

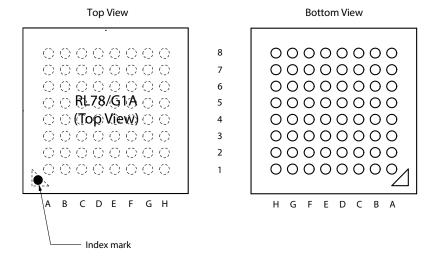
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 28x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10elegfb-x0

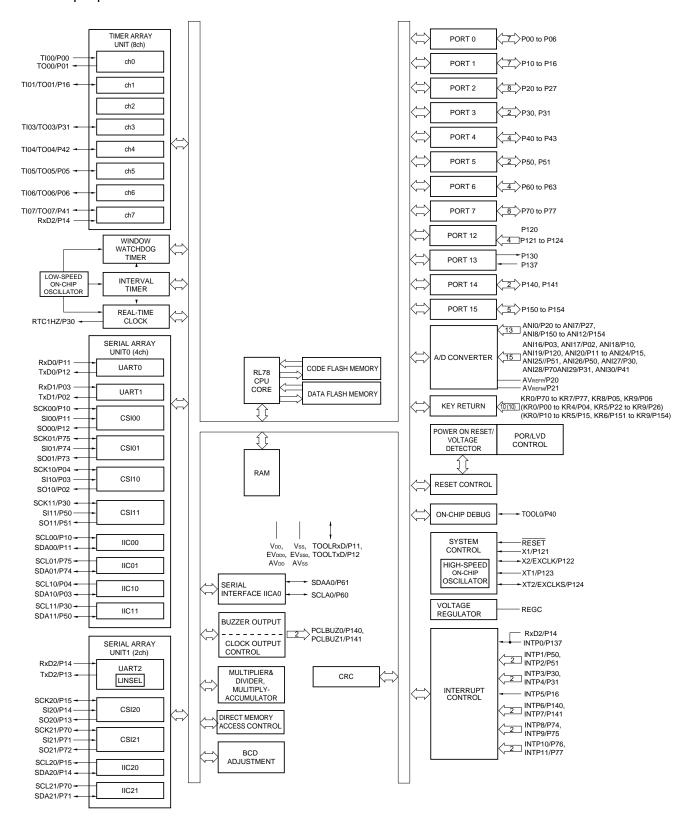

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G1A 1. OUTLINE

• 64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)

<R>


Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	P05/TI05/TO05/KR8	C1	P51/ANI25/SO11 /INTP2	E1	P153/ANI11/(KR8)	G1	AVDD
A2	P30/ANI27/SCK11 /SCL11/INTP3 /RTC1HZ	C2	P71/SI21/SDA21/KR1	E2	P154/ANI12/(KR9)	G2	P25/ANI5/(KR8)
A3	P70/ANI28/SCK21 /SCL21/KR0	C3	P74/SI01/SDA01 /INTP8/KR4	E3	P10/ANI18/SCK00 /SCL00/(KR0)	G3	P24/ANI4/(KR7)
A4	P75/SCK01/SCL01 /INTP9/KR5	C4	P16/TI01/TO01/INTP5	E4	P11/ANI20/SI00 /SDA00/RxD0 /TOOLRxD/(KR1)	G4	P22/ANI2/(KR5)
A5	P77/INTP11/KR7	C5	P15/ANI24/SCK20 /SCL20/(KR5)	E5	P03/ANI16/SI10 /SDA10/RxD1/(KR3)	G5	P130
A6	P61/SDAA0	C6	P63	E6	P41/ANI30/TI07/TO07	G6	P02/ANI17/SO10/TxD1 /(KR2)
A7	P60/SCLA0	C7	Vss	E7	RESET	G7	P00/TI00/(KR0)
A8	EV _{DD0}	C8	P121/X1	E8	P137/INTP0	G8	P124/XT2/EXCLKS
B1	P50/ANI26 /SI11 /SDA11/INTP1	D1	P13/ANI22/SO20 /TxD2/(KR3)	F1	P150/ANI8	H1	AVss
B2	P72/SO21/KR2	D2	P06/TI06/TO06/KR9	F2	P151/ANI9/(KR6)	H2	P27/ANI7
ВЗ	P73/SO01/KR3	D3	P12/ANI21/SO00 /TxD0/TOOLTxD/(KR2)	F3	P152/ANI10/(KR7)	H3	P26/ANI6/(KR9)
B4	P76/INTP10/KR6	D4	P14/ANI23/SI20/ SDA20/RxD2/(KR4)	F4	P21/ANI1/AVREFM	H4	P23/ANI3/(KR6)
B5	P31/ANI29/TI03/TO03 /INTP4	D5	P42/TI04/TO04	F5	P04/SCK10/SCL10 /(KR4)	H5	P20/ANI0/AVREFP
B6	P62	D6	P40/TOOL0	F6	P43	H6	P141/PCLBUZ1/INTP7
B7	V _{DD}	D7	REGC	F7	P01/TO00/(KR1)	H7	P140/PCLBUZ0/INTP6
B8	EVsso	D8	P122/X2/EXCLK	F8	P123/XT1	H8	P120/ANI19

