

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Bluetooth, Brown-out Detect/Reset, Cap Sense, LCD, LVD, POR, PWM, SmartCard, SmartSense, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-UFBGA, WLCSP
Supplier Device Package	68-WLCSP (3.52x3.91)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4247fni-bl493t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The PSoC 4200_BL devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The Arm SWD interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debugging.

The PSoC Creator IDE provides fully integrated programming and debugging support for the PSoC 4200_BL devices. The SWD interface is fully compatible with industry-standard third-party tools. With the ability to disable debug features, very robust flash protection, and allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC 4200_BL family provides a level of security not possible with multi-chip application solutions or with microcontrollers. Debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with the new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4200_BL with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4200 BL allows the customer to make.

Analog Blocks

12-bit SAR ADC

The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to ±1%) and by providing the choice of three internal voltage references, V_{DD} , $V_{DD}/2$, and V_{REF} (nominally 1.024 V), as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable; it allows the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision provided appropriate references are used and system noise levels permit it. To improve the performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through the selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is the buffering of each channel to reduce CPU interrupt-service requirements. To accommodate signals with varying source impedances and frequencies, it is possible to have different sample times programmable for each channel. Also, the signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-chip temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 to 5.5 V.

Opamps (CTBm Block)

PSoC 42X8_BLE has four opamps with Comparator modes, which allow most common analog functions to be performed on-chip, eliminating external components. PGAs, voltage buffers, filters, transimpedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the sample-and-hold circuit of the ADC without requiring external buffering.

Temperature Sensor

PSoC 4200_BL has an on-chip temperature sensor. This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected

to the ADC, which digitizes the reading and produces a temperature value by using a Cypress-supplied software that includes calibration and linearization.

Low-Power Comparators

PSoC 4200_BL has a pair of low-power comparators, which can also operate in Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator-switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

The PSoC 4XX8 BLE 4.2 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control.

Figure 5. UDB Array

UDBs can be clocked from a clock-divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows a faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 6).

Figure 6. Port Interface

UDBs can generate interrupts (one UDB at a time) to the interrupt controller. UDBs retain the ability to connect to any pin on the chip through the DSI.

Special-Function Peripherals

LCD Segment Drive

PSoC 4200_BL has an LCD controller, which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

The digital correlation method modulates the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

The PWM method drives the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep mode, refreshing a small display buffer (four bits; one 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4200_BL through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A Component is provided for the CapSense block to make it easy for the user.

The shield voltage can be driven on another mux bus to provide liquid-tolerance capability. Liquid tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without liquid tolerance (one IDAC is available).

Pin	Name	Туре	Description
G6	VSSR	GROUND	Radio ground
G7	VSSR	GROUND	Radio ground
G8	GANT	GROUND	Antenna shielding ground
G9	VSSR	GROUND	Radio ground
H1	NC	NC	Do not connect
H2	P0.5	GPIO	Port 0 Pin 5, analog/digital/lcd/csd
H3	P0.1	GPIO	Port 0 Pin 1, analog/digital/lcd/csd
H4	XTAL24O	CLOCK	24-MHz crystal
H5	XTAL24I	CLOCK	24-MHz crystal or external clock input
H6	VSSR	GROUND	Radio ground
H7	VSSR	GROUND	Radio ground
H8	ANT	ANTENNA	Antenna pin
J1	NC	NC	Do not connect
J2	P0.4	GPIO	Port 0 Pin 4, analog/digital/lcd/csd
J3	P0.0	GPIO	Port 0 Pin 0, analog/digital/lcd/csd
J4	VDDR	POWER	1.9-V to 5.5-V radio supply
J7	VDDR	POWER	1.9-V to 5.5-V radio supply
J8	NO CONNECT	_	-

Table 2. PSoC 4200_BL Pin List (WLCSP Package) (continued)

High-speed I/O matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the resources inside the device. These resources include CapSense, TCPWMs, I²C, SPI, UART, and LCD. HSIOM_PORT_SELx are 32-bit-wide registers that control the routing of GPIOs. Each register controls one port; four dedicated bits are assigned to each GPIO in the port. This provides up to 16 different options for GPIO routing as shown in Table 3.

