, \text{AV}, \text{AV}, \text{AV}_{\text{SS} = 0 \text{ AV}, \text{AV}, \text{AV}, \text{A$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	8		10 ^{Note 1}	
			$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8 ^{Note 2}			
Overall error ^{Note 3}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±7.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tсолу	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	3.3125			
		8-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25			
Zero-scale error ^{Note 3}	Ezs	12-bit resolution	$2.4~\text{V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~\text{V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	
Full-scale error ^{Note 3}	Ers	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	
Integral linearity error ^{Note 3}	ILE	12-bit resolution	$2.4~\text{V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~\text{V}$			±3.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Differential linearity error ^{Note 3}	DLE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN			0		AVREFP and EVDD0	V
		Interanal reference v $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$	oltage HS (high-speed main) mode)	V _{BGR} Note 4			V
		Temperature sensor (2.4 V \leq V _{DD} \leq 3.6 V,	output voltage HS (high-speed main) mode)	,	VTMPS25 ^{Note}	4	V

- Notes 1. Cannot be used for lower 2 bit of ADCR register
 - 2. Cannot be used for lower 4 bit of ADCR register
 - **3.** Excludes quantization error ($\pm 1/2$ LSB).
 - 4. See 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(6) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), target ANI pin: ANI0 to ANI12, ANI16 to ANI30

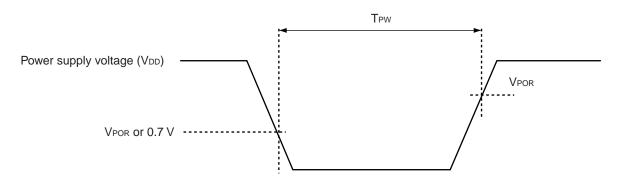
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD} \le \text{V}_{DD}, 1.6 \text{ V} \le \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ V}, \text{Reference voltage (+) = Internal reference voltage, Reference voltage (-) = AV}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8		bit	
Conversion time	t _{CONV}	8-bit resolution	16			μs
Zero-scale error ^{Note}	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error ^{Note}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note}	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AV _{REF(+)}	= Internal reference voltage (V _{BGR})	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		VBGR	V

Note Excludes quantization error ($\pm 1/2$ LSB).

2.6.2 Temperature sensor, internal reference voltage output characteristics

•		; (
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs


(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 3.6 V, V_{SS} = 0 V, HS (high-speed main) mode)

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode or if the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset before V_{DD} rises to V_{POR} after having fallen below 0.7 V.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(T _A = -40 to +85°C	, VPDR \leq VDD \leq 3.6	V, Vss = 0 V)
--------------------------------	------------------------------	---------------

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
		Power supply fall time	2.50	2.55	2.60	V	
	VLVD8	Power supply rise time	2.45	2.50	2.55	V	
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	lse width	t∟w		300			μs
Detection de	elay time					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: $V_{DD} = 2.7$ to 3.6 V@1 MHz to 32 MHz $V_{DD} = 2.4$ to 3.6 V@1 MHz to 16 MHz LS (low-speed main) mode: $V_{DD} = 1.8$ to 3.6 V@1 MHz to 8 MHz

LV (low-voltage main) mode: VDD = 1.6 to 3.6 V@1 MHz to 4 MHz

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target productsG:Industrial applicationsTA = -40 to +105°CR5F10EBAGNA, R5F10EBCGNA, R5F10EBDGNA, R5F10EBEGNAR5F10EGAGFB, R5F10EGCGFB, R5F10EGDGFB, R5F10EGEGFBR5F10EGAGNA, R5F10EGCGNA, R5F10EGDGNA, R5F10EGEGNAR5F10ELCGFB, R5F10ELDGFB, R5F10ELEGFB

- Cautions 1. The RL78/G1A has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0} or EV_{SS0} pin, replace EV_{DD0} with V_{DD}, or replace EV_{SS0} with V_{SS}.
 - Please contact Renesas Electronics sales office for derating of operation under T_A = +85°C to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- **Remark** When RL78/G1A is used in the range of $T_A = -40$ to +85°C, see 2. **ELECTRICAL SPECIFICATIONS** ($T_A = -40$ to +85°C).