- Cautions 1. Make EVsso pin the same potential as Vss pin.
 - 2. Make V_{DD} pin the potential that is higher than EV_{DD0} pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RL78/G1A 1. OUTLINE

1.5.4 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}. \ 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}. \text{ Vss} = \text{EV}_{SS0} = 0 \text{ V})$ <R>

$(T_A = -40 \text{ to } +85^{\circ}\text{C})$, 1.6 V ≤ EVDD	$00 \le V_{DD} \le 3.6 V$	Vss = EVss0 = 0 V)				(3/3
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1				0.20		μΑ
RTC operating current	IRTC Notes 1, 2, 3				0.02		μА
12-bit interval timer operating current	I _{IT} Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	_{WDT} Notes 1, 2, 5	f∟ = 15 kHz			0.22		μА
A/D converter operating current	ADC Notes 6, 7	AV _{DD} = 3.0 V, W	hen conversion at maximum speed		420	720	μА
AV _{REF(+)} current	I _{AVREF} Note 8	AV _{DD} = 3.0 V, A[DREFP1 = 0, ADREFP0 = 0 ^{Note 7}		14.0	25.0	μА
		AV _{REFP} = 3.0 V, A	ADREFP1 = 0, ADREFP0 = 1 ^{Note 10}		14.0	25.0	μА
		ADREFP1 = 1, A	ADREFP0 = 0 ^{Note 1}		14.0	25.0	μА
A/D converter reference voltage current	ADREF Notes 1, 9	V _{DD} = 3.0 V			75.0		μΑ
Temperature sensor operating current	TMPNote 1	V _{DD} = 3.0 V			75.0		μΑ
LVD operating current	I _{LVD} Notes 1, 11				0.08		μΑ
BGO operating current	I _{BGO} Notes 1, 12				2.5	12.2	mA
Self-programming operating current	FSPNotes 1, 13				2.5	12.2	mA
SNOOZE operating	Isnoz	A/D converter	The mode is performed ^{Notes 1, 14}		0.50	0.60	mA
current		operation	During A/D conversionNote 1		0.60	0.75	mA
		$(AV_{DD} = 3.0 V)$	During A/D conversionNote 7		420	720	μΑ
		CSI/UART opera	ation ^{Note 1}		0.70	0.84	mA

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Parameter	Symbol	Condition	s	HS	S ^{Note 1} LS ^{No}		lote 2 LV ^N		lote 3	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$2.7~V \le EV_{DD} \le 3.6~V$	tkcy1 ≥ 2/fclk	83.3		250		500		ns
SCKp high-/low-level width	tkH1, tkL1	2.7 V ≤ EV _{DD} ≤ 3.6 V	2.7 V ≤ EV _{DD} ≤ 3.6 V			tксү1/2 -50		tkcy1/2 -50		ns
SIp setup time (to SCKp↑)Note 4	tsıĸ1	2.7 V ≤ EV _{DD} ≤ 3.6 V		33		110		110		ns
SIp hold time (from SCKp↑)Note 4	t KSI1	2.7 V ≤ EV _{DD} ≤ 3.6 V		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tkso1	C = 20 pF ^{Note 6}			10		10		10	ns

