

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10egegfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G1A								
			25 pins	32 pins	48 pins	64 pins					
64 KB	4 KB	4 KB ^{Note}	R5F10E8E	R5F10EBE	R5F10EGE	R5F10ELE					
48 KB	4 KB	3 KB	R5F10E8D	R5F10EBD	R5F10EGD	R5F10ELD					
32 KB	4 KB	2 KB	R5F10E8C	R5F10EBC	R5F10EGC	R5F10ELC					
16 KB	4 KB	2 KB	R5F10E8A	R5F10EBA	R5F10EGA	_					

Note This is about 3 KB when the self-programming function and data flash function are used. (For details, see
 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C))

(1A = -40 10 + 65)	°C, 1.6 V ≤	$0 \vee \leq A \vee DD \leq \forall DD \leq 3.0 \vee, 1.0 \vee \leq E \vee DD \leq 3.0 \vee, VSS - E \vee SS0 - 0 \vee)$										
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit					
Output current, IoL1 Iow ^{Note 1}		Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141				20.0 ^{Note 2}	mA					
		Per pin for P60 to P63				15.0 ^{Note 2}	mA					
		Total of P00 to P04, P40 to P43, P120,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			15.0	mA					
		P130, P140, P141	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			9.0	mA					
		(when duty $\leq 70\%$	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			4.5	mA					
		Total of P05, P06, P10 to P16, P30, P31, P50, P51, P60 to P63, P70 to P77 (When duty $\leq 70\%^{Note 3}$)	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			35.0	mA					
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			20.0	mA					
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			10.0	mA					
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA					
IOL2		Per pin for P20 to P27, P150 to P154				0.4 ^{Note 2}	mA					
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			5.2	mA					

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVss0 and Vss pin.
 - **2.** However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IoL = 10.0 mA Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(T _A = –40 to	+85°C,	1.6 V ≤ EV					(2/3		
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 ^{Note 2}	HALT	HS (high-speed	fıн = 32 MHz ^{Note 4}	V _{DD} = 3.0 V		0.54	1.63	mA
current ^{Note 1}		mode	main) mode ^{Note 7}	fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.44	1.28	mA
				f⊮ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-speed	f⊮ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		270	530	μA
			main) mode ^{Note 7}		V _{DD} = 2.0 V		270	530	1
			LV (Low-voltage	fı⊢ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		435	640	μA
			main) mode ^{Note 7}		V _{DD} = 2.0 V		435	640	
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
	main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		0.45	1.17	1		
		f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA		
			LS (low-speed	V _{DD} = 3.0 V	Resonator connection		0.26	0.67	1
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
		main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		145	380	1	
			f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA	
				V _{DD} = 2.0 V	Resonator connection		145	380	1
			Subsystem clock	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			mode	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76]
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.38	1.17	μA
				T _A = +50°C	Resonator connection		0.57	1.36	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.52	1.97	μA
				T _A = +70°C	Resonator connection		0.71	2.16	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μA
				T _A = +85°C	Resonator connection		1.16	3.56	
	I _{DD3} ^{Note 6} STOP mode ^{Note 8}	T _A = -40°C	T _A = -40°C					μA	
		T _A = +25°C				0.23	0.50		
			T _A = +50°C				0.34	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	

 $40 t_{0} \pm 95\%$ $4 \in V < EV_{PP} < V_{PP} < 2 \in V_{PP} = EV_{PP} = 0.1/$ /**т**

(Notes and Remarks are listed on the next page.)

<R>

<R>

TCY vs VDD (LS (low-speed main) mode)

0.01

0

2.0 1.6 1.8

3.0

Supply voltage VDD [V]

4.0

3.6

5.0

1.0

6.0

2.5 Peripheral Functions Characteristics

AC Timing Test Points

Ин/Vон	\geq	Test points	<	

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to +85°C, 1.6 V $\leq EV_{DD0} \leq V_{DD} \leq$ 3.6 V, Vss = EVsso = 0 V)

Parameter	Symbol	Conditions	HS	HS ^{Note 1}		LS ^{Note 2}		lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 4}		$2.4~\text{V} \leq \text{EV}_{\text{DD}} \leq 3.6~\text{V}$		fмск/6		fмск/6		fмск/6	bps
_		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 6}$		5.3 ^{Note 5}		1.3		0.6	Mbps
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 3.6 \text{ V}$		fмск/6		fмск/6		f мск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 6}$		5.3 ^{Note 5}		1.3		0.6	Mbps
		$1.7~V \leq EV_{\text{DD}} \leq 3.6~V$		fмск/6		f мск/6		f мск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 6}$		5.3 ^{Note 5}		1.3 ^{Note 5}		0.6	Mbps
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 3.6 \text{ V}$		-		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 6}$		_		1.3 ^{Note 5}		0.6	Mbps

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode is 4800 bps.
- 5. The following conditions are required for low-voltage interface when $EV_{DD0} < V_{DD}$.
 - $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 2.6 Mbps
 - $1.8~V \leq EV_{\text{DD0}}$ < 2.4 V : MAX. 1.3 Mbps
 - $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$: MAX. 0.6 Mbps
- **6.** fclk in each operating mode is as below.
 - HS (high-speed main) mode: fclk = 32 MHz
 - LS (low-speed main) mode: fclk = 8 MHz
 - LV (low-voltage main) mode: fclk = 4 MHz
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11))