Table 3. HSIOM Port Settings

Value	Description
0	Firmware-controlled GPIO
1	Output is firmware-controlled, but Output Enable (OE) is controlled from DSI.
2	Both output and OE are controlled from DSI.
3	Output is controlled from DSI, but OE is firmware-controlled.
4	Pin is a CSD sense pin
5	Pin is a CSD shield pin
6	Pin is connected to AMUXA
7	Pin is connected to AMUXB
8	Pin-specific Active function #0
9	Pin-specific Active function #1
10	Pin-specific Active function #2

 Table 3. HSIOM Port Settings (continued)

Value	Description
11	Reserved
12	Pin is an LCD common pin
13	Pin is an LCD segment pin
14	Pin-specific Deep-Sleep function #0
15	Pin-specific Deep-Sleep function #1

The selection of peripheral function for different GPIO pins is given in Table 4.

Table 4. Port Pin Connections

Nama	Analog	Digital								
Name	Analog	GPIO	Active #0	Active #1	Active #2	Deep Sleep #0	Deep Sleep #1			
P0.0	COMP0_INP	GPIO	TCPWM0_P[3]	SCB1_UART_RX[1]	-	SCB1_I2C_SDA[1]	SCB1_SPI_MOSI[1]			
P0.1	COMP0_INN	GPIO	TCPWM0_N[3]	SCB1_UART_TX[1]	-	SCB1_I2C_SCL[1]	SCB1_SPI_MISO[1]			
P0.2	-	GPIO	TCPWM1_P[3]	SCB1_UART_RTS[1]	-	COMP0_OUT[0]	SCB1_SPI_SS0[1]			
P0.3	-	GPIO	TCPWM1_N[3]	SCB1_UART_CTS[1]	-	COMP1_OUT[0]	SCB1_SPI_SCLK[1]			
P0.4	COMP1_INP	GPIO	TCPWM1_P[0]	SCB0_UART_RX[1]	EXT_CLK[0]/ ECO_OUT[0]	SCB0_I2C_SDA[1]	SCB0_SPI_MOSI[1]			
P0.5	COMP1_INN	GPIO	TCPWM1_N[0]	SCB0_UART_TX[1]	-	SCB0_I2C_SCL[1]	SCB0_SPI_MISO[1]			
P0.6	-	GPIO	TCPWM2_P[0]	SCB0_UART_RTS[1]	-	SWDIO[0]	SCB0_SPI_SS0[1]			
P0.7	-	GPIO	TCPWM2_N[0]	SCB0_UART_CTS[1]	-	SWDCLK[0]	SCB0_SPI_SCLK[1]			
P1.0	CTBm1_OA0_INP	GPIO	TCPWM0_P[1]	-	-	COMP0_OUT[1]	WCO_OUT[2]			
P1.1	CTBm1_OA0_INN	GPIO	TCPWM0_N[1]	-	-	COMP1_OUT[1]	SCB1_SPI_SS1			
P1.2	CTBm1_OA0_OUT	GPIO	TCPWM1_P[1]	-	-	-	SCB1_SPI_SS2			
P1.3	CTBm1_OA1_OUT	GPIO	TCPWM1_N[1]	-	-	-	SCB1_SPI_SS3			
P1.4	CTBm1_OA1_INN	GPIO	TCPWM2_P[1]	SCB0_UART_RX[0]	-	SCB0_I2C_SDA[0]	SCB0_SPI_MOSI[1]			
P1.5	CTBm1_OA1_INP	GPIO	TCPWM2_N[1]	SCB0_UART_TX[0]	-	SCB0_I2C_SCL[0]	SCB0_SPI_MISO[1]			
P1.6	CTBm1_OA0_INP	GPIO	TCPWM3_P[1]	SCB0_UART_RTS[0]	-	-	SCB0_SPI_SS0[1]			
P1.7	CTBm1_OA1_INP	GPIO	TCPWM3_N[1]	SCB0_UART_CTS[0]	-	-	SCB0_SPI_SCLK[1]			
P2.0	CTBm0_OA0_INP	GPIO	-	-	-	-	SCB0_SPI_SS1			
P2.1	CTBm0_OA0_INN	GPIO	-	-	-	-	SCB0_SPI_SS2			
P2.2	CTBm0_OA0_OUT	GPIO	-	-	-	WAKEUP	SCB0_SPI_SS3			
P2.3	CTBm0_OA1_OUT	GPIO	-	-	-	-	WCO_OUT[1]			
P2.4	CTBm0_OA1_INN	GPIO	-	-	-	-	-			
P2.5	CTBm0_OA1_INP	GPIO	-	-	-	-	-			
P2.6	CTBm0_OA0_INP	GPIO	-	-	-	-	-			
P2.7	CTBm0_OA1_INP	GPIO	-	-	EXT_CLK[1]/ECO_OUT[1]	-	-			
P3.0	SARMUX_0	GPIO	TCPWM0_P[2]	SCB0_UART_RX[2]	-	SCB0_I2C_SDA[2]	-			
P3.1	SARMUX_1	GPIO	TCPWM0_N[2]	SCB0_UART_TX[2]	-	SCB0_I2C_SCL[2]	-			
P3.2	SARMUX_2	GPIO	TCPWM1_P[2]	SCB0_UART_RTS[2]	-	-	-			
P3.3	SARMUX_3	GPIO	TCPWM1_N[2]	SCB0_UART_CTS[2]	-	-	-			
P3.4	SARMUX_4	GPIO	TCPWM2_P[2]	SCB1_UART_RX[2]	-	SCB1_I2C_SDA[2]	-			
P3.5	SARMUX_5	GPIO	TCPWM2_N[2]	SCB1_UART_TX[2]	-	SCB1_I2C_SCL[2]	-			
P3.6	SARMUX_6	GPIO	TCPWM3_P[2]	SCB1_UART_RTS[2]	-	-	-			
P3.7	SARMUX_7	GPIO	TCPWM3_N[2]	SCB1_UART_CTS[2]	-	-	WCO_OUT[0]			
P4.0	CMOD	GPIO	TCPWM0_P[0]	SCB1_UART_RTS[0]	-	-	SCB1_SPI_MOSI[0]			
P4.1	CTANK	GPIO	TCPWM0_N[0]	SCB1_UART_CTS[0]	-	-	SCB1_SPI_MISO[0]			
P5.0	-	GPIO	TCPWM3_P[0]	SCB1_UART_RX[0]	EXTPA_EN	SCB1_I2C_SDA[0]	SCB1_SPI_SS0[0]			
P5.1	-	GPIO	TCPWM3_N[0]	SCB1_UART_TX[0]	EXT_CLK[2]/ECO_OUT[2]	SCB1_I2C_SCL[0]	SCB1_SPI_SCLK[0]			
P6.0_XTAL32O	-	GPIO	_	-	_	_	_			
P6.1_XTAL32I	-	GPIO	-	-	-	-	-			