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 6. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1)

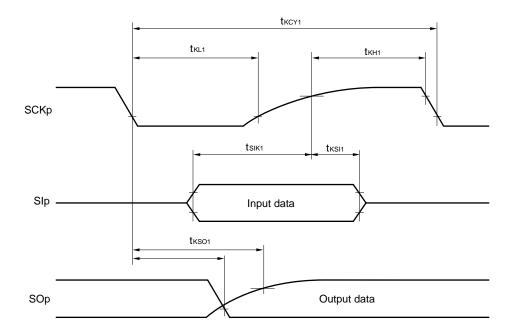
2. fmck: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n: Channel number (mn = 00))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} \le V_{DD} \le 3.6 \text{ V}, V_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

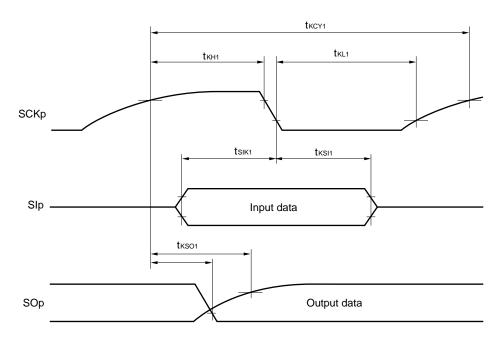
Parameter	Symbol	С	onditio	ns	HS!	Note 1	LS ^N	lote 2	LV ^N	lote 3	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 4}	tkcy2	2.7 V ≤ EV _{DD0} ≤	3.6 V	16 MHz < fмск	8/ƒмск		-		_		ns
				fмcк ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		ns
		2.4 V ≤ EV _{DD0} ≤	3.6 V		6/ƒмск		6/fмск		6/ƒмск		ns
					and 500ns		and 500ns		and 500ns		
		1.8 V ≤ EV _{DD0} ≤	36 V		6/fмск		6/fмск		6/fмск		ns
		1.0 1 = 21000	0.0		and		and		and		110
					750ns		750ns		750ns		
		1.7 V ≤ EV _{DD0} ≤	3.6 V		6/fмск		6/fмск		6/fмск		ns
					and 1500ns		and 1500ns		and 1500ns		
		1.6 V ≤ EV _{DD0} ≤	261/		1300118		6/fmck		6/fmck		no
		1.0 V ≤ E V DD0 ≤	3.0 V		_		and		and		ns
							1500ns		1500ns		
SCKp high-/low-level	t _{KH2} ,	2.7 V ≤ EV _{DD} ≤	3.6 V		tkcy2/2		tkcy2/2		tkcy2/2		ns
width	t KL2				-8		-8		-8		
		1.8 V ≤ EV _{DD0} ≤	3.6 V		tkcy2/2		tkcy2/2		tkcy2/2		ns
					-18		-18		-18		
		1.7 V ≤ EV _{DD0} ≤	3.6 V		tксү2/2 -66		tkcy2/2 -66		tксү2/2 -66		ns
		1.6 V ≤ EV _{DD0} ≤	261/		-00		-00 tксу2/2		-00 tксу2/2		no
		1.0 V ≤ E V DD0 ≤	3.0 V		_		-66		-66		ns
SIp setup time	tsik2	2.7 V ≤ EV _{DD0} ≤	3.6 V		1/fмск		1/fмск		1/ f мск		ns
(to SCKp↑) ^{Note 5}					+20		+30		+30		
		1.8 V ≤ EV _{DD0} ≤	3.6 V		1/ƒмск		1/fмск		1/fмск		ns
					+30		+30		+30		
		1.7 V ≤ EV _{DD0} ≤	3.6 V		1/fмск		1/fмск		1/fмск		ns
		40)/ (5)/			+40		+40		+40		
		1.6 V ≤ EV _{DD0} ≤	3.6 V		_		1/fмск +40		1/fмск +40		ns
Slp hold time	t _{KSI2}	1.8 V ≤ EV _{DD0} ≤	36 V		1/ƒмск		1/ƒмск		1/fмск		ns
(from SCKp↑) ^{Note 5}	ENGIZ	1.0 1 = 21000	0.0		+31		+31		+31		110
		1.7 V ≤ EV _{DD0} ≤	3.6 V		1/fмск+		1/f _{MCK} +		1/f _{MCK} +		ns
					250		250		250		
		1.6 V ≤ EV _{DD0} ≤	3.6 V		_		1/f _{MCK} +		1/f _{MCK} +		ns
			ı				250		250		
Delay time from SCKp↓ to SOp output ^{Note 6}	tkso2	C = 30 pF ^{Note 7}	2.7 V	≤ EV _{DD0} ≤ 3.6 V		2/fмcк		2/fмcк		2/fмcк	ns
to SOp output			0.41/	(F)/ (00)/		+44		+110		+110	
			2.4 V	≤ EV _{DD0} ≤ 3.6 V		2/fмск +75		2/fмск +110		2/fмск +110	ns
			1 8 V	≤ EV _{DD0} ≤ 3.6 V		2/fмск		2/fмск		2/fмск	ns
				• • • • • • • • • • • • • • • • • •		+110		+110		+110	
			1.7 V	≤ EV _{DD0} ≤ 3.6 V		2/fмск		2/fмск		2/fмск	ns
						+220		+220		+220	
			1.6 V	≤ EV _{DD0} ≤ 3.6 V		_		2/fмск		2/fмск	ns
								+220		+220	