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1.0		20.0	MHz
frequency (fx) ^{Note}		$2.4~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	1.0		16.0	
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. See AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- <R> Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Oscillators	Parameters		Conditions			MAX.	Unit
High-speed on-chip oscillator oscillation frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator oscillation frequency accuracy		+85 to +105 °C	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	-2		+2	%
		–20 to +85 °C	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	-1		+1	%
		–40 to –20 °C	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	-1.5		+1.5	%
Low-speed on-chip oscillator oscillation frequency	fı∟				15		kHz
Low-speed on-chip oscillator oscillation frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

Items	Symbol	Conditions			TYP.	MAX.	Uni
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$2.4~V \leq EV_{DD0} \leq 3.6~V$			-3.0 ^{Note 2}	r
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141 (When duty ≤ 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			-10.0	1
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	-
		Total of P05, P06, P10 to P16, P30,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			-19.0	_
		P31, P50, P51, P70 to P77, (When duty ≤ 70% ^{Note 3})	$2.4~V \leq EV_{DD0} < 2.7~V$			-10.0	
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$			-29.0	
	Іон2	Per pin for P20 to P27, P150 to P154	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			-0.1 ^{Note 2}	
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \le AV_{\text{DD}} \le 3.6~V$			-1.3	

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.

3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

Total output current of pins = (I_{OH} × 0.7)/(n × 0.01)
 <Example> Where n = 80% and I_{OH} = -10.0 mA
 Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) ≅ -8.7 mA

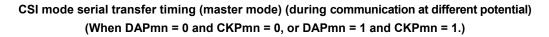
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

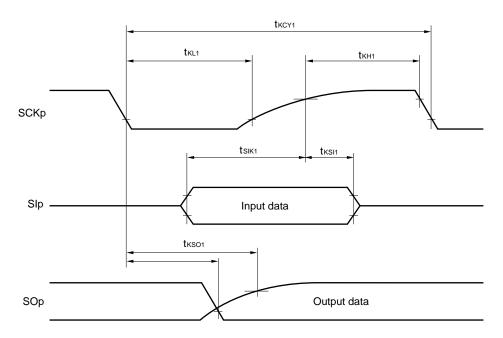
- Caution P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

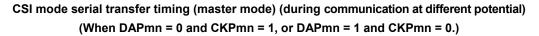
- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and data flash rewriting.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). Not including the current flowing into the RTC, 12-bit interval timer and watchdog timer
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

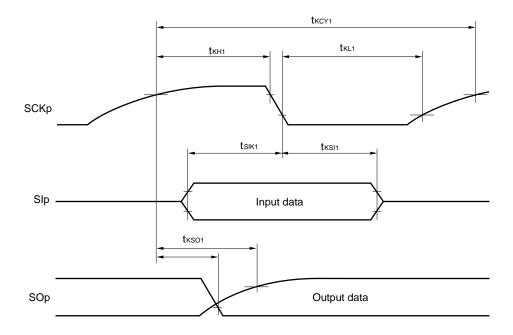
HS (high-speed main) mode: $V_{DD} = 2.7 V \text{ to } 3.6 V@1 \text{ MHz to } 32 \text{ MHz}$ $V_{DD} = 2.4 V \text{ to } 3.6 V@1 \text{ MHz to } 16 \text{ MHz}$

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C


(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
SCKp cycle time tkcr1				1000			ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	tkcy1 ≥ 4/fclk	2300			ns
SCKp high-level width	tкн1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 340			ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		tксү1/2 – 916			ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 — 36			ns
		$2.4 V ≤ EV_{DD0} < 3.3 V, 1.6 V ≤$ C _b = 30 pF, R _b = 5.5 kΩ	tксү1/2 – 100			ns	


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number , n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **3.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (m = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.6.4 LVD circuit characteristics

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
voltage			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		t∟w		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +105°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

Remark $V_{LVD (n-1)} > V_{LVDn}$: n = 3 to 7

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt & reset	VLVD5	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage		2.64	2.75	2.86	V	
mode	VLVD4		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVD3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 3.6 V@1 MHz to 32 MHz

VDD = 2.4 to 3.6 V@1 MHz to 16 MHz

3.6.5 Supply voltage rise slope characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	V/ms

Caution Be sure to maintain the internal reset state until VDD reaches the operating voltage range specified in 3.4 AC Characteristics, by using the LVD circuit or external reset pin.