The possible pin connections are shown for all analog and digital peripherals (except the radio, LCD, and CSD blocks, which were shown in Table 1). A typical system application connection diagram is shown in Figure 7.

Power

The PSoC 4200_BL device can be supplied from batteries with a voltage range of 1.9 V to 5.5 V by directly connecting to the digital supply (VDDD), analog supply (VDDA), and radio supply (VDDR) pins. Internal LDOs in the device regulate the supply voltage to the required levels for different blocks. The device has one regulator for the digital circuitry and separate regulators for radio circuitry for noise isolation. Analog circuits run directly from the analog supply (VDDA) input. The device uses separate regulators for Deep Sleep and Hibernate (lowered power supply and retention) modes to minimize the power consumption. The radio stops working below 1.9 V, but the device continues to function down to 1.71 V without RF.

Bypass capacitors must be used from VDDx (x = A, D, or R) to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range in parallel with a smaller capacitor (for example, 0.1 μ F). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Power Supply	Bypass Capacitors					
VDDD	The internal bandgap may be bypassed with a 1-μF to 10-μF.					
VDDA	0.1-μF ceramic at each pin plus bulk capacitor 1-μF to 10-μF.					
VDDR	0.1-μF ceramic at each pin plus bulk capacitor 1-μF to 10-μF.					
VCCD	1.3-µF ceramic capacitor at the VCCD pin.					
VREF (optional)	The internal bandgap may be bypassed with a 1-µF to 10-µF capacitor.					