Parameter	Symbol	Conditions	HS ^{Note 1}		LS⁵	lote 2	LV ^{Note 3}		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 3.6 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	0	355	0	355	0	355	ns
		1.8 V ≤ EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} < 1.8 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{array}$	-	-	0	405	0	405	ns

(5) During communication at same potential (simplified I²C mode) (2/2) (T_A = -40 to +85°C, 1.6 V \leq EV_{DD} \leq V_{DD} \leq 3.6 V, V_{SS} = EV_{SS0} = 0 V)

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. The value must also be fcLK/4 or lower.
 - 5. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (Vbb tolerance (When 25- to 48-pin products)/EVbb tolerance (When 64-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1), h: POM number (h = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number, mn = 00 to 03, 10, 11)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output) (1/2)

Parameter	Symbol		Conditions				LS ^{Note 2}		LV ^{Note 3}		Unit
							MIN.	MAX.	MIN.	MAX.	
Transfer		Reception	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V},$			fмск/6		fмск/6		fмск/6	bps
rate ^{Note 4}	$1te^{Note 4} \qquad 2.3 \ V \leq V_b \leq 2.7 \ V$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 7}$		5.3		1.3		0.6	Mbps	
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$			fмск/6		fмск/6		fмск/6	bps
	$1.6 \text{ V} \leq \text{V}_b \leq$	$1.6~V \leq V_b \leq 2.0~V^{\text{Note 5}}$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 7}$		5.3 Note 6		1.3		0.6	Mbps	

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - **4.** Transfer rate in the SNOOZE mode is 4800 bps.
 - 5. Use it with $EV_{DD0} \ge V_b$.
 - 6. The following conditions are required for low-voltage interface when EVDD0 < VDD.
 - $2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$: MAX. 2.6 Mbps
 - $1.8~\text{V} \leq \text{EV}_{\text{DD0}}$ < 2.4 V : MAX. 1.3 Mbps
 - 7. fclk in each operating mode is as below.
 - HS (high-speed main) mode: fclk = 32 MHz
 - LS (low-speed main) mode: fclk = 8 MHz
 - LV (low-voltage main) mode: fcLK = 4 MHz
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number , n: Channel number (mn = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **3.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +85°C, 1.8 V ≤ EV_{DD0} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

Parameter	Symbol	Conc	ditions	HS	Note 1	LS⁵	lote 2	L۷	lote 3	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 4}	t ксү2	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V,$	24 MHz < fмск	20/fмск		-		-		ns
		$2.3 V \le V_b \le 2.7 V$	20 MHz < fмск≤24 MHz	16/fмск		-		-		ns
			16 MHz < fмск≤20 MHz	14/ f мск		_		_		ns
			8 MHz < fмск≤ 16 MHz	12/fмск		-		-		ns
			4 MHz < fмск≤8 MHz	8/fмск		16/fмск		-		ns
			fмcк≤4 MHz	6/fмск		10/f мск		10/fмск		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	24 MHz < fмск	48/f мск		_		_		ns
		$1.6 V \le V_b \le 2.0 V^{\text{Note 5}}$	20 MHz < fмск≤24 MHz	36/f мск		-		-		ns
			16 MHz < fмск≤20 MHz	32/f мск		-		-		ns
			8 MHz < fмск≤ 16 MHz	26/fмск		-		-		ns
			4 MHz < fмск≤8 MHz	16/ f мск		16/fмск		-		ns
			fмck≤4 MHz	10/ f мск		10/fмск		10/fмск		ns
SCKp high-/low-level width	tкн2, t _{KL2}	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 3.6 \text{ V}$	$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V \leq EV_{DD0} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V^{Note} $_5$		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 6}	tsık2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$, $2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ EV _{DD0} < 3.3 V ₅	, $1.6~V \le V_b \le 2.0~V^{\text{Note}}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 6}	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 7}	tkso2	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 3.6 \ V \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k} \end{array}$	2.7 V \leq EV _{DD0} \leq 3.6 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 30 pF, R _b = 2.7 k Ω		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		1.8 V \leq EV _{DD0} < 3.3 V s, C _b = 30 pF, R _b = 5.5 k	$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- **3.** LV is condition of LV (low-voltage main) mode.
- **4.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
- **5.** Use it with $EV_{DD0} \ge V_b$.
- 6. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 7. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02, 10))
 - **4.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Parameter	Symbol	Conditions	HS	lote 1	LS ^{Note 2}		LV ^{Note 3}		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 ^{Note} 6		1/f _{мск} + 190 ^{Note 6}		1/f _{мск} + 190 ^{Note} 6		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 ^{Note} 6		1/f _{мск} + 190 ^{Note 6}		1/f _{мск} + 190 ^{Note} 6		ns
		$ \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 5}}, \\ C_b &= 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split} $	1/f _{мск} + 190 ^{Note} 6		1/f _{мск} + 190 ^{Note 6}		1/f _{мск} + 190 ^{Note} 6		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
			0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V. V_{SS} = EV_{SS0} = 0 V)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. The value must also be $f_{CLK}/4$ or lower.
- **5.** Use it with $EV_{DD0} \ge V_b$.
- 6. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

