

Welcome to E-XFL.COM

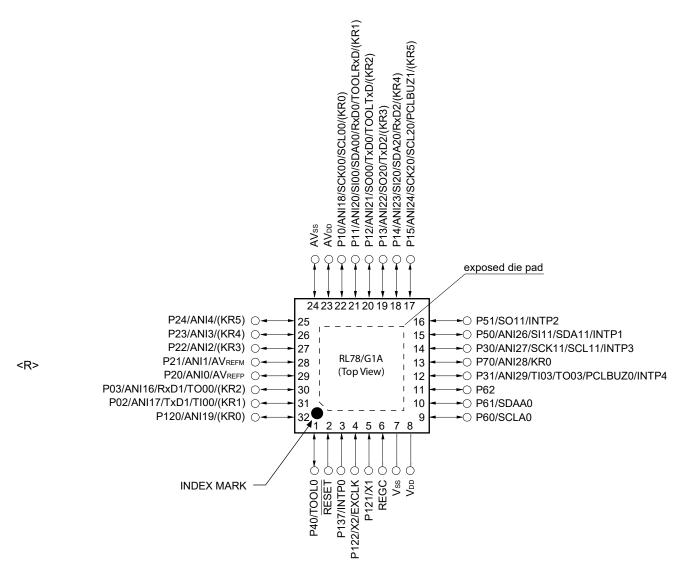
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

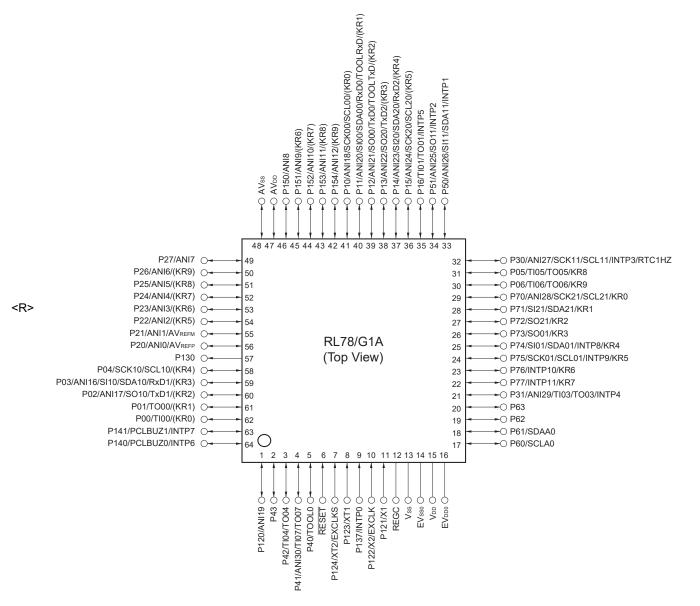

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 28x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10elegfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 32-pin products

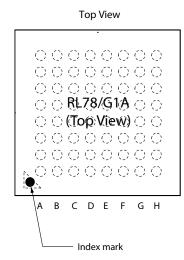
• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

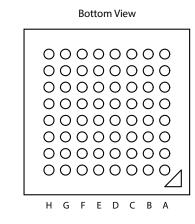

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.
- <R>

1.3.4 64-pin products


• 64-pin plastic LFQFP (10×10 mm, 0.5 mm pitch)



Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EVss0pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

• 64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)

Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	P05/TI05/TO05/KR8	C1	P51/ANI25/SO11 /INTP2	E1	P153/ANI11/(KR8)	G1	AVdd
A2	P30/ANI27/SCK11 /SCL11/INTP3 /RTC1HZ	C2	P71/SI21/SDA21/KR1	E2	P154/ANI12/(KR9)	G2	P25/ANI5/(KR8)
A3	P70/ANI28/SCK21 /SCL21/KR0	C3	P74/SI01/SDA01 /INTP8/KR4	E3	P10/ANI18/SCK00 /SCL00/(KR0)	G3	P24/ANI4/(KR7)
A4	P75/SCK01/SCL01 /INTP9/KR5	C4	P16/TI01/TO01/INTP5	E4	P11/ANI20/SI00 /SDA00/RxD0 /TOOLRxD/(KR1)	G4	P22/ANI2/(KR5)
A5	P77/INTP11/KR7	C5	P15/ANI24/SCK20 /SCL20/(KR5)	E5	P03/ANI16/SI10 /SDA10/RxD1/(KR3)	G5	P130
A6	P61/SDAA0	C6	P63	E6	P41/ANI30/TI07/TO07	G6	P02/ANI17/SO10/TxD1 /(KR2)
A7	P60/SCLA0	C7	Vss	E7	RESET	G7	P00/TI00/(KR0)
A8	EVDD0	C8	P121/X1	E8	P137/INTP0	G8	P124/XT2/EXCLKS
B1	P50/ANI26 /SI11 /SDA11/INTP1	D1	P13/ANI22/SO20 /TxD2/(KR3)	F1	P150/ANI8	H1	AVss
B2	P72/SO21/KR2	D2	P06/TI06/TO06/KR9	F2	P151/ANI9/(KR6)	H2	P27/ANI7
B3	P73/SO01/KR3	D3	P12/ANI21/SO00 /TxD0/TOOLTxD/(KR2)	F3	P152/ANI10/(KR7)	H3	P26/ANI6/(KR9)
B4	P76/INTP10/KR6	D4	P14/ANI23/SI20/ SDA20/RxD2/(KR4)	F4	P21/ANI1/AVREFM	H4	P23/ANI3/(KR6)
B5	P31/ANI29/TI03/TO03 /INTP4	D5	P42/TI04/TO04	F5	P04/SCK10/SCL10 /(KR4)	H5	P20/ANI0/AVREFP
B6	P62	D6	P40/TOOL0	F6	P43	H6	P141/PCLBUZ1/INTP7
B7	Vdd	D7	REGC	F7	P01/TO00/(KR1)	H7	P140/PCLBUZ0/INTP6
B8	EVsso	D8	P122/X2/EXCLK	F8	P123/XT1	H8	P120/ANI19

8

7

6

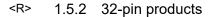
5

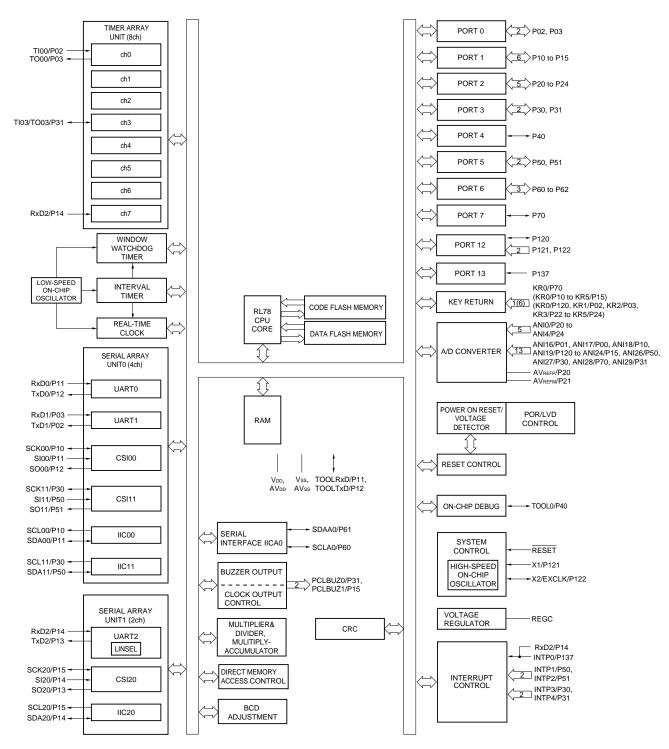
4

3

2

1


Cautions 1. Make EVsso pin the same potential as Vss pin.


- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

<R>

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2.3 DC Characteristics

2.3.1 Pin characteristics

(T _A = -40 to +85°C	, 1.6 V ≤ A	$V_{DD} \leq V_{DD} \leq 3.6 \text{ V}, 1.6 \text{ V} \leq \text{EV}_{DD0} \leq \text{V}$	DD \leq 3.6 V, Vss = EVs	sso = 0 V)		(1/5)
Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$1.6~V \leq EV_{DD0} \leq 3.6~V$			-10.0 ^{Note 2}	mA
		Total of P00 to P04, P40 to P43, P120,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			-10.0	mA
		P130, P140, P141	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
		(When duty ≤ 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P16, P30,	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			-19.0	mA
		P31, P50, P51, P70 to P77,	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA
		(When duty ≤ 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-10.0 ^{Note 2} -10.0 -5.0 -2.5 -19.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} \leq 3.6~V$			-29.0	mA
Іона Ре		Per pin for P20 to P27, P150 to P154	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \le AV_{\text{DD}} \le 3.6 \text{ V}$			-1.3	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and I_OH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Caution P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.5 Peripheral Functions Characteristics

AC Timing Test Points

Ин/Vон	\geq	Test points	<		
$/ \downarrow VIL/VOL$				VIL/VOL $\neq $	

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to +85°C, 1.6 V $\leq EV_{DD0} \leq V_{DD} \leq$ 3.6 V, Vss = EVsso = 0 V)

Parameter	Symbol	Conditions	HS	Note 1	LS	Note 2	LV	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 4}		$2.4~V \leq EV_{\text{DD}} \leq 3.6~V$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 6}		5.3 ^{Note 5}		1.3		0.6	Mbps
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 3.6 \text{ V}$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 6}		5.3 ^{Note 5}		1.3		0.6	Mbps
		$1.7~V \le EV_{\text{DD}} \le 3.6~V$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 6}$		5.3 ^{Note 5}		1.3 ^{Note 5}		0.6	Mbps
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 3.6 \text{ V}$		-		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 6}$		_		1.3 ^{Note 5}		0.6	Mbps

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode is 4800 bps.
- 5. The following conditions are required for low-voltage interface when $EV_{DD0} < V_{DD}$.
 - $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 2.6 Mbps
 - $1.8~V \leq EV_{\text{DD0}}$ < 2.4 V : MAX. 1.3 Mbps
 - $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$: MAX. 0.6 Mbps
- **6.** fclk in each operating mode is as below.
 - HS (high-speed main) mode: fclk = 32 MHz
 - LS (low-speed main) mode: fclk = 8 MHz
 - LV (low-voltage main) mode: fclk = 4 MHz
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}C$, 1.6 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = $EV_{SS0} = 0$ V)

Parameter	Symbol	C	Condition	าร	HS	Note 1	LS	lote 2	LVN	ote 3	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 4}	t ксү2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≦ 3.6 V	16 MHz < fмск	8/fмск		-		-		ns
				$f_{MCK} ≤ 16 MHz$	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≦ 3.6 V		6/fмск		6/fмск		6/fмск		ns
					and		and		and		
					500ns		500ns		500ns		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≤ 3.6 V		6/fмск and		6/fмск and		6/fмск and		ns
					750ns		750ns		750ns		
		1.7 V ≤ EV _{DD0} ≤	≤ 3.6 V		6/fмск		6/fмск		6/fмск		ns
					and		and		and		
					1500ns		1500ns		1500ns		
		1.6 V ≤ EV _{DD0} ≤	≦ 3.6 V		-		6/fмск and		6/fмск and		ns
							1500ns		1500ns		
SCKp high-/low-level	tкн2,	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq$	3.6 V		tксү2/2		tксү2/2		tксү2/2		ns
width	tĸL2				-8		-8		8		
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le$	≦ 3.6 V		tксү2/2		tксү2/2		tксү2/2		ns
					-18		-18		-18		
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$			tксү2/2		tксү2/2		tксү2/2		ns
		1.6 V ≤ EV _{DD0} ≤ 3.6 V			-66		-66		-66		
		1.6 V ≤ EV _{DD0} ≤	≦ 3.6 V		-		tксү2/2 –66		tксү2/2 –66		ns
SIp setup time	tsik2	27V< EVppq <	(36V		1/fмск		_00 1/fмск		_00 1/fмск		ns
(to SCKp↑) ^{Note 5}	LOIKZ	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$			+20		+30		+30		115
,					1/fмск		1/fмск		1/fмск		ns
					+30		+30		+30		
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≦ 3.6 V		1/fмск		1/fмск		1/fмск		ns
					+40		+40		+40		
		$1.6 V \le EV_{DD0} \le$	≦ 3.6 V		-		1/fмск		1/fмск		ns
					A.15		+40		+40		
SIp hold time (from SCKp↑) ^{Note 5}	tksi2	$1.8 V \le EV_{DD0} \le$	3.6 V		1/fмск +31		1/fмск +31		1/fмск +31		ns
		1.7 V ≤ EV _{DD0} ≤	36V		1/fмск+		1/fмск+		1/fмск+		ns
			0.0 1		250		250		250		110
		1.6 V ≤ EVDD0 ≤	≤ 3.6 V		_		1/fмск+		1/fмск+		ns
							250		250		
Delay time from SCKp \downarrow	tĸso2	C = 30 pF ^{Note 7}	2.7 V	$\leq EV_{DD0} \leq 3.6 V$		2/fмск		2/fмск		2/f мск	ns
to SOp output ^{Note 6}						+44		+110		+110	
			2.4 V	$\leq EV_{DD0} \leq 3.6 V$		2/fмск		2/fмск		2/fмск	ns
						+75		+110		+110	
			1.8 V :	$\leq EV_{DD0} \leq 3.6 V$		2/fмск +110		2/fмск +110		2/fмск +110	ns
			17V	≤ EV _{DD0} ≤ 3.6 V		2/fмск		2/fмск		2/fмск	ns
						+220		+220		+220	113
			1.6 V	$\leq EV_{DD0} \leq 3.6 V$		_		2/fмск		2/fмск	ns
								+220		+220	