Table 9. GPIO AC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	F _{GPIOUT2}	GPIO Fout; 1.7 V \leq V _{DD} \leq 3.3 V. Fast-Strong mode	-	-	16.7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID84	F _{GPIOUT3}	GPIO Fout; 3.3 V \leq V _{DD} \leq 5.5 V. Slow-Strong mode	_	-	7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID85	F _{GPIOUT4}	GPIO Fout; 1.7 V \leq V _{DD} \leq 3.3 V. Slow-Strong mode	_	-	3.5	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID86	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DD} \leq 5.5 V	-	-	48	MHz	90/10% V _{IO}

Table 10. OVT GPIO DC Specifications (P5_0 and P5_1 Only)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID71A	I _{IL}	Input leakage current (absolute value), $V_{IH} > V_{DD}$	-	-	10	μA	25 °C, V _{DD} = 0 V, V _{IH} = 3.0 V
SID66A	V _{OL}	Output voltage LOW level	_	_	0.4	V	I _{OL} = 20-mA, V _{DD} > 2.9-V

Table 11. OVT GPIO AC Specifications (P5_0 and P5_1 Only)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID78A	T _{RISE_OVFS}	Output rise time in Fast-Strong mode	1.5	_	12	ns	25-pF load, 10%–90%, V _{DD} =3.3-V
SID79A	T _{FALL_OVFS}	Output fall time in Fast-Strong mode	1.5	_	12	ns	25-pF load, 10%–90%, V _{DD} =3.3-V
SID80A	T _{RISSS}	Output rise time in Slow-Strong mode	10	_	60	ns	25-pF load, 10%–90%, V _{DD} =3.3-V
SID81A	T _{FALLSS}	Output fall time in Slow-Strong mode	10	_	60	ns	25-pF load, 10%–90%, V _{DD} =3.3-V
SID82A	F _{GPIOUT1}	GPIO F_{OUT} ; 3.3 V \leq V _{DD} \leq 5.5 V Fast-Strong mode	-	-	24	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID83A	F _{GPIOUT2}	GPIO F _{OUT} ; 1.71 V ≤ V _{DD} ≤ 3.3 V Fast-Strong mode	_	_	16	MHz	90/10%, 25-pF load, 60/40 duty cycle

XRES

Table 12. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID87	V _{IH}	Input voltage HIGH threshold	$0.7 \times V_{DDD}$	-	-	V	CMOS input
SID88	V _{IL}	Input voltage LOW threshold	-	-	$0.3 \times V_{DDD}$	V	CMOS input
SID89	Rpullup	Pull-up resistor	3.5	5.6	8.5	kΩ	-
SID90	C _{IN}	Input capacitance	-	3	-	pF	_
SID91	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	_
SID92	I _{DIODE}	Current through protection diode to V_{DDD}/V_{SS}	_	_	100	μA	_

Table 13. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID93	TRESETWIDTH	Reset pulse width	1	-	-	μs	-