(Note, Caution and Remark are listed on the next page.)

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 7. C is the load capacitance of the SOp output lines.

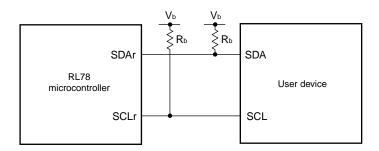

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

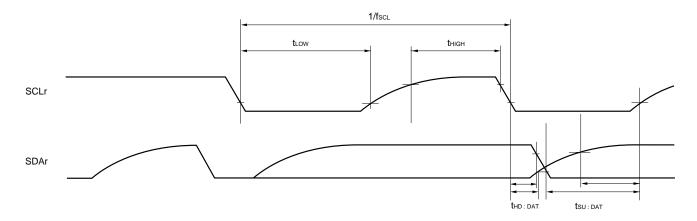
- Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency


 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10, 11))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Remarks 1. p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (m = 00, 02, 10), g: PIM and POM number (g = 0, 1)

2. CSI01, CSI11, and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

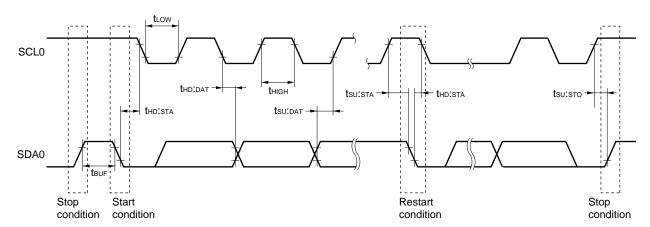
Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 02, 10)
 - **4.** IIC01, IIC11, and IIC21 cannot communicate at different potential. Use IIC00, IIC10, or IIC20 for communication at different potential.