(Note, Caution and Remark are listed on the next page.)

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS [№]	ote 1	LS [№]	ote 2	LV ^{NC}	ote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle time	t ксү1	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	tксү1 ≥ 2/f с∟к	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}, 2.3 \text{ V} \\ C_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega \end{array}$	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120		ns	
SCKp low-level width	tĸ∟1	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 3.6 \mbox{ V}, 2.3 \mbox{ V} \\ C_b = 20 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns	
SIp setup time (to SCKp↑) ^{Note 4}	tsik1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V_s$	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V$,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 3.6 \mbox{ V}, 2.3 \mbox{ V} \\ C_b = 20 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	$V \le V_b \le 2.7 V$,		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 5}	tsik1	$\begin{array}{l} 2.7 \ V \leq E V_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V$,	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 5}	tksi1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le V_b \le 2.7 V$,	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 5}	tkso1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \ 2.3 \ V \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \leq V_b \leq 2.7 V$,		10		10		10	ns

($T_{A} = -40$ to +85°C 2	$.7 V \leq EV_{DD0} \leq V_{DD} \leq 3.6$	$V_{SS} = FV_{SS0} = 0 V$
۰.	1A = -40 10 0000, 2		v, voo – Lvoou – U vj

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 5. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

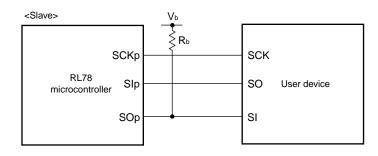
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

<R>

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +85°C, 1.8 V $\leq EV_{DD0} \leq V_{DD} \leq 3.6$ V, Vss = EVss0 = 0 V)