Analog Peripherals

Opamp

Table 14. Opamp Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions		
I _{DD} (Opamp	Block Current.	V _{DD} = 1.8 V. No Load)	•						
SID94	I _{DD HI}	Power = high	_	1000	1850	μA	_		
SID95	I _{DD_MED}	Power = medium	_	500	950	μA	-		
SID96	IDD LOW	Power = low	_	250	350	μA	-		
GBW (Load	GBW (Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V)								
SID97	GBW_HI	Power = high	6	-	_	MHz	-		
SID98	GBW_MED	Power = medium	4	-	-	MHz	-		
SID99	GBW_LO	Power = low	_	1	_	MHz	-		
I _{OUT_MAX} (V	/ _{DDA} ≥ 2.7 V, 500	mV From Rail)							
SID100	IOUT_MAX_HI	Power = high	10	-	-	mA	-		
SID101	IOUT_MAX_MID	Power = medium	10	-	_	mA	-		
SID102	IOUT_MAX_LO	Power = low	-	5	_	mA	-		
I _{OUT} (V _{DDA} :	= 1.71 V, 500 mV	From Rail)							
SID103	IOUT_MAX_HI	Power = high	4	-	_	mA	-		
SID104	IOUT_MAX_MID	Power = medium	4	-	_	mA	-		
SID105	OUT_MAX_LO	Power = low	-	2	_	mA	-		
SID106	V _{IN}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	$V_{DDA} - 0.2$	V	-		
SID107	V _{CM}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	$V_{DDA} - 0.2$	V	-		
VOUT (VDDA	≥ 2.7 V)								
SID108	V _{OUT_1}	Power = high, I _{LOAD} =10 mA	0.5	-	$V_{DDA} - 0.5$	V	-		
SID109	V _{OUT_2}	Power = high, I _{LOAD} =1 mA	0.2	-	$V_{DDA} - 0.2$	V	-		
SID110	V _{OUT_3}	Power = medium, I _{LOAD} =1 mA	0.2	-	$V_{DDA} - 0.2$	V	_		
SID111	V _{OUT_4}	Power = low, I _{LOAD} =0.1 mA	0.2	-	$V_{DDA} - 0.2$	V	-		
SID112	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode		
SID113	V _{OS_TR}	Offset voltage, trimmed	-	±1	_	mV	Medium mode		
SID114	V _{OS_TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode		
SID115	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	μV/C	High mode		
SID116	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	μV/C	Medium mode		
SID117	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	μV/C	Low mode		
SID118	CMRR	DC	70	80	-	dB	V _{DDD} = 3.6-V		
SID119	PSRR	At 1 kHz, 100-mV ripple	70	85	-	dB	V _{DDD} = 3.6-V		
Noise									
SID120	V _{N1}	Input referred, 1 Hz–1 GHz, power = high	_	94	_	μVrms	-		
SID121	V _{N2}	Input referred, 1-kHz, power = high	_	72	_	nV/rtHz	_		

Table 32. Fixed UART AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID236	F _{UART}	Bit rate	-	-	1	Mbps	_

SPI Specifications

Table 33. Fixed SPI DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID237	I _{SPI1}	Block current consumption at 1 Mbps	-	-	360	μA	_
SID238	I _{SPI2}	Block current consumption at 4 Mbps	-	-	560	μA	_
SID239	I _{SPI3}	Block current consumption at 8 Mbps	-	-	600	μA	-

Table 34. Fixed SPI AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID240	F _{SPI}	SPI operating frequency (master; 6X oversampling)	-	-	8	MHz	_

Table 35. Fixed SPI Master Mode AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID241	T _{DMO}	MOSI valid after Sclock driving edge	-	-	18	ns	-
SID242	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO sampling used	20	-	-	ns	Full clock, late MISO sampling
SID243	Т _{НМО}	Previous MOSI data hold time	0	-	_	ns	Referred to Slave capturing edge

Table 36. Fixed SPI Slave Mode AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID244	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	_	ns	_
SID245	T _{DSO}	MISO valid after Sclock driving edge	Ι	_	42 + 3 × T _{CPU}	ns	-
SID246	T _{DSO_ext}	MISO valid after Sclock driving edge in external clock mode	_	-	53	ns	V _{DD} < 3.0 V
SID247	T _{HSO}	Previous MISO data hold time	0	-	_	ns	-
SID248	T _{SSELSCK}	SSEL valid to first SCK valid edge	100	-	_	ns	_

Memory

Table 37. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID249	V _{PE}	Erase and program voltage	1.71	1	5.5	V	_
SID309	T _{WS48}	Number of Wait states at 32–48 MHz	2	Ι	I		CPU execution from flash
SID310	T _{WS32}	Number of Wait states at 16–32 MHz	1	-	_		CPU execution from flash
SID311	T _{WS16}	Number of Wait states for 0–16 MHz	0	I	I		CPU execution from flash