IICA serial transfer timing

2.9 Dedicated Flash Memory Programmer Communication (UART)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Transfer rate		During flash memory programming	115.2 k		1 M	bps			

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

2.10 Timing Specs for Switching Flash Memory Programming Modes

(T _A = -40 to +85°C	$1.8 V \leq EV_{DD0} \leq V_{I}$	DD \leq 3.6 V, Vss =	EVsso = 0 V)
--------------------------------	----------------------------------	------------------------	--------------

	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
	How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
	How long from when the TOOL0 pin is placed at the low level until a external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
<r></r>	How long the TOOL0 pin must be kept at the low level after an external reset ends (except flash firmware processing time)	tнD	POR and LVD reset must end before the external reset ends.	1			ms

<R>

- <1> The low level is input to the TOOL0 pin.
- <2> The pins reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - t_{SU} : How long from when the TOOL0 pin is placed at the low level until a external reset ends
- t_{HD}: How long to keep the TOOL0 pin at the low level from when the external resets end (except flash firmware processing time)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$ (3/3)							
Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
Low-speed on-chip oscillator operating current	_{FIL} Note 1			0.20		μA	
RTC operating current	I _{RTC} ^{Notes 1, 2, 3}						μA
12-bit interval timer operating current	IT ^{Notes 1, 2, 4}						μA
Watchdog timer operating current	_{WDT} Notes 1, 2, 5	fı∟ = 15 kHz		0.22		μA	
A/D converter operating current	I _{ADC} Notes 6, 7	AV _{DD} = 3.0 V, W		420	720	μA	
AV _{REF(+)} current	IAVREF ^{Note 8}	AV _{DD} = 3.0 V, ADREFP1 = 0, ADREFP0 = 0 ^{Note 7}			14.0	25.0	μA
		AV _{REFP} = 3.0 V, ADREFP1 = 0, ADREFP0 = 1 ^{Note 10}			14.0	25.0	μA
		ADREFP1 = 1, ADREFP0 = 0 ^{Note 1}			14.0	25.0	μA
A/D converter reference voltage current	ADREF ^{Notes 1, 9}	V _{DD} = 3.0 V			75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}	V _{DD} = 3.0 V			75.0		μA
LVD operating current	LVD ^{Notes 1, 11}				0.08		μA
BGO operating current	BGO ^{Notes 1, 12}				2.5	12.2	mA
Self-programming operating current	FSP ^{Notes 1, 13}				2.5	12.2	mA
SNOOZE operating	Isnoz	A/D converter operation (AV _{DD} = 3.0 V)	The mode is performed ^{Notes 1, 14}		0.50	1.10	mA
current			During A/D conversion ^{Note 1}		0.60	1.34	mA
			During A/D conversion ^{Note 7}		420	720	μA
		CSI/UART opera		0.70	1.54	mA	

(**T** $40 + 0 \pm 105^{\circ}$ $24 \times 5 \times 50^{\circ}$ EV/a

(Notes and Remarks are listed on the next page.)

- <R> Notes 1. Current flowing to VDD.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
 - **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing to the AVDD.
 - 8. Current flowing from the reference voltage source of A/D converter.
 - 9. Operation current flowing to the internal reference voltage.
 - **10.** Current flowing to the AVREFP.
 - **11.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 12. Current flowing only during data flash rewrite.
 - **13.** Current flowing only during self programming.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output) (1/2) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = EVsso = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Transfer rate ^{Note 1}		Reception	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$				fмск/12	bps
				Theoretical value of the maximum transfer rate fclk = 32 MHz, fMCK = fclk			2.6	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$				fмск/12	bps
				Theoretical value of the maximum transfer rate f _{CLK} = 32 MHz, f _{MCK} = f _{CLK}			2.6 ^{Note 2}	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps.

The following conditions are required for low-voltage interface when EV_{DD0} < V_{DD}.
 2.4 V ≤ EV_{DD0} < 2.7 V : MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10, 11)

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (m = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10)
 - **4.** IIC01, IIC11, and IIC21 cannot communicate at different potential. Use IIC00, IIC10, or IIC20 for communication at different potential.

3.5.2 Serial interface IICA

(1) I^2C standard mode, fast mode

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Parameter	Symbol	Conditions		Standard Mode		Fast Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fc∟κ ≥ 3.5 MHz	$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$			0	400	kHz
		Normal mode: fc∟ĸ ≥ 1 MHz	$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$	0	100			kHz
Setup time of restart condition	tsu:sta			4.7		0.6		μs
Hold time ^{Note 1}	thd:sta			4.0		0.6		μs
Hold time when SCLA0 = "L"	tLOW			4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн			4.0		0.6		μs
Data setup time (reception)	tsu:dat			250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat			0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto			4.0		0.6		μs
Bus-free time	t BUF			4.7		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ } R_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ } pF, \mbox{ } R_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