Parameter	Symbol	Cond	Conditions		Note 1	LS	lote 2	L۷	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	l	
SCKp cycle time ^{Note 4}	tксү2	$2.7~V \leq EV_{DD0} \leq 3.6~V,$	24 MHz < fмск	20/fмск		-		-		ns
		$2.3V{\leq}V_b{\leq}2.7V$	20 MHz < fмск≤24 MHz	16/ f мск		-		-		ns
			16 MHz < fмск≤20 MHz	14/ f мск		_		-		ns
			8 MHz < fмск≤ 16 MHz	12/fмск		-		-		ns
			4 MHz < fмck≤8 MHz	8/f мск		16/fмск		_		ns
			fмск≤4 MHz	6/fмск		10/f мск		10/f мск		ns
		$1.8 V \le EV_{DD0} < 3.3 V$,	24 MHz < fмск	48/f мск		_		_		ns
		$1.6 \ V \le V_b \le 2.0 \ V^{\text{Note 5}}$	20 MHz < fмск≤24 MHz	36/f мск		_		_		ns
			16 MHz < fмск≤20 MHz	32/f мск		-		-		ns
			8 MHz < fмск≤ 16 MHz	26/ f мск		_		_		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/ f мск		16/fмск		-		ns
			fмck ≤ 4 MHz	10/ f мск		10/f мск		10/f мск		ns
SCKp high-/low-level width	tкн2, t _{KL2}	$2.7~V \leq EV_{DD0} \leq 3.6~V$, 2.3 V \le Vb \le 2.7 V	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V ≤ EV _{DD0} < 3.3 V ₅	, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note}}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 6}	tsıĸ2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$, 2.3 V \le Vb \le 2.7 V	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ EV _{DD0} < 3.3 V ₅	, 1.6 V \le V_b \le 2.0 V^{Note}	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Slp hold time (from SCKp↑) ^{Note 6}	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 7}	tkso2	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		1.8 V \leq EV _{DD0} < 3.3 V 5, C _b = 30 pF, R _b = 5.5 k	$V_{\rm b} \le V_{\rm b} \le 2.0 \ V^{\rm Note}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. HS is condition of HS (high-speed main) mode.


- 2. LS is condition of LS (low-speed main) mode.
- **3.** LV is condition of LV (low-voltage main) mode.
- **4.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
- **5.** Use it with $EV_{DD0} \ge V_b$.
- 6. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 7. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

<R>

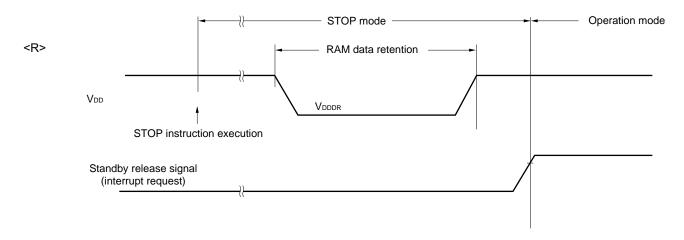
CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02, 10))
 - **4.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode) (1/2) (T_A = -40 to +85°C, 1.8 V \leq EV_{DD0} \leq V_{DD} \leq 3.6 V, Vss = EV_{SS0} = 0 V)

Parameter	Symbol	Conditions	HS	Note 1	LS	Note 2	L۷	Note 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		1000 ^{Note 4}		300 ^{Note} 4		300 ^{Note} 4	kHz
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 ^{Note} 4		300 ^{Note} 4		300 ^{Note} 4	kHz
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V^{\text{Note 5}}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split} $		300 ^{Note} 4		300 ^{Note} 4		300 ^{Note} 4	kHz
Hold time when SCLr = "L"	SCLr = "L" tLow $2.7 V \le EV_{DD0} \le 3$ $2.3 V \le V_b \le 2.7 V$ $C_b = 50 \text{ pF, } R_b = 2$		475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_{b} \leq 2.0 \ V^{Note \ 5}, \\ & C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	600		610		610		ns
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V^{\text{Note 5}}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split} $	610		610		610		ns

(Notes, Caution and Remarks are listed on the next page.)



<R> 2.7 RAM Data Retention Characteristics

<R> (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		3.6	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

<R> 2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclк	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2}	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 3}$	1,000			Times
Number of data flash rewrites ^{Notes 1, 2}		Retained for 1 years T _A = $25^{\circ}C^{Note 3}$		1,000,000		
		Retained for 5 years $T_A = 85^{\circ}C^{Note 3}$	100,000			
		Retained for 20 years $T_A = 85^{\circ}C^{Note 3}$	10,000			

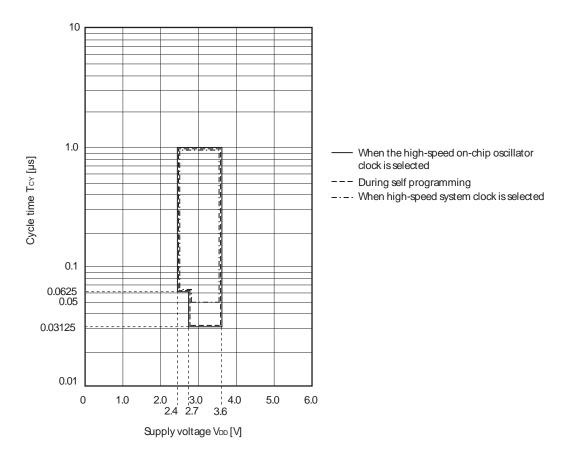
$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le V_{DD} \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