Table 38. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID250	T _{ROWWRITE} ^[5]	Row (block) write time (erase and program)	_	_	20	ms	Row (block) = 128 bytes for 128 KB flash devices Row (block) = 256 bytes for 256 KB flash devices
SID251	T _{ROWERASE} ^[5]	Row erase time	-	-	13	ms	_
SID252	T _{ROWPROGRAM} ^[5]	Row program time after erase	-	-	7	ms	-
SID253	T _{BULKERASE} ^[5]	Bulk erase time (256 KB)	-	-	35	ms	-
SID254	т	Total device program time	-	-	50	seconds	256 KB
SID254A	'DEVPROG'	lotal device program time	-	-	25	3000103	128 KB
SID255	F _{END}	Flash endurance	100 K	_	-	cycles	-
SID256	F _{RET}	Flash retention. $T_A \le 55 \text{ °C}$, 100 K P/E cycles	20	_	-	years	-
SID257	F _{RET2}	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	-	years	_

System Resources

Power-on-Reset (POR)

Table 39. POR DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID258	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	_
SID259	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.40	V	_
SID260	VIPORHYST	Hysteresis	15	-	200	mV	_

Table 40. POR AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID264	T _{PPOR_TR}	PPOR response time in Active and Sleep modes	_	-	1	μs	_

Table 41. Brown-Out Detect

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID261	V _{FALLPPOR}	BOD trip voltage in Active and Sleep modes	1.64	-	Ι	V	_
SID262	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep mode	1.4	-	-	V	_

Table 42. Hibernate Reset

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID263	V _{HBRTRIP}	BOD trip voltage in Hibernate mode	1.1	-	-	V	_

Note

^{5.} It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Table 47. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID296	F _{IMOTOL3}	Frequency variation from 3 to 48 MHz	-	-	±2	%	With API-called calibration
SID297	F _{IMOTOL3}	IMO startup time	-	-	12	μs	-

Internal Low-Speed Oscillator

Table 48. ILO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID298	I _{ILO2}	LO2 ILO operating current at 32 kHz		0.3	1.05	μA	_

Table 49. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID299	T _{STARTILO1}	ILO startup time	-	-	2	ms	-
SID300	F _{ILOTRIM1}	32-kHz trimmed frequency	15	32	50	kHz	-

Table 50. External Clock Specifications

Spec ID	Parameter	rameter Description		Тур	Max	Units	Details/Conditions
SID301	ExtClkFreq	External clock input frequency	0	-	48	MHz	CMOS input level only
SID302	ExtClkDuty	Duty cycle; Measured at $V_{DD/2}$	45	-	55	%	CMOS input level only

Table 51. UDB AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
Data Path								
SID303	F _{MAX-TIMER}	<i>N</i> ax frequency of 16-bit timer in a 48 MHz		-				
SID304	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	Aax frequency of 16-bit adder in a 48		48	MHz	_	
SID305	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	_	_	48	MHz	_	
PLD Perfor	mance in UDB							
SID306	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	_	_	48	MHz	-	
Clock to O	Clock to Output Performance							
SID307	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typical	_	15	_	ns	-	
SID308	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case	^{ut,} – 25 – ns		_			