2.5.2 Serial interface IICA

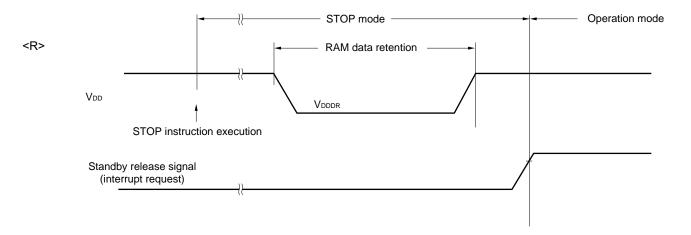
(1) I²C standard mode


(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 3.6 V, Vss = EVss0 = 0 V)

Parameter	Symbol	Conditions		St	andard	Mode ^{No}	te 1		Unit
			HS	Note 2	LS ^N	lote 3	LV	lote 4	
			MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	2.7 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	kHz
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	0	100	0	100	0	100	
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		0	100	0	100	
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		4.7		4.7		
Hold time ^{Note 5}	thd:STA	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.7		4.7		
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		ns
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	250		250		250		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		250		250		
Data hold time (transmission) ^{Note 6}	thd:dat	2.7 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	0	3.45	0	3.45	0	3.45	
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-	_	0	3.45	0	3.45	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}$	4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.0		4.0		4.0		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	-		4.0		4.0		
Bus-free time	t _{BUF}	2.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.7 V ≤ EV _{DD0} ≤ 3.6 V	4.7		4.7		4.7		
		1.6 V ≤ EV _{DD0} ≤ 3.6 V	_		4.7		4.7		

(Note and Remark are listed on the next page.)

IICA serial transfer timing



<R> 2.7 RAM Data Retention Characteristics

< R > (TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

<R> 2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

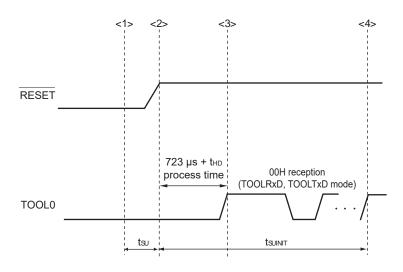
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	1.8 V ≤ V _{DD} ≤ 3.6 V	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2}	Cerwr	Retained for 20 years TA = 85°C ^{Note 3}	1,000			Times
Number of data flash rewrites ^{Notes 1, 2}		Retained for 1 years TA = 25°C ^{Note 3}		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 3}	100,000			
		Retained for 20 years TA = 85°C ^{Note 3}	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{SS0} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115.2 k		1 M	bps

2.10 Timing Specs for Switching Flash Memory Programming Modes

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
	How long from when the TOOL0 pin is placed at the low level until a external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
<r></r>	How long the TOOL0 pin must be kept at the low level after an external reset ends (except flash firmware processing time)	tно	POR and LVD reset must end before the external reset ends.	1			ms

<R>

- <1> The low level is input to the TOOL0 pin.
- <2> The pins reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

 t_{SU} : How long from when the TOOL0 pin is placed at the low level until a external reset ends

<R> thd: How long to keep the TOOL0 pin at the low level from when the external resets end (except flash firmware processing time)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$ (2/3)

Parameter	Symbol	, • <u>-</u> -		V, V ss = EV sso = $0 VConditions$		MIN.	TYP.	MAX.	(2/3) Unit
Supply	I _{DD2} Note 2	HALT	HS (high-speed	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 3.0 V		0.54	2.90	mA
current ^{Note 1}		mode	main) mode ^{Note 7}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.44	2.30	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.40	1.70	mA
			HS (high-speed main) mode ^{Note 7}	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.90	mA
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.45	2.00	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	
			Subsystem clock	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μΑ
			mode	T _A = -40°C	Resonator connection		0.44	0.76	
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μΑ
			T _A = +25°C	Resonator connection		0.49	0.76		
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.38	1.17	μΑ
				T _A = +50°C	Resonator connection		0.57	1.36	
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.52	1.97	μΑ
				T _A = +70°C	Resonator connection		0.71	2.16	
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μΑ
				T _A = +85°C	Resonator connection		1.16	3.56	
				f _{SUB} = 32.768 kHz ^{Note 5} T _A = +105°C	Square wave input		3.01	15.37	μΑ
				1A - +105 C	Resonator connection		3.20	15.56	
	I _{DD3} Note 6	STOP	T _A = -40°C				0.16	0.50	μΑ
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.34	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	
			T _A = +105°C				2.94	15.30	

(Notes and Remarks are listed on the next page.)