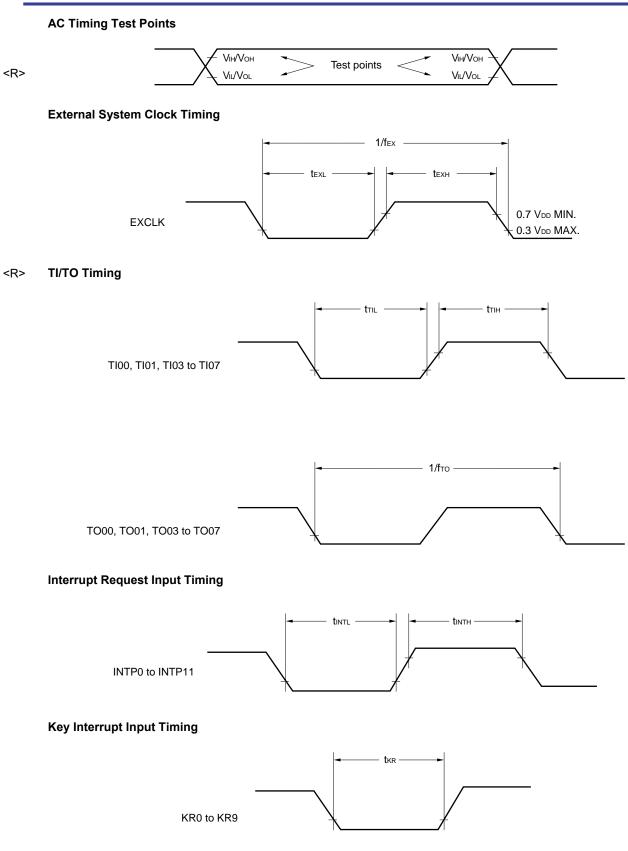
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$								(5/
Items	Symbol	Conditio	Conditions			TYP.	MAX.	Unit
Input leakage current, high	Ilih1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P140, P141	VI = EVDDO				1	μA
	Ілна	P137, RESET	$V_I = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	Ілн4	P20 to P27, P150 to P154	$V_I = AV_{DD}$				1	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P67, P70 to P77, P120, P140, P141	VI = EVsso				-1	μA
	ILIL2	P137, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	Ilil4	P20 to P27, P150 to P154	VI = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	Vi = EVsso, In input port		10	20	100	kΩ


Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

<R>

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +105°C, 2.4 V ≤ EV_{DD0} ≤ V_{DD} ≤ 3.6 V, V_{SS} = EV_{SS0} = 0 V)

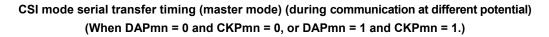
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time ^{Note 1}	t ксү2	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$	16 MHz < fмск	16/f мск			ns
			fмск ≤ 16 MHz	12/f мск			ns
		$2.4~V \leq EV_{DD0} \leq 3.6~V$		12/f _{мск} and 1000			ns
SCKp high-/low-level width	t _{кн2} ,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$		tксү2/2–14			ns
	tĸ∟2	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$		tксү2/2–16			ns
SIp setup time	tsik2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$,	1/fмск + 40			ns
(to SCKp↑) ^{Note 2}		$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$	1	1/fмск + 60			ns
SIp hold time	tKSI2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}$		1/fмск+62			ns
(from SCKp↑) ^{Note 2}		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	1	1/fмск+62			ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$2.7~V \leq EV_{\text{DD0}} \leq 3.6~V$			2/fмск+66	ns
SOp output ^{Note 3}			$2.4~V \leq EV_{\text{DD0}} \leq 3.6~V$			2/fмск+113	ns

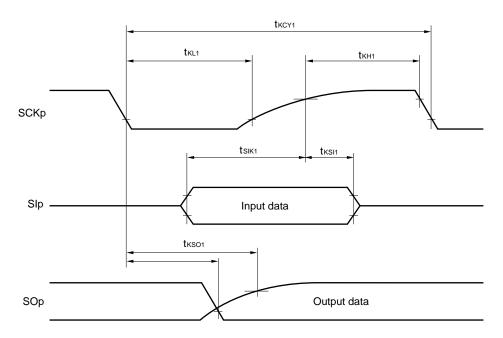
Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

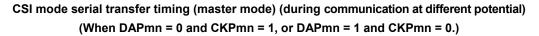
- When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SOp output lines.