Table 52. BLE Subsystem

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
RF Receiv	er Specification	•	•				
SID340		RX sensitivity with idle transmitter	-	-89	-	dBm	-
SID340A	RXS, IDLE	RX sensitivity with idle transmitter excluding Balun loss		-91	-	dBm	Guaranteed by design simulation
SID341	RXS, DIRTY	RX sensitivity with dirty transmitter	-	-87	-70	dBm	RF-PHY Specification (RCV-LE/CA/01/C)
SID342	RXS, HIGHGAIN	RX sensitivity in high-gain mode with idle transmitter	-	-91	-	dBm	-
SID343	PRXMAX	Maximum input power	-10	-1	-	dBm	RF-PHY Specification (RCV-LE/CA/06/C)
SID344	CI1	Co-channel interference, Wanted signal at –67 dBm and Inter- ferer at FRX	_	9	21	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID345	CI2	Adjacent channel interference Wanted signal at –67 dBm and Inter- ferer at FRX ±1 MHz	_	3	15	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID346	CI3	Adjacent channel interference Wanted signal at –67 dBm and Inter- ferer at FRX ±2 MHz	_	-29	-	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID347	Cl4	Adjacent channel interference Wanted signal at –67 dBm and Inter- ferer at ≥FRX ±3 MHz	_	-39	-	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID348	CI5	Adjacent channel interference Wanted Signal at –67 dBm and Inter- ferer at Image frequency (F _{IMAGE})	-	-20	-	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID349	Cl6	Adjacent channel interference Wanted signal at –67 dBm and Inter- ferer at Image frequency (F _{IMAGE} ± 1 MHz)	_	-30	-	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID350	OBB1	Out-of-band blocking, Wanted signal at –67 dBm and Inter- ferer at F = 30–2000 MHz	-30	-27	-	dBm	RF-PHY Specification (RCV-LE/CA/04/C)
SID351	OBB2	Out-of-band blocking, Wanted signal at –67 dBm and Inter- ferer at F = 2003–2399 MHz	-35	-27	-	dBm	RF-PHY Specification (RCV-LE/CA/04/C)
SID352	OBB3	Out-of-band blocking, Wanted signal at –67 dBm and Inter- ferer at F = 2484–2997 MHz	-35	-27	-	dBm	RF-PHY Specification (RCV-LE/CA/04/C)
SID353	OBB4	Out-of-band blocking, Wanted signal a –67 dBm and Inter- ferer at F = 3000–12750 MHz	-30	-27	-	dBm	RF-PHY Specification (RCV-LE/CA/04/C)
SID354	IMD	Intermodulation performance Wanted signal at –64 dBm and 1-Mbps BLE, third, fourth, and fifth offset channel	-50	_	_	dBm	RF-PHY Specification (RCV-LE/CA/05/C)
SID355	RXSE1	Receiver spurious emission 30 MHz to 1.0 GHz	_	_	-57	dBm	100-kHz measurement bandwidth ETSI EN300 328 V1.8.1

Table 52. BLE Subsystem (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID356	RXSE2	Receiver spurious emission 1.0 GHz to 12.75 GHz	_	_	-47	dBm	1-MHz measurement bandwidth ETSI EN300 328 V1.8.1
RF Transn	nitter Specificatio	ns					
SID357	TXP, ACC	RF power accuracy	_	±1	-	dB	-
SID358	TXP, RANGE	RF power control range	_	20	-	dB	-
SID359	TXP, 0dBm	Output power, 0-dB Gain setting (PA7)	_	0	-	dBm	-
SID360	TXP, MAX	Output power, maximum power setting (PA10)	-	3	-	dBm	-
SID361	TXP, MIN	Output power, minimum power setting (PA1)	_	-18	_	dBm	-
SID362	F2AVG	Average frequency deviation for 10101010 pattern	185	-	-	kHz	RF-PHY Specification (TRM-LE/CA/05/C)
SID363	F1AVG	Average frequency deviation for 11110000 pattern	225	250	275	kHz	RF-PHY Specification (TRM-LE/CA/05/C)
SID364	EO	Eye opening = Δ F2AVG/ Δ F1AVG	0.8	-	_		RF-PHY Specification (TRM-LE/CA/05/C)
SID365	FTX, ACC	Frequency accuracy	-150	-	150	kHz	RF-PHY Specification (TRM-LE/CA/06/C)
SID366	FTX, MAXDR	Maximum frequency drift	-50	-	50	kHz	RF-PHY Specification (TRM-LE/CA/06/C)
SID367	FTX, INITDR	Initial frequency drift	-20	_	20	kHz	RF-PHY Specification (TRM-LE/CA/06/C)
SID368	FTX, DR	Maximum drift rate	-20	-	20	kHz/ 50 μs	RF-PHY Specification (TRM-LE/CA/06/C)
SID369	IBSE1	In-band spurious emission at 2-MHz offset	-	-	-20	dBm	RF-PHY Specification (TRM-LE/CA/03/C)
SID370	IBSE2	In-band spurious emission at ≥3-MHz offset	-	-	-30	dBm	RF-PHY Specification (TRM-LE/CA/03/C)
SID371	TXSE1	Transmitter spurious emissions (average), <1.0 GHz	_	_	-55.5	dBm	FCC-15.247
SID372	TXSE2	Transmitter spurious emissions (average), >1.0 GHz	-	-	-41.5	dBm	FCC-15.247
RF Curren	t Specifications						
SID373	IRX	Receive current in normal mode	_	18.7	-	mA	-
SID373A	IRX_RF	Radio receive current in normal mode	-	16.4	-	mA	Measured at V _{DDR}
SID374	IRX, HIGHGAIN	Receive current in high-gain mode	-	21.5	-	mA	-
SID375	ITX, 3dBm	TX current at 3-dBm setting (PA10)	-	20	-	mA	-
SID376	ITX, 0dBm	TX current at 0-dBm setting (PA7)	-	16.5	-	mA	-
SID376A	ITX_RF, 0dBm	Radio TX current at 0 dBm setting (PA7)	-	15.6	-	mA	Measured at V _{DDR}
SID376B	ITX_RF, 0dBm	Radio TX current at 0 dBm excluding Balun loss	-	14.2	-	mA	Guaranteed by design simulation
SID377	ITX,-3dBm	TX current at –3-dBm setting (PA4)	-	15.5	-	mA	-