3.5 Peripheral Functions Characteristics

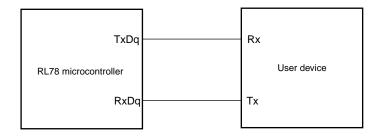
AC Timing Test Points

<R>

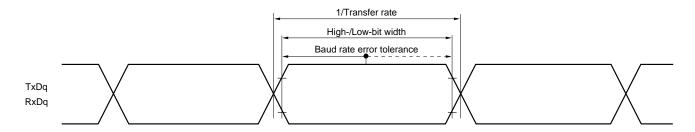
3.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate ^{Note 1}					fмск/12	bps
		Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk			2.6 ^{Note 2}	Mbps

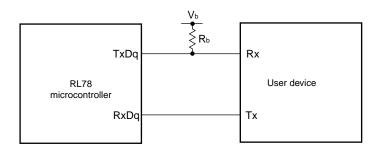

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps.

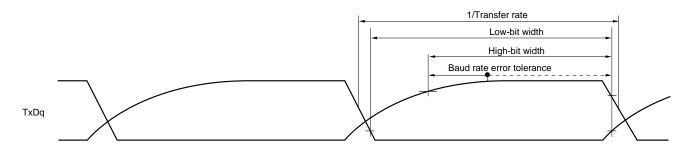
2. The following conditions are required for low-voltage interface when $EV_{DD0} < V_{DD}$.

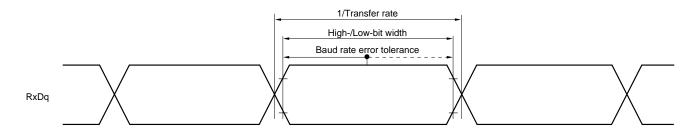

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)


UART mode bit width (during communication at same potential) (reference)


Remarks 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)


fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10, 11))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$: Communication line (TxDq) pull-up resistance,
 - C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time ^{Note 1}	tkcy2	$2.7~V \leq EV_{DD0} \leq 3.6~V,$ $2.3~V \leq V_b \leq 2.7~V$	24 MHz < fmck	40/fмск			ns
			20 MHz < f _{MCK} ≤ 24 MHz	32/fмск			ns
			16 MHz < f _{MCK} ≤ 20 MHz	28/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск			ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск			ns
			fмcк≤4 MHz	12/fмск			ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	24 MHz < f _{MCK}	96/fмск			ns
			20 MHz < f _{MCK} ≤ 24 MHz	72/f мск			ns
			16 MHz < f _{MCK} ≤ 20 MHz	64/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/f мск			ns
			4 MHz < f _{MCK} ≤ 8 MHz	32/fмск			ns
			fмcк≤4 MHz	20/fмск			ns
SCKp high-/low-level width	tkH2, tkL2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, 2$	$2.3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 36			ns
		2.4 V ≤ EV _{DD0} < 3.3 V, 1	$1.6~V \leq V_b \leq 2.0~V$	tkcy2/2 - 100			ns
SIp setup time	tsık2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 3.6 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		1/f _{MCK} + 40			ns
(to SCKp↑) ^{Note 2}	2	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		1/fmck + 60			
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/f _{MCK} + 62			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.6 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, $ $ C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $				2/f _{MCK} + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				2/fмск + 1146	ns

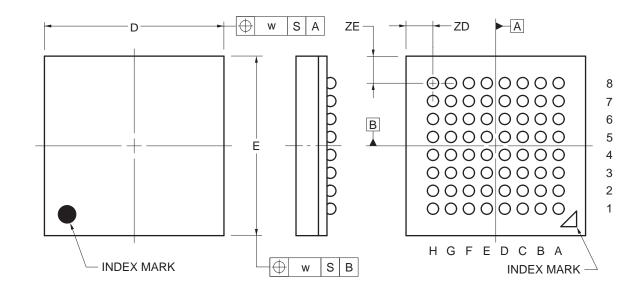
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