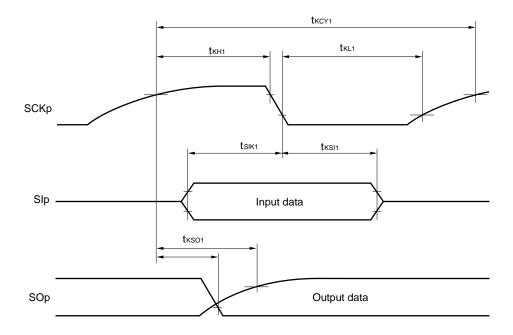
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),


g: PIM number (g = 0, 1)


2. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,


n: Channel number (mn = 00 to 03, 10, 11))

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (m = 00, 02, 10), g: PIM and POM number (g = 0, 1)
 - **2.** CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8) Communication at different potential (1.8 V, 2.5 V) (simplified l^2C mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1200		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:2.7} \begin{split} 2.7 \ V &\leq E V_{DD0} \leq 3.6 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} \leq 3.6 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$	1830		ns

(Notes, Caution and Remarks are listed on the next page.)

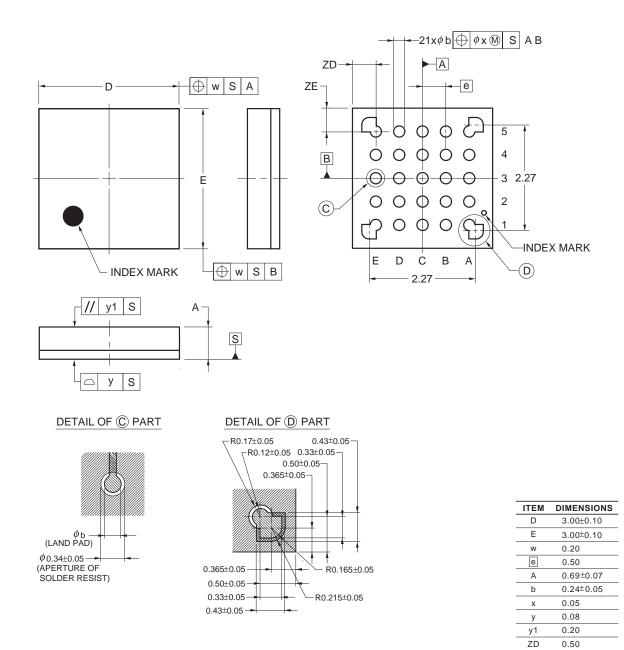
- <R>
- (3) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI30, interanal reference voltage, temperature sensor output voltage

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
Overall error ^{Note 1}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±7.0	LSB
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
Zero-scale error ^{Note 1}	Ezs	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	LSB
Full-scale error ^{Note 1}	Ers	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
Integral linearity error ^{Note 1}	ILE	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB
Differential linearity error ^{Note 1}	DLE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
Analog input voltage	Vain			0.		AVREFP and EVDD0	V
		Interanal reference voltage $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{HS} \text{ (high-speed main) mode)}$		V _{BGR} Note 2			V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 3.6 V, HS (high-speed main) mode)		V _{TMPS25} Note 2			V

Notes 1. Excludes quantization error (±1/2 LSB).

2. See 3.6.2 Temperature sensor, internal reference voltage output characteristics.


4. PACKAGE DRAWINGS

4.1 25-pin products

R5F10E8AALA, R5F10E8CALA, R5F10E8DALA, R5F10E8EALA

<r></r>	JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]	
	P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-3	0.01	

Unit: mm

© 2014 Renesas Electronics Corporation. All rights reserved.

ZE

0.50