Packaging

Table 56. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	_	-40	25.00	105	°C
TJ	Operating junction temperature	-	-40	-	125	°C
T _{JA}	Package θ_{JA} (56-pin QFN)	_	-	16.9	-	°C/watt
T _{JC}	Package θ_{JC} (56-pin QFN)	_	-	9.7	-	°C/watt
T _{JA}	Package θ_{JA} (76-ball WLCSP)	_	-	20.1	-	°C/watt
T _{JC}	Package θ_{JC} (76-ball WLCSP)	_	-	0.19	-	°C/watt
T _{JA}	Package θ_{JA} (76-ball Thin WLCSP)	_	-	20.9	-	°C/watt
T _{JC}	Package θ_{JC} (76-ball Thin WLCSP)	_	-	0.17	-	°C/watt
T _{JA}	Package θ_{JA} (68-ball WLCSP)		-	16.6	-	°C/watt
T _{JC}	Package θ_{JC} (68-ball WLCSP)		-	0.19	-	°C/watt
T _{JA}	Package θ_{JA} (68-ball Thin WLCSP)		-	16.6	-	°C/watt
T _{JC}	Package θ_{JC} (68-ball Thin WLCSP)		-	0.19	-	°C/watt

Table 57. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All packages	260 °C	30 seconds

Table 58. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
56-pin QFN	MSL 3
All WLCSP packages	MSL 1

Table 59. Package Details

Spec ID	Package	Description
001-58740 Rev. *C	56-pin QFN	7.0 mm × 7.0 mm × 0.6 mm
001-96603 Rev. *A	76-ball WLCSP	4.04 mm × 3.87 mm × 0.55 mm
002-10658, Rev. **	76-ball thin WLCSP	4.04 mm × 3.87 mm × 0.4 mm
001-92343 Rev. *A	68-ball WLCSP	3.52 mm × 3.91 mm × 0.55 mm
001-99408 Rev **	68-ball Thin WLCSP	52 mm × 3.91 mm × 0.4 mm

Figure 8. 56-Pin QFN 7 × 7 × 0.6 mm

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance.

WLCSP Compatibility

The PSoC 4XXX_BLE family has products with 128 KB (16KB SRAM) and 256 KB (32KB SRAM) Flash. Package pin-outs and sizes are identical for the 56-pin QFN package but are different in one dimension for the 68-ball WLCSP.

The 256KB Flash product has an extra column of balls which are required for mechanical integrity purposes in the Chip-Scale package. With consideration for this difference, the land pattern on the PCB may be designed such that either product may be used with no change to the PCB design.

Figure 9 shows the 128KB and 256 KB Flash CSP packages.

The rightmost column of (all NC, No Connect) balls in the 256K BLE WLCSP is for mechanical integrity purposes. The package is thus wider (3.2 mm versus 2.8 mm). All other dimensions are identical. Cypress will provide layout symbols for PCB layout.

The scheme in Figure 9 is implemented to design the PCB for the 256K BLE package with the appropriate space requirements thus allowing use of either package at a later time without redesigning the Printed Circuit Board.

SYMBOL

Α

A1

D

Е

D1

E1

MD

ME

Ν

Øb

eD

еE

SD

SE

Document Conventions

Units of Measure

Table 61. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Revision History

Description Title: PSoC [®] 4: 4200_BLE Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 002-23053							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	6078076	PMAD/ WKA	02/22/2018	New datasheet			