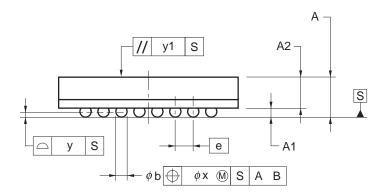
- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 25- to 48-pin products)/EVDD tolerance (When 64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

<R> (2) When reference voltage (+) = AV_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AV_{SS} (ADREFM = 0), target for conversion: ANI0 to ANI12


(TA = -40 to +105°C, 2.4 V \leq AVDD \leq VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)


Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
Overall error ^{Note}	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±7.5	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AV _{DD} ≤ 3.6 V	3.375			μs
Zero-scale error ^{Note}	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
Full-scale error ^{Note}	Ers	12-bit resolution	2.4 V ≤ AV _{DD} ≤ 3.6 V			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	Vain			0		AV _{DD}	V

Note Excludes quantization error (±1/2 LSB).

R5F10ELCABG, R5F10ELDABG, R5F10ELEABG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03

	(UNIT:mm)		
ITEM	DIMENSIONS		
D	4.00±0.10		
Е	4.00±0.10		
W	0.15		
Α	0.89±0.10		
A1	0.20±0.05		
A2	0.69		
е	0.40		
b	0.25±0.05		
х	0.05		
У	0.08		
y1	0.20		
ZD	0.60		
ZE	0.60		

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

RL78/G1A Data Sheet

			Description		
Rev.	Date	Page	Summary		
0.01	Dec 26, 2011	-	First Edition issued		
1.00	1.00 Sep 25, 2013		Modification of 1.1 Features		
		p.4	Modification of Table 1-1. List of Ordering Part Numbers		
		p.6	Modification of Remark 3 to 1.3.2 32-pin products.		
		p.13	Modification of 1.5.2 32-pin products.		
		p.14	Modification of 1.5.3 48-pin products.		
		p.16	Modification of 1.6 Outline of Functions		
		p.21	Modification of 2.2.1 X1, XT1 oscillator characteristics		
		p.31, 32	Modification of Note 1 in 2.3.2 Supply current characteristics		
		p.34, 35	Modification of Minimum Instruction Execution Time during Main System Clock Operation		
		p.37	Modification of AC Timing Test Points in 2.5 Peripheral Functions Characteristics		
		p.46 to 58	Modification of Caution to 2.5.1 Serial array unit.		
		p.63 to 68	Modification of 2.6.1 A/D converter characteristics		
		p.71	Modification of 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics		
		p.71	Modification of 2.8 Flash Memory Programming Characteristics		
		p.72	Modification of 2.10 Timing Specs for Switching Flash Memory Programming Modes		
		p.73 to	Addition of 3 ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL		
		117	APPLICATIONS TA = -40 to +105°C)		
		p.118 to 123	Modification of 4. PACKAGE DRAWINGS		
2.10	Nov 30, 2016	p.4	Modification of Table 1-1. List of Ordering Part Numbers		
			Modification of the position of the index mark in 1.3.1 25-pin products to 1.3.4 64-pin products		
		p.6	Modification of Remark 3		
		p.13	Modification of 1.5.2 32-pin products		
		p.14	Modification of 1.5.3 48-pin products		
		p.16	Modification of description in 1.6 Outline of Functions		
		p.21	Modification of 2.2.1 X1, XT1 oscillator characteristics		
		p.31, 32	Modification of Note 1 in 2.3.2 Supply current characteristics		
		p.34, 35	Modification of Minimum Instruction Execution Time during Main System Clock Operation		
		p.36	Modification of AC Timing Test Points and TI/TO Timing		
		p.38	Modification of AC Timing Test Points in 2.5 Peripheral Functions Characteristics		
		p.48, 50 to 52, 55, 59	Modification of Caution in 2.5.1 Serial array unit		
		p.64 to 69	Modification of conditions of 2.6.1 A/D converter characteristics		
		p.72	Renamed to 2.7 RAM Data Retention Characteristics, and modification of note and figure		
		p.72	Modification of 2.8 Flash Memory Programming Characteristics		

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and egulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics floring Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

t 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2016 Renesas Electronics Corporation. All rights reserved